A The incremental algorithm

Let (z;,y;)7, be the dataset and (Z;)7 be the selected Nystrom points. We want to compute & of
Eq. [ incrementally in m. Towards this goal we compute an incremental Cholesky decomposition
Ry fort € {1,...,m} of the matrix G; = K,|,K,; + AnKj,, and the coefficients &; by &; =
Ry 'Ry TK;ty. Note that, for any 1 < ¢ < m — 1, by assuming G; = R, R; for an upper triangular
matrix R;, we have

T
_ Gt Ct+1 o Rt 0 Rt 0 . o 0 Ct+1
Gre1 = (CtTH Yer1)  \ 0 0O 0 0 F O with Crr = C:+1 Yiv1)’

and ¢;41, Y¢+1 as in Section Note moreover that G; = 7y;. Thus if we decompose the matrix
Ciy1 inthe form Cyyq = upyiu, 1= vt+1v;_1 we are able compute R;. 1, the Cholesky matrix of
Gy+1, by updating a bordered version of R; with two rank-one Cholesky updates. This is exactly
AlgorithmI{with u;11 and v;11 as in Section Note that the rank-one Cholesky update requires
O(t?) at each call, while the computation of ¢; requires O(nt) and the ones of &, requires to solve
two triangular linear systems, that is O(t? +nt). Therefore the total cost for computing d, . . . , G,
is O(nm? +m?3).

B Preliminary definitions

We begin introducing several operators that will be useful in the following. Let 21, ..., 2, € H and
forall f € H,a € R™, let

Zm:H%Rma Z’mf:(<Zl7f>7-[>"'a<zm7f>7-[>7
zZr cR™ = H, Zrha=Y" a;z.

Let S, = ﬁZm and S} = ﬁZ:;1 the operators obtained taking m = n and z; = K,,, Vi =
1,...,n in the above definitions. Moreover, for all f,g € H let

CotH =M, (f.Cughyy = > Flagla).
i=1

The above operators are linear and finite rank. Moreover C,, = Sr Sy and K, = nS,S}, and further
Bum = V/nSnZ%, € RV G = Zin 2%, € R™*™ and K,, = B,,,,GI BT € R™¥",

C Representer theorem for Nystrom computational regularization and
extensions

In this section we consider explicit representations of the estimator obtained via Nystrdm compu-
tational regularization and extensions. Indeed, we consider a general subspace H,, of H, and the
following problem

n

Fam = argmin 3" (Fs) — yi) + A2, (11

feHm NI
In the following lemmas, we show three different characterizations of f .

Lemma 1. Let f) ., be the solution of the problem in Eq. (I1). Then it is characterized by the
following equation

(PGP + A1) frm = PS5, (12)
with Py, the projection operator with range H.,, and y,, = %y

Proof. The proof proceeds in three steps. First, note that, by rewriting Problem (TIJ) with the nota-
tion introduced in the previous section, we obtain,

From = argmin [|S, f — 5|12 + A f12. (13)

m
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This problem is strictly convex and coercive, therefore admits a unique solution. Second, we show
that its solution coincide to the one of the following problem,

£ = argmin |[S, P f — n|l> + M f13- (14)
feH

Note that the above problem is again strictly convex and coercive. To show that f,\’m = f *, let

f* =a+bwitha € H,, and b € H;. A necessary condition for f* to be optimal, is that b = 0,
indeed, considering that P,,,b = 0, we have

180 P f* = Gl + M 13, = 180 Pma = Gull? + Mlal3, + Mbll3, > 150 Pra = Full* + AMall3,.

This means that f* € H,,, but on H,, the functionals defining Problem (T3) and Problem (T4) are
identical because P, f = f for any f € H,, and so f),, = f*. Therefore, by computing the
derivative of the functional of Problem (T4), we see that fy ., is given by Eq. (12). O

Using the above results, we can give an equivalent representations of the function f,\ym. Towards
this end, let Z,,, be a linear operator as in Sect.|B|such that the range of Z7, is exactly H,,. Morever,
let

Zm =UEV™

be the SVD of Z,,, where U : Rt - R™, ¥ : R - RL V iR - H,t < mand ¥ =
diag(o1,...,0¢) withoy > -+ > 0y > 0, U*U = I; and V*V = I;. Then the orthogonal
projection operator P, is given by P,, = VV* and the range of P, is exactly H,,. In the following
lemma we give a characterization of f A,m that will be useful in the proof of the main theorem.

Lemma 2. Given the above definitions , fy ,, can be written as

Frm = V(V*CoV + )"V S35 (15)

Proof. By Lemma we know that f;Hm is written as in Eq. @) Now, note that f)\ym =P, j':)\,m
and Eq. (12) imply (P, Cr, Py + M) Py, fAA,m = P,,S’y,, that is equivalent to
V(V*C.V 4+ AV frm = VV* STy,

by substituting P,,, with V'V*. Thus by premultiplying the previous equation by V* and dividing by
V*C,,V + A\, we have R
V* fam = (V*CRV + X)) T'V*Si,.

n

Finally, by premultiplying by V,
Pom = Pofam = V(VC,V + N)TV*SEG,.

Finally, the following result provide a characterization of the solution useful for computations.

