APPENDIX: SUPPLEMENTARY MATERIAL FOR
CLAMPING VARIABLES AND APPROXIMATE INFERENCE

In this Appendix, we provide:

o Figure[6 showing examples of thfg(x) function introduced in Lemnid 6;

e In Section[Y, theoretical results on the Hessian leadingréofp of TheoreniI8 and (a
stronger version of) Theorelm 9 frofd.1, and LemmB1 frorijg; and

¢ In Sectior[ B, additional illustrative experimental reswlith details on the Mpower selec-
tion heuristic.
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Figure 6:Plots of upper boung.(z) againstz for various values o

7 TheHessian and Proofs of Earlier Results

In this Section, we first discuss properties of the Hessiai/idl, then use these #v.2 to prove
Theorem$B and] 9, and Lemial 11. Define ititerior to be all pointsg € (0,1)". Recall that
r*(x) = (r{(ai), 71 (q), i1 (@), - - -, 7(gi)) with corresponding pairwise terng;; }, is an
arg max of G(q) = —F(q) whereg; is held fixed at a particular value. For notational convecéegn
definer! = g;.

7.1 Propertiesof the Hessian

From (Weller and Jebara, 2013), we have all terms of the HessatrixH ;;, = a?j—aqu:
LSk if (j,k) € & dj — 1 1-
ij:{o o i (j.’k> g’ Hjjz—ﬁjL ) M’ (5)
| (.]7 )¢ q] QJ kGN(j) Jk

whered; = [N (j)] is the degree of, and T}, = g;qr(1 — ¢;)(1 — qx) — (& — ¢jqx)? > 0, with
equality only at an edge (i.ey; or g € {0,1}). For an attractive edgg, k), in the interior, as
shown in(Weller and Jebara, 2013, Lemma 14 in Supplem&nt); ¢;qx > 0 and henced;, < 0.

Now write

(6)

1 ar(1 — qx) 1
Hj; = :

— _l’_ —
(1 —a) L ( T q;(1 — q5)

Consider the term in large parentheses for séame AN (j). First observe that the term s 0,
strictly > 0 in the interior, whether the edge is attractive or repulsiiaceH;; > 0, on the surface

g_;: = 0, we have
Br;f _ Hyy, e
6r,’; Hjj r*7

which also holds fok = i where we define; = g;.
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Further, we may incorporate the term foto obtain

1 1— 1 1-—
Hy > n ax(l—ar) _ a( qk)7
q;(1 —q;) Tk q;(1 —q;) Tji

with equality iff j has no neighbor other than(again allowingt = 7), in which case,

or’ R i i
J _ >k ik (8)

or, ~ ri(-1p)

We also show the following results, though the remaindehisf$ectiorf{7.1 is not used until later
when we prove Theorei 9 §7.2.1.

Considering the term in large parentheses frioin (6), usiegléfinition ofT;, we may write

ar(1—qr) 1 ) 7 (§,jk - qm) (§,jk — Q,ij) .
( Tjk a(l—q)) Tk g(l—q;)) Hjk i ©)

where we defing; . = M , which as mentioned in the main paper after Thedrem 8, islequa

q;(1—q;)
t % called in finance the beta df;, with respect taX;. This is clearly positive for an

attractive edge. We next show that the rangg,of;, is bounded, as would be expected for beta.
Lemma 12. In the interior, for an edgé€j, k): if attractive,0 < 8, < =1—eWir < 1;

a k+1
if repulsive, -1 < eWix — 1 = aj;, < Bjsr < 0. In either case,B; x| =
1—e Wikl < 1.

§ik —q 4k

<
q;(1—q;)

Proof. This follows from (Weller and Jebara, 2013, Lemma 6) and tressponding flipped result
(Weller and Jebara, 2014, Lemma 10 in Supplement; consi#r ef the 2 cases far;;, therein).
O

Defines; ,, = Bj-«|,.. Regarding[(B), note that; ,, > a’”k with equality iff NV'(k) = {;}. This
notation will become clear when we use it§i.2.1 to prove Theorelﬁ 9.

7.2 Derivation of earlier results

Using the results of7.1, we first provide a general Theorem from which Lenima 1tbfied as an
immediate corollary.

Theorem 13. For any binary pairwise MRF where the Bethe free energy isvernadding fur-
ther variables to the model and holding them at fixed singletarginal values (optimum pairwise
marginals are computed using the formula of Welling and P€101), leaves the Bethe free energy
over the original variables convex.

