Part of Advances in Neural Information Processing Systems 27 (NIPS 2014)

*Wojciech Zaremba, Karol Kurach, Rob Fergus*

In this paper we explore how machine learning techniques can be applied to the discovery of efficient mathematical identities. We introduce an attribute grammar framework for representing symbolic expressions. Given a grammar of math operators, we build trees that combine them in different ways, looking for compositions that are analytically equivalent to a target expression but of lower computational complexity. However, as the space of trees grows exponentially with the complexity of the target expression, brute force search is impractical for all but the simplest of expressions. Consequently, we introduce two novel learning approaches that are able to learn from simpler expressions to guide the tree search. The first of these is a simple n-gram model, the other being a recursive neural-network. We show how these approaches enable us to derive complex identities, beyond reach of brute-force search, or human derivation.

Do not remove: This comment is monitored to verify that the site is working properly