Lemma 3 (Representer theorem for f,\ym). Given the above definitions, we have that f,\m can be
written as

Fam(z) = Zdizi(x), with & = (B Bpm + MGmm) Bl vy YzeX. (16
=1

Proof. According to the definitions of B,,,, and G,,,,, we have that

a= (BT Bpm + A”Gmm)TB;my = ((ZmS:;)(SnZ:n) + A(ZM,Z:n»T(ZmS:,)?/J\w

nm

Moreover, according to the definition of Z,,, we have

Fam(@) = @i (21, Ky) = (Zn Ko, &) = (Ko, Zha)y Va € X,
i=1
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so that

Fam = Z3,((ZmS3)(SuZin) + M2 Z3)) (Zin ;)i = Zrn(ZinCouxZ ) (Zin S )

)

where Cpy = Cp + M. Let F = U, G = V*C,V + M\, H = XU, and note that F, GH, G
and H are full-rank matrices, then we can perform the full-rank factorization of the pseudo-inverse
(see Eq.24, Thm. 5, Chap. 1 of [1]) obtaining

(ZmCorZ:) = (FGH)' = HI(FG)" = HIG'FT = Uux~Y(V*C,V + AI) "1~ 1U~.
Finally, simplyfing U and 3, we have

fA,m = Zr*n<Zan>\Zr*n)T(ZmS:L)@\n
=VXUrUS Y (V*C,V + A\ 'S Ut USV* Sy,
=V(V*C,V + X)) V* Sk,

C.1 Extensions

Inspection of the proof shows that our analysis extends beyond the class of subsampling schemes
in Theorem [I] Indeed, the error decomposition Theorem [2] directly applies to a large family of
approximation schemes. Several further examples are described next.

KRLS and Generalized Nystrom In general we could choose an arbitrary H,, C H. Let Z,, :
H — R™ be a linear operator such that

Hp=ranZ: ={f|f=2Z}a, a € R} (17

Without loss of generality, Z, is expressible as Z*, = (z1,. .., Zm) | with 21, ..., 2, € H, there-
fore, according to Section[B]and to Lemma 3] the solution of KRLS approximated with the general-
ized Nystrom scheme is

Prm(@) = Gizi(x), with @ = (B, Bum + AnGm) By (18)
=1

with B, € R™ ™, (Bpm)ij = zj(z;) and G € R™*™, (Grm)ij = (%, 2j)4,, OF equivalently

H

mm nm mm nm

Fum(@) =3 @zi(2), 6= GlypBl(Kn+ D) G, Ky = BunGlhBl,  (19)
i=1
The following are some examples of Generalized Nystrém approximations.

Plain Nystrom with various sampling schemes [2-4] For a realization s : N — {1,...,n} of
a given sampling scheme, we choose Z,,, = Sy, with Sy, = (Ko ... ., Ky, () | where (z;)7,

is the training set. With such Z,,, we obtain Kn = K,,,m(Kmm)TK;m and so Eq. @]) becomes
exactly Eq. (3).

Reduced rank Plain Nystrom [5] Let p > m, S, as in the previous example, the linear operator
associated to p points of the dataset. Let K,, = S,5, € RP*?, that is (Kpp)i; = K(z4, ;).
Let Kp, = Y0, osusu; its eigenvalue decomposition and Uy, = (u,. .., Um). Let (Kpp)m =
Ul K ppUm be the m-rank approximation of K,. We approximate this family by choosing Z,,, =
U,ISP, indeed we obtain K,, = KnmUm(UgKm,Um)TU;KJm = Knm(Kpp);anJm.

Nystrom with sketching matrices [6] We cover this family by choosing Z,,, = R,,S,,, where S,
is the same operator as in the plain Nystrom case where we select all the points of the training set
and R,,, am x n sketching matrix. In this way we have K, = KnR;(RmKnR;)TRmKn, that is
exactly the SPSD sketching model.
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D Probabilistic inequalities

In this section we collect five main probabilistic inequalities needed in the proof of the main result.
We let px denote the marginal distribution of p on X and p(-|x) the conditional distribution on R
given x € X. Lemmas[6] [7]and especially Proposition [IJare new and of interest in their own right.

The first result is essentially taken from [7].

Lemma 4 (Sample Error). Under Assumptions[l} 2]and 3] for any 6 > 0, the following holds with
probability 1 —

IO+ AL (S35 ~ Cu )l < 2 (MV Nl \J2N “)) log 2.

Proof. The proof is given in [7] for bounded kernels and the slightly stronger condition

f(egme @l w — 1)dp(y|z) < 0?/M? in place of Assumption More precisely, note
that

1 n
A —1/2 *An — Un = - i
(€4 AD S T, = Cufu) = 530G

where (i, ..., (, are i.i.d. random variables, defined as ¢; = (C' + \I)~Y2K,, (yi — fu(z;)). For
any 1 <1¢ <n,

E¢; = / (C+AD)TV2K,, (yi — fru(@)dp(zi, i)
X xR

- / (C+AD)K,, / (s — Fra(w))dpuiles)dpx (1) = 0,
X R

almost everywhere by Assumption [I](see Step 3.2 of Thm. 4 in [7]). In the same way we have

El[GI” = /X RH(CJr M) TV2K G (yi = (@) |Pdp(i, i)

:/ ||(0+/\I)_1/2Kwi||p/‘yi_fﬂ(xi)|pdp(yi|xi)de(xi)
X R

IN

sup (€ + AL) 2K, / I(C+AD) V2K, | / i — Fua) Pdp(yiles) dpx (z:)
S X R

%P!\/UQN(A)Q(M VN (V)72

where sup,¢ x||(C + M)"Y2K, || = /Nx()) and fXH(C-i- M)~Y2K, |2 = N()) by As-
sumption (3| while the bound on the moments of y — f(x) is given in Assumption 2| Finally, to
concentrate the sum of random vectors, we apply Prop. [T1] O

IN

The next result is taken from [8].