Proof. The Bethe free energy is convex the Hessian is everywhere positive semi-definite. When
new variables are added to the system, consideling (5)[@nthéonly effect on the sub-Hessian
restricted to the original variables is potentially to isase the diagonal terns;; for any original
variablej which is adjacent to a new variable. By Weyl's inequalityistban only increase the
minimum eigenvalue of the sub-Hessian, and the resultfsllo O

Since the Bethe free energy is convex for any model whoseeetaipology contains at most one
cycle (Pakzad and Anantharam, 2002), Lenima 11 follows.

We next turn to Theorei 8, then use this to prove a strongsiorenf Theorem19. Keep in mind
that, as shown in_(Weller and Jebara, 2013), each statigna@int lies in an open region in the
interiorq € (0,1)™. Further, as discussed .1, we assume that at aayg max pointr*(g;), the
reduced Hessiaiil\; is non-singular. Hence, writin@n_l}‘] for the (n — 1)-vector of partial

denvatlvesaf ()

Vj # 14, there is an open region around afay, 7*(¢;)) where the function
qi

n_l}‘\q = 0 may be well approximated by an invertible linear functioliowaing us to solve
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(as in the |mpI|C|t funcuon theorem) for the total denwm:; as the unique solutions to the

B (97“ dry;
linear systemT = W + Lkg{ig) o dar

1]—"\ = 0. In addition, sincef\; is real, symmetric, positive definite, with all main diagbna

qi
> 0 and all off-diagonak 0, it is an M-matrix (indeed a Stieltjes matrix), which we dhade in
g7.2.1. We assume these points for the rest of this Section.

Vj # i, where herea— always means on the surface

Notation: LetD; = %, ando;, = g—:j; S0D; = 3 ¢1i iy OikDr + 05i Vj # i. For notational
convenience, defing® = ¢; and takeD; = 1. Let[n] = {1,...,n} and[n] \ i = {1,...,n}\ {i}.
Note thato;;, = g—:é < B;_,; (equality iff j has no neighbor other thd), as defined above. We
shall write Hessian terms such By, to meant; | . where this is implied by the context.

We first need the following Lemma.

Lemma 14. Consider a MRF witl variables, where then one more variabtg,, ; is added with
singleton marginat;, |, adjacent to exactly one of the originalvariables, sayX, with a € [n]

(note we allow: = i), then: Dy, . .., D,, are unaffected, and,,, ; = %D

Proof. We have the linear systef; = Zkgz{i,j} 0k Dy + 05 Vj € [n] \ i. WhenX,,, is added,

this yields a new equation fab,, .1, which as shown in{8), i©, 1 = %Da, and
the only other equation that changes is the onel¥gr where we Writeajl and o/, for the new
coefficients. Hence, it is sufficient to show that the ead®utions forD+, ..., D, sat|sfy the new

equation forDg, i.e. if Do = 37, 1)\ (5.0} Oa Dk + Ogi-

Observe from[([7) thad., = OuxHao/H,, Vk € [n], whereH,, incorporates the neuX,,
variable. Hence,

Hllll
> 0yDi+0, = 7 > OakDk + i | + 0, i1 Do
k€n+1]\{i,a} 4% \ke¢{ij}

Haa ga n+1 = Ta :H—l 6; n+1 T;T:+1 .

=—D, : D, b , and just above
Dot T L (A=) y @), (8) and ju \

. \2

_ Da H. + (ga,n-ﬁ-l - Tarn-i—l)
H!, o Tons17ri(1—1%)
D, i (l—1rk) 1 —

= H,, ntl ntll definition of 7, ,,
Hg, |: * ( Ton+1 7’;(1 - TZ) (definit 7 +1)
D /

= H, [Haa + (H - Haa)] = Da O

Theoreni B may now be proved by induction|6hy|. The base cag€’;| = 1 follows from (8). The
inductive step follows from Lemnfa]l4 by considering a leaf.

7.2.1 Proof of (stronger version of) Theorem[&

As above, we have the linear system given by the followingatiqas:

D, = Z Ojk Dy + 0ji Vj #1i & —0ji = Z[ayk — 0] D (10)
ke{i.g} ki
. orx Hjp orx Hj; 1 j=k
with Ojk B HJJ k ¢ {Z ]} 0;j; =0, 0ji D4 Hjj, Ojk {O Gtk
Hence we may rewrité (10), multiplying by H ;, to give the equivalent system
> HjDy=—Hji Vj#i (11)
k#1i
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Note equation[{11) makes intuitive sense: for each varidhlewe haveF; = 0 at a stationary
point, then taking the total derivative with respecyi@ivesH;; + Zk# H;iDy, = 0.