Lemma 5. UnderAssumption forany § > 0 and % logh <A< |C
holds with probability at least T — 0,

[(Cy + A TY2CY2|| < |(C 4+ M) TYV2(C + AD)Y?| < 2.

, the following inequality

Proof. Lemma 7 of [8] gives an the extended version of the above result. Our bound on X is scaled
by x? because in [8] it is assumed x < 1. O

Lemma 6 (plain Nystrdm approximation). Under Assumption[3| let J be a partition of {1, ...,n}
chosen uniformly at random from the partitions of cardinality m. Let A > 0, for any § > 0, such

that m > 67 log % V 5No () log %, the following holds with probability 1 — §
I(Z = Pn)CY2|1? < 3,

where Py, is the projection operator on the subspace H,,, = span{K,, | j € J}.
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Proof. Define the linear operator Cy,, : H — H, as C,,, = % > cj Kz, ® Ky ;. Now note that the
range of C,, is exactly H,,. Therefore, by applying Prop.[3|and[7] we have that

A
1= P)CY 22 < A(Co + AD)TH2CV22 < — 2
(T = Pa)CY2 < Mo + D) < =5
. ~1/2 —~1/2 A
with S(A) = Amax (C’ L (C - Cp)Cy, ) To upperbound =50y We need an upperbound for

B(A). Considering that, given the partition .J, the random variables (; = K., ® K, are i.i.d., then
we can apply Prop. |8} to obtain

2 2 A
By < 22 4 2NV
3m m
where w = log %gc) with probability 1 — . Thus, by choosing m > 67w V 5N (A\)w, we have
that () < 2/3, that is
17 = Pa)CY2 |2 < 3.

Finally, note that by definition Tr(C) < k2. O

Lemma 7 (Nystrom approximation for ALS selection method). Let (I;(t))7_, be the collection of
approximate leverage scores. Let X > 0 and Py be defined as Py (i) = l;(\)/ dojen l}-(A) Sfor any
i€ Nwith N={1,...,n}. Let 3 = (i1,...,im) be a collection of indices independently sampled
with replacement from N according to the probability distribution Py. Let P,, be the projection
operator on the subspace H,, = span{K, |j € J} and J be the subcollection of J with all the
duplicates removed. Under Assumption[3| for any 6 > 0 the following holds with probability 1 — 2§

I(I = Py)(C + A)'2| < 3,

when the following conditions are satisfied:

1. there exists a T > 1 and a Ny > 0 such that (I;(t))?, are T-approximate leverage scores
forany t > X (see Def-[I),

2. n > 16552 + 223k log 22,

3 AV g2 <\ < O

s

4. m > 334log 8 Vv T8T2N () log 2.

Proof. Define 7 = §/4. Next, define the diagonal matrix H € R"™*™ with (H);; = 0 when
Py\(i) =0and (H); = T:}?,El()i) when Py (i) > 0, where ¢(¢) is the number of times the index i is
present in the collection J. We have that

. 1< q(d)
SuH S = ; X0

1 q(j)
K, ®K, = — LKy, ® K.
mj;] Py(j)

Now, considering that g(j?, > 0 for any j € J, thus ran S} HS,, = H,,. Therefore, by using

A (7)

Prop. [3]and[7] we exploit the fact that the range of P, is the same of Sy H.S,,, to obtain

0= P)(© + D)2 < AI(S3HS, + AT PCVA < 1=,

with B(0) = Amax (0;1/ 2(C = 8:HS,)C Y 2). Considering that the function (1 — 2)~! is

increasing on —oo < z < 1, in order to bound A/(1 — 3(\)) we need an upperbound for 5(\). Here
we split () in the following way,

B < dmax (O3 A€ = CICT) + A (O3 V2(C = S3HS,)CR )

B1(N) B2(A)

14



Considering that C,, is the linear combination of independent random vectors, for the first term we
can apply Prop.[8] obtaining a bound of the form

2w 2wk2

< 2=
Ay < 3n + n

with probability 1 — 7, where w = log (We used the fact that No,(\) < k2/)). Then, after
dividing and multiplying by Cnf\ , we split the second term [2(A) as follows:
(V) < 102 (Co = 57 HS)C |
—1/2 ~1/2 ~—1/2 " —1/2 ~41/2 ~—1/2
< (10320020, (C = S1H S PO
< [C3 2 CRIPICR " (Co = S3HSA)CL
Let
Bs(N) = 163 (Co = SLHSCL PN = 1033 = H)S, O (0)

Note that S,C. 'S} = K, (K, + AnI)~! indeed C;,) = (S:S, + A\I)~! and K,, = nS,S;.
Therefore we have

SuCLSE = 8,(S58y + M) 7LSE = (8,85 + M) 718,87 = (K, + And) "1 K,,.
Thus, if we let USU " be the eigendecomposition of K,,, we have that (K, + Anl)"'K, =
U(E + AnI)~'2UT and thus S,C;,'S: = U(E + AnI)"'SU . In particular this implies that
S,CLSsx = UQY QYU with @, = (S + AnI)~'S. Therefore we have
Bo() = 1Cx 81T = H)SuCra Il = Q20T (1 = NUQL].

where we used twice the fact that ||[ABA*|| = |(A*A)Y/2B(A*A)'/?|| for any bounded linear
operators A, B.

Consider the matrix A = Q,l/ 2UT and let a; be the i-th column of A, and e; be the i-th canonical
basis vector for each i € N. We prove that ||a;||> = I;()\), the true leverage score, since

las|* = 1Q12U Teil® = ef UQuU Tei = (K + AnD) ™ Ky )iy = Li(N).

Noting that y_;'_, PA(,E) ara) =Y,y pigyaia; » we have

fa() = |AAT——ZP aial .

Moreover, by the T-approximation property of the approximate leverage scores (see Def. [I)), we
have that for all i € {1,...,n}, when A > )\, the following holds with probability 1 — §

B e LY s e
S0 L TAdT

Then, we can apply Prop. [0 so that, after a union bound, we obtain the following inequality with
probability 1 — § — 7:

Py(i) =

2 AP log 2 \/2||A||2T2 TrAATIog 2 210g2 (272NN log 22

3(A) <

Bs(A) < 3m m - 3Im m ’
where the last step follows from [|Al? = H(Kn+/\nl)_1Kn|| < 1 and Tr(4A7) =
(C,\Cy) = N ()\) Applying Proposition [I| we have that N'()\) < 1.3N(X) with probabil-

ity 1 — 7, when 1967 150 £ < A < |C| and n > 405x% V 67K log &= Thus, by taking a union
bound again, we have

B3(A) <

2log 22 N \/5.3T2N(/\) log 22

3m m
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with probability 1 — 27 — & when Ao V 125” log 2 < X\ < ||C|| and n > 405k2 V 672 log 25~ . The

last step is to bound ||C', ,as follows

||C/\_1/2 1/2”2 ||C—1/2 n}\c—l/2”7”]—+c—l/2(c 70) _1/2||<1+n,

with = \|C;1/2(Cn -C)C 1/2|| Note that by applying Prop. Iwe have that n < W +

25';27? with probability 1 — 7 and § = log &% ?' Finally, by collecting the above results and taking a

union bound we have

2 Qwk2 2log 22 5.372N () log 22
Jw [ :ﬁ[ﬂ/ (A)log 2

m

with probability 1—47—4 = 1—28 when ,\ov% log » < A < [|C]land n > 405k2V67x2 log 2.
Note that, if we select n > 405x2 V 2232 log 25~ 26 > 334 log 8, Ao V % log 2t < A < ||C|

2 &n
and % < 1 the conditions are satisfied and we have S(\) < 2/3, so that

I(1 = P)CH2|1? < 3,
with probability 1 — 26. O

Proposition 1 (Empirical Effective Dimension). Let N'(\) = Tr C,,C,,\. Under the Assumption

for any § > 0 and n > 405x2 V 67x% log %, if 19:’2 log 75 < A < ||C|, then the following holds
with probability 1 — 6,

N =N

3q q + 13.5¢>

<4.5¢+ (1+9q) NOU + NOY

< 1.65,

5 )
4rk” log §
3An

with q =

Proof. Let T = §/3. Define B,, = 0_1/2(0 Cn)Cy /2 . Choosing A in the range 196> log 1= <
A < ||C]|, Prop. [8|assures that )\maX(B ) < 1/3 with probablhty 1 — 7. Then, using 'the fact that

C-L =71 - B,)~1CY? (see the proof of Prop.[7) we have
nA A A
N =N =|TrC e, —coyt = TrC (e, — C)CY
— \TrCy (1= By) eV (C, - o)e Pes
= \TrCy Y2 (I - By) ' B,y
Considering that for any symmetric linear operator X : H — H the following identity holds
g y sy p g y
I-X)"'X=X+X(I-X)'X,
when Apax (X) < 1, we have
A TeCy 2 (1= B,) ™ B.CY P < A|TrCy V2B, C 2
A
+ A TrC?B, (I - B,) ' B,

B

To find an upperbound for A define the i.i.d. random variables 7; = <Kx,i,AC/\_2Kxi> eR
with ¢ € {1,...,n}. By linearity of the trace and the expectation, we have M = En; =
E (K., ,A\C5°Ky,,) = ETr(AC5 ° Ky, ® Ky,) = ATr(Cy >C). Therefore,

)

- - I
A TrCy 2B,y P = |M ~>
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and we can apply the Bernstein inequality (Prop.[I0) with
K2 2K2
M =] < MCRZ K P+ M < v i< 22—,
E(n — M)? =Enf — M? <Eni < LM = o

An upperbound for M is M = Tr(AC} *C) = Tr((I — C;'C)C;'C) < N'()). Thus, we have

4k%log 2 N 4k2N'(A) log 2

Teo-V2p 0-1/2) <
AT C, nCy < 3\n n ’

with probability 1 — 7.
To find an upperbound for B, let £ be the space of Hilbert-Schmidt operators on /. L is a Hilbert
space with scalar product (U, V) ;4 = Tr (UV*) for all U,V € L. Next, note that B = ||Q||%,¢
where Q = )\1/20;1/2371 (I - Bn)_l/Q, moreover
—1/2 —1/2

1QN7zs < IN2CK 22 BullfrslI(T = Ba) /2|17 < 1.5]Ballirs,
since ||(1 — B,)"Y2||2 = (1 — Amax(Bn))~! < 3/2and (1 — ¢)~! is increasing and positive on
[—o0,1).
To find a bound for || B,, || z s consider that B,, = T — %L ?:1 ¢; where (; are i.i.d. random operators

defined as (; = C;l/z(Kzi ® Kzl.)C/\_l/2 € Lforallie {1,...,n},and T =E{ = Cy'C € L.
Then we can apply the Bernstein’s inequality for random vectors on a Hilbert space (Prop. [IT)), with
the following L and o2:
2
—1/2 K
1T = Gillms < ICK PPN 15 + 1Tl s < ~ T ITles < ==L

E|¢ — TP =ETe(¢F — T?) <ETr(¢F) < LETr((y) = o2,
where ||T||gs < ETr(¢1) = N()), obtaining

)

2k2
A
2

4k%log 2 N 4K2N(X) log 2
An An ’
with probability 1 — 7. Then, by taking a union bound for the three events we have

N = N < g+ V3NN + 1.5 (3q T \/3q./\/(/\))2 ,
K2 log%

with ¢ = 1 x> and with probability 1 — 4. Finally, if the second assumption on A holds, then we

have ¢ < 4/57. Noting that n > 4052, and that N'(\) > ||CC || = ”gﬁl\ > 1/2, we have that

[Bnllms <

N NN < [ L+ q+1.5<

=3V TV N

\//% + \/§> ) N(A) < 165N ().

O

E Proofs of main theorem

A key step to derive the proof of Theorem [I] is the error decomposition given by the following
theorem, together with the probabilistic inequalities in the previous section.
Theorem 2 (Error decomposition for KRLS+Ny). Under Assumptions let v = min(s, 1/2)

and fAm a KRLS + generalized Nystrém solution as in Eq. (18). Then for any A\, m > 0 the error
is bounded by

R 1/2
E(fam) = E(F)|

<gq S)\,TL + Cm1/2+v + A1/2+v , (1)
(S(A,n) (m) : )

Approximation error

Sample error Computational error
where S(\,n) = ||(C 4+ \I)~Y2(S*5, — Cp fa)|| and C(m) = ||(I — P,,)(C + XI)'/?||? with
P = Z5(Zm Z5) Z . Moreover ¢ = R(B%V (14 08)), B = ||[(Cp + XI)~V2(C + XI)'/?

6= ||(C, + AX)V/2(C + AI)~1/2.

s
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Proof. LetCy = C+ Al and C,, = C,, + M forany A > 0. Let f,\ym as in Eq. (T8). By Lemma

Lemma [2| and Lemma [3| we know that f,\’m is characterized by f,\,m = gm(Cr)Sky, with

Im(Cr) = V(V*C,V + M)~'V*. By using the fact that £(f) — E(fx) = |CY2(f — f2)l%,
for any f € H (see Prop. 1 Point 3 of [7]), we have

1EFrm) — EH)M = 1CY2 (fam — Fo)lln = 102 (grm(C)SiTn — )|l
= CY2(g2,m(C) Sz (G — Sufa + Sufu) — F2)ll
<NCY2 g5 i (Co) S (T — Sufr)llae + IC2(I = gam (Cn)C) il -
A B
Bound for the term A Multiplying and dividing by C’lf\Q and C /2 \we have
A <CV2C P 1C 2 ga m(C) ORI Con 2O PN CS 285 G = S fa) 3 < B2 S(A,m),
where the last step is due to Lemma|[g]and the fact that
IC2C 2| < IC2es R lIey e P < ey el

Bound for the term B Noting that gy ,,,(C,)Cr,AVV* = VV*, we have
I— g)\,m(on)cn =1- gA,m(Cn)CnA + AgA,m(CTJ
=1 = @ m(Cn)CaVV™ = gx i (Cn)Crr(I = VV™) + Aga,m(Cn)
= =VV") + Agxm(Cn) = grxm(Cn)Cra(I = VVT).

Therefore, noting that by Ass.@we have ||CY " fulln < IC el < IC™° fallm < R, then, by
reasoning as in A, we have

B < [[CY2(I = g3 m(Co)Co) CRINCS Faullag
< RIICYV2CTPIC (T = VV)CR| + RAICY2C, 2 IC5 gm (Ca) |
+ RICY2C, PO ga.m (C) CT I CAAZ O P CY 2 (1 = vV oy
< R(1+ B9) |C*(I = VV*)CL | +RBNC oA g m (Co) S,

B.1 B.2
where in the second step we applied the decomposition of I — gy, (Cy,)Ch,.

Bound for the term B.1 Since V'V* is a projection operator, we have that (I —VV™*) = (I-VV*)3,
for any s > 0, therefore

1= |Gy = VV2CR|| < 16y = vV = Vs
By applying Cordes inequality (Prop. to ||(I — VV*)CY|| we have,
* v *\ 20 %21} _ * v
(I = VVCI| = | = VV*C™ | = (I - VV*)Cy 2>,
Bound for the term B.2 We have
B.2 < A|C 2 gam(Cu)CA I Cri G|
< NCHE g (C)CEA IO Oy
< BEN|(VECDV IV 2(VECn V) UV Ca V)|
= BN(VFCaV 4+ A1) ~270 | < pal/2 e,

where the first step is obtained multipling and dividing by C7,, the second step by applying Cordes
inequality (see Prop.[d), the third step by Prop. [6] O

Proposition 2 (Bounds for plain and ALS Nystrom). For any § > 0, let n > 1655k +
223k% log %5~ RLasgy P 19“ log < A < ||C|| and define

. 12k2
Cpi(m) =mins t >0 | (67 V5N (t))log s <me,

1952 12
o log Tn<t<||C||

Cars(m) = min {

Under the assumptions of Thm. 2)and Assumption[2] B] if one of the following two conditions hold

78T2N (t) log 487” < m} .
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1. plain Nystrom is used,

2. ALS Nystrom is used with

(a) T-approximate leverage scores, for any t > % log HT” (see Def. ,
(b) resampling probabilities P, where t = Cars(m) (see Sect. ,
(c) m > 334log %,

then the following holds with probability 1 — ¢

E(frm) — E(M‘uz <6R (W + \/UW(A)> logg + 3RC(m)Y/2+Y 4 3RAY/2HY

n
(22)

where C(m) = Cp1(m) in case of plain Nystrom and C(m) = Cars(m) in case of ALS Nystrom.

Proof. In order to get explicit bounds from Thm. [2] we have to control four quantities that
are 3,0,S(A\,n) and C(m). In the following we bound such quantities in probability and then
take a union bound. Let 7 = ¢§/3. We can control both 5 and 6, by bounding b()\) =

HC/\_l/z(Cn - C)C;l/QH. Indeed, by Prop. we have that 8 < 1/(1 — b()\)), while
02 = O 2O Gy P = T+ O (Co = O S TN,

Exploiting Prop. (8} with the fact that N'(\) < Noo(A) < “—/\2 and Tr C' < k2, we have that b(\) <
2(”;;? o /22 for w = log % with probability 1 — 7. Simple computations show that with n
and A as in the statement of this corollary, we have b(A) < 1/3. Therefore 8 < 1.5, while § < 1.16
and ¢ = R(B? V (1 + 0B)) < 2.75R with probability 1 — 7. Next, we bound S(\,n). Here we
exploit Lemma [ which gives, with probability 1 — 7,

S(A,n) <2 <M\/Nw()\) + \/02/\/()\)) log 2

To bound C(m) for plain Nystrdm, Lemma [6] gives C(m) < 3t with probability 1 — 7, for a
t > 0 such that (67 V 5N (1)) log % < m. In particular, we choose ¢ = Cpi(m) to satisfy

the condition. Next we bound C(m) for ALS Nystrom. Using Lemma [7| with Ay = 1977—“2 log 27",
we have C(m) < 3t with probability 1 — 7 under some conditions on #,72,n, on the approximate
leverage scores and on the resampling probability. Here again the requirement on n is satisfied by the
hypotesis on n of this proposition, while the condition on the approximate leverage scores and on the
resampling probabilities are satisfied by conditions (a), (b) of this proposition. The remaining two

conditions are % log % < ¢ < ||C|| and (334 v T8T2N/(t)) log 18 < m. They are satisfied by
choosing t = Car,s(m) and by assuming that m > 334 log 167". Finally, the proposition is obtained
by substituting each of the four quantities 3,6, S(\,n),C(m) with the corresponding upperbounds
in Eq. (21)), and by taking the union bounds on the associated events. O

Proof of Theorem([I} By exploiting the results of Prop. [2] obtained from the error decomposition of
Thm. 2] we have that

R 1/2 M/ Noo(A 2N (A 6
E(frm) — 5(f7.[)‘ <6R (\/n() + \/UATC()) log 5+ 3RC(m)Y/?tV 4+ 3RAV/2HY
(23)
with probability 1 — J, under conditions on A, m,n, on the resampling probabilities and on the
approximate leverage scores. The last is satisfied by condition (a) in this theorem. The conditions

on \,n are n > 1655x2 + 223k log% and %log % < X < ||C|. If we assume that n >

2 2 6r2 38p. 114x2p \? . - .
1655K° + 223k~ log 25— + el log TS we satisfy the condition on n and at the same time

we are sure that A = ||C||n~1/(2*+7+1) satisfies the condition on A. In the plain Nystrém case,
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if we assume that m > 67log 125° 4 5N () log 125° then C(m) = Cpi(m) < A. In the ALS
Nystrom case, if we assume that m > (334 V 78T2N (X)) log 48 the condition on m is satisfied,
then C(m) = Cars(m) < X, moreover the conditions on the resampling probabilities is satisfied
by condition (b) of this theorem. Therefore, by setting A = ||C||n~/(**7+1) in Eq. @3) and
considering that AV, () < k2A~! we easily obtain the result of this theorem. O

The following lemma is a technical result needed in the error decomposition (Thm. [2).

Lemma 8. Forany A > 0, let V be such that V*V = I and C,, be a positive self-adjoint operator.
Then, the following holds,

1(Cry + MDYV (VEC,V + X)WV (Cp + ADYV?| < 1.
Proof. Let Cy,\ = C,, + M and g, (Cp) = V(V*C,V + XI)~1V*, then
1CH 2 gam (Co) 2N = ICH2 gam (Co) Crrgam (Ca) CoA2|
— |CHV(VECua V) L (VECoa V) (VA Con V) TV CM2
= |G gam (C) CA,

and therefore the only possible values for ||Cn 5 g,\m(Cn)Crlf || are O or 1. O
F Auxiliary results

Proposition 3. Let H, K, F three separable Hilbert spaces, let Z : H — K be a bounded linear
operator and let W be a projection operator on ‘H such that ran P = ran Z*. Then for any bounded
linear operator F' : F — H and any X > 0 we have

I(7 = P)X| < NV2)(27Z + M) V2 X|.

Proof. First of all note that \(Z*Z + \I)~' = I — Z*(ZZ* + \I)"'Z, that Z = ZP and that
|Z*(ZZ* + \XI)~1Z]|| < 1 for any A > 0. Then for any v € H we have

(v,2°(22* + XI) ' Zv) = (v, PZ*(ZZ* + \)"' ZPv) = |[(ZZ* + XI)/* ZPv|?
<2z + M) 2Z|7||Pol|* < [Pl = (v, Pv)

therefore P — Z*(ZZ* + X\I)~'Z is a positive operator, and (I — Z*(ZZ* + XI)~*Z) — (I — P)
too. Now we can apply Prop. 3] O

Proposition 4 (Cordes Inequality [9]). Let A, B two positive semidefinite bounded linear operators
on a separable Hilbert space. Then

|A°B®|| < ||ABJ||® when0<s<1.

Proposition 5. Let H, KC, F, G be three separable Hilbert spaces andlet X : H — K andY : H —
F be two bounded linear operators. For any bounded linear operator Z : G — H, if Y'Y — X* X
is a positive self-adjoint operator then | X Z|| < |Y Z||.

Proof. fY*Y — X*X is a positive operator then Z*(Y*Y — X*X)Z is positive too. Thus for all
f € H we have that (f, (Q — P)f) > 0, where Q = Z*Y*YZ and P = Z*X*X Z. Thus, by
linearity of the inner product, we have

QI = sup (f,Qf) = sup{(f, Pf) + (f,(Q — P)f)} = sup (f, Pf) = | P.
feg reg reg

O

Proposition 6. Let H,IC be two separable Hilbert spaces, let A : H — H be a positive lin-
ear operator, V. : H — K a partial isometry and B : K — K a bounded operator. Then
|[A"VBV*A%|| < |[(V*AV)"B(V*AV)*
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Proof. By Hansen’s inequality (see [10]) we know that (V* AV)?t — V* A%V is positive selfadjoint
operator for any 0 < ¢t < 1/2, therefore we can apply Prop. two times, obtaining

[ATV(BVA®)|| < [[(VFAV)"(BVA®)[| = [[(VFAV)" B)VA%[| < [[(VZAV)"B)(V*AV)?||.
O

Proposition 7. Let H be a separable Hilbert space, let A, B two bounded self-adjoint positive linear
operators and A > 0. Then

[(A+ AI)~Y2BY?|| < (1 - g)~1/2
when
6 = /\Inax |:(B + )\1)71/2(3 — A)(B + )\1)71/2:| < 1.
Proof. Let By = B + Al. Note that
(A+ M) =[(B+A)— (B—A)"
-1
= B (1- B2 (B~ 0B, *) BY?]

-1
_ B;1/2 {1_3;1/2(3 _A)B;l/ﬂ B;1/2.

Now let X = (I — B;1/2(B — A)B;1/2)_1. We have that,
I(A+AD)~H2BY2| = ||BY2(A+ A1) BY?|M?
_ HBl/2B;1/2XB/\—1/2B1/2”1/2
= | X128 2B,
because || Z|| = ||Z* Z||*/? for any bounded operator Z. Note that
|X2 BB < ||X BB < X
Finally let Y = B} “/?(B — A)B; */* and assume that Apayx (Y) < 1, then
IXI =1 =Y) M = (1= Amax(Y) 7,
since X = w(Y) with w(o) = (1 — o)~ for —0o < 0 < 1, and w is positive and monotonically

increasing on the domain. O

G Tail bounds

Let ||-|| s denote the Hilbert-Schmidt norm.

Proposition 8. Let vq,...,v, withn > 1, be independent and identically distributed random vec-
tors on a separable Hilbert spaces H such that Q = Ev ® v exists, is trace class, and for any X > 0
there exists a constant No () < 0o such that (v, (Q + X)~'v) < N () almost everywhere. Let

Qn =230 v ®v; and take 0 < X < ||Q||. Then for any § > 0, the following holds

2ﬁ(1+Noo(/\))+ 28N (N)

3n n

1(Q +AD)™Y2(Q — Q) (Q + A\T)~Y?| <

4TrQ

Y Moreover it holds that

with probability 1 — 20. Here 8 = log

e ((Q+ A1) 2(Q — Q)@+ A1) 2) < ;%Jr M

with probability 1 — 4.
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Proof. Let Qx = @ + AI. Here we apply Prop. on the random variables Z; = M — Q;l/ 0 ®

Q;l/Qvi with M = Q;l/ZQQ;UQ for 1 < i < n. Note that the expectation of Z; is 0. The random
vectors are bounded by

1032QQ3 "% = Qv ® Q1 Puill < (v, Q5 0) + 107 QR Il < N (V) +
and the second orded moment is
E(Z1)> =E {(v1,Qy"v1) Q,\ U1®Q V2 - Qy°Q?
< NoeWEQR P01 @ Q1 P0; = oo< )Q = 5.

Now we can apply Prop. Now some considerations on 3. Itis 8 = log ‘hgﬂf = Tng QH?’ now
A
Tr Q;lQ <1 3 Tr Q. We need a lowerbound for HQ;lQH = 01+A where o1 = ||@Q)|| is the biggest

eigenvalue of Q now A < oy thus — (SQ.

For the second bound of this proposition, the analysis remains the same except for L, indeed
p— 2 —
sup (,71f) = sup (£.Q1'Qf) = (1,03 ") < sup (£,@3"Q1) < 1.
feH feH
O

Remark 1. In Prop.E?] let define 1> = infxs0 Noo (N)([| Q[ + A). When n > 405x% V 67+ log S%
and % log 55 < A < ||Q]| we have that

—_

Mmax ((Q+ A1) 72(Q = Qu)@+AD ™) < o

with probability 1 — §, while it is less than 1/3 with the same probability, if 19; log 75 < A < [|Q].

Proposition 9 (Theorem 2 [11]. Approximation of matrix products.). Let n,n be positive in-
tegers. Consider a matrix A € R™ " and denote by a; the i-th column of A. Let m < n
and I = {iy,...,im} be a subset of N = {1,...,n} formed by m elements chosen randomly
with replacement, according to a distribution that associates the probability P(i) to the element
i € N. Assume that there exists a 8 € (0, 1] such that the probabilities P(1),...,P(n) satisfy

P(i) > ﬁT‘l‘Z’fT foralli € N. For any § > 0 the following holds

1 1 2L log 22 2LS log 22
AAT — =2 ——qd] < 0 g
| m ; P(%) wa; || = 3m + m

with probability 1 — §. Here L = || A||> and S = %Tr AAT.

Proposition 10 (Bernstein’s inequality for sum of random variables). Let z1, ..., z, be a sequence
of independent and identically distributed random variables on R with zero mean. If there exists an
L,S € Rsuch that 1 < L almost everywhere and Ex?3 < S, then for any § > 0 the following holds

with probability 1 — §:
2L 1o /2Slog
— Z z; < g 5 + &5 .
n

If there exists an L' > || almost everywhere, then the same bound, computed with L' instead of
L, holds for the for the absolute value of the left hand side, with probability 1 — 24.

Proof. Tt is arestatement of Theorem 3 of [12]. ]

Proposition 11 (Bernstein’s inequality for sum of random vectors). Let z1, ..., z, be a sequence
of independent identically distributed random vectors on a separable Hilbert space H. Assume
w = Kz exists and let o, M > 0 such that

1 _
Ellz — plf, < §p!02LP 2
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forall p > 2. Then for any 7 > 0:

1 & 2L log 2 202 log 2
— - < ) o
I

with probability greater or equal 1 — 0.

Proof. restatement of Theorem 3.3.4 of [13]. O

Proposition 12 (Bernstein’s inequality for sum of random operators). Let H be a separable Hilbert
space and let X1,...,X,, be a sequence of independent and identically distributed self-adjoint
positive random operators on H. Assume that there exists EX1 = 0 and Apax(X1) < L almost
everywhere for some L > 0. Let S be a positive operator such that E(X1)? < S. Then for any

0 > 0 the following holds
IRS 2L3  [21IS|IB
)\max - Xi S
<n ; > 3n + n

with probability 1 — §. Here 8 = log 2@?\?

If there exists an L' such that L' > || X1 || almost everywhere, then the same bound, computed with
L' instead of L, holds for the operatorial norm with probability 1 — 20.

Proof. The theorem is a restatement of Theorem 7.3.1 of [14] generalized to the separable Hilbert
space case by means of the technique in Section 4 of [15]. O

References

[1] Adi Ben-Israel and Thomas NE Greville. Generalized inverses: theory and applications. Springer, 2003.

[2] Alex J. Smola and Bernhard Scholkopf. Sparse Greedy Matrix Approximation for Machine Learning. In
ICML, pages 911-918. Morgan Kaufmann, 2000.

[3] C. Williams and M. Seeger. Using the Nystrom Method to Speed Up Kernel Machines. In NIPS, pages
682-688. MIT Press, 2000.

[4] S. Kumar, M. Mohri, and A. Talwalkar. Sampling methods for the Nystrom method. JMLR, 13(1):981—
1006, 2012.

[5] Petros Drineas and Michael W. Mahoney. On the Nystrom Method for Approximating a Gram Matrix for
Improved Kernel-Based Learning. JMLR, 6:2153-2175, December 2005.

[6] A. Gittens and M. W. Mahoney. Revisiting the Nystrom method for improved large-scale machine learn-
ing. 28:567-575, 2013.

[7] Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm. Foun-
dations of Computational Mathematics, 7(3):331-368, 2007.

[8] Alessandro Rudi, Guillermo D. Canas, and Lorenzo Rosasco. On the Sample Complexity of Subspace
Learning. In NIPS, pages 2067-2075, 2013.

[9] Junichi Fujii, Masatoshi Fujii, Takayuki Furuta, and Ritsuo Nakamoto. Norm inequalities equivalent to
Heinz inequality. Proceedings of the American Mathematical Society, 118(3), 1993.

[10] F. Hansen. An operator inequality. Mathematische Annalen, 246(3), 1980.
[11] A. Alaoui and M. W. Mahoney. Fast randomized kernel methods with statistical guarantees. arXiv, 2014.

[12] Stéphane Boucheron, Gabor Lugosi, and Olivier Bousquet. Concentration inequalities. In Advanced
Lectures on Machine Learning. 2004.

[13] Vadim Vladimirovich Yurinsky. Sums and Gaussian vectors. 1995.
[14] Joel A Tropp. User-friendly tools for random matrices: an introduction. 2012.

[15] Stanislav Minsker. On some extensions of Bernstein’s inequality for self-adjoint operators. arXiv, 2011.

23