By Theorem[8, we have the complete solution vediyr Vk # i provided the topology is
acyclic. In this setting, we rewrite the result of Theorgims8ng the 3* notation from above:
Dy = [1(s—t)ep(ir) Bomst» Where here?(i ~ k) is theuniquepath fromi to k.

For a general graph, there may be many paths fiamk. LetII(: ~ k) be the set of all such
directed paths. For any", for any particular pattP(i ~ k) € II(i ~ k), define itsweightto be
WI[P(i ~ k)] = H(S_)t)ep(iwk) Bx_,;. We shall prove the following result:

Dy > WIP(i ~ k). 12
k—p(iwzi?fﬂ((iwk) [ (ZW )] ( )

Note this is clearly stronger than Theorem 9 sigec N (¢), the path going directly — j is one
member oflI(i ~ j), though in general there may be many others.

For any particular*, let G’ be the weighted directed graph formed from the topology efNtRF
by replacing each undirected edge ¢ by two directed edges: — ¢ with weightg?_,, andt — s
with weight3;_, .. Note that in an attractive model, &@f_,, € (0,1), see LemmA12.

It is a simple application of Dijkstra’s algorithm to constt fromG’ a tree of all maximum weight
directed paths fromto each vertey # i, which we call7[§ (For our purpose we just need to know
that such a tre@ exists.)

We want to solve[(T1), which we write d@$,,D = —H;, where we want to solve fab, which is
the vector ofDy, Vk # i, and H; is theith column of H without itsith element. LetH\TZ. be the
reduced Hessian for the model @h(which is missing some edges), afif be theith column of
the Hessian for the model oh without itsith element. In the sub-model with only the edge§of
by construction and Theordm B, = maxp(;—k)ern(i-k) WP ~ k)|. Hence, itis sufficient to
show that adding the extra edges frgmo G cannot decrease aiy;. This forms the remainder of
the proof, where we shall require the following nonsingilematrix property offf\ ;. its inverse is
elementwise non-negative (Fan, 1958, Theorem 5’).

Let A = Hy; — HJ, (this accounts for edges ifi(G) \ E(T) not incident toi), n = H; — H
(this accounts for edges i(G) \ E(T) incidenttoi) ands = D — D7 . We must show that > 0
elementwise. We havll[;D7 = —H/ andH\;D = —H;, henceH/ D7 —1n = —H] — 1 =
—H; = H\;D = (H], + A)(D7 +4), hence—n = (H/, + A)d + ADT & § = (H;) "' (=1 -
ADT). Thus, itis sufficient to show that tffe — 1) vector—n— AD7 is elementwise non-negative.

Recall [5) and(9)—n — AD” may be written as the sum ef;, — A, D7, with oner, andA, for
each edge = (s,t) in E(G) \ E(T). For each such edgewe have 2 cases:

Case 1; ¢ {s,t}: n. = 0; A, has only 4 non-zero elements, at locatigsss), (s, ), (¢, s), (¢, t).
Showing only these elements,

S t s t
A, = f (_Hﬁﬂs—% HHSﬁt* > = —Hstf ( S—1>t ﬁ:1 ),Where—Hst > 0 for an attractive edge
st —stPiss - t—s

Hence,—n. — A.D7 is 0 everwhere except elemenwhichis— H,, (D] — D7 8¢ ,,), and element
t which is—H,, (D] — D] B}, ,). Observe that both expressions aré by construction off” (for
example, considering the first bracketed term, observeliffats the maximum weight of a path
fromi tot, whereasD! 3: ., is the weight of a path togoing throughs).

Case 2,i € {s,t}: WLOG suppose the edge {$,s). —. is zero everywhere except element
which is — H;, (positive). A, has just one non-zero element(ats) which is —H,;8%_,,. Hence,
—n. — A. D7 is 0 everwhere except elemenvhich is— H;,(1 — D7 8%, .) > 0 by LemmdP.

5=

This completes the proof.

®We want the max of the prod of edge weightsmax of the log of the prod of edge weights max of the
sum of the log of edge weights (all negative) min of the sum of - log of the edge weights (all positive); so
really we construct the usual shortest directed paths s@gu log of the edge weights, which are all positive.
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Figure 10:‘Lamp’ topology.

maxW is likely to choosers since it has the
highest degree, but, is typically a better
choice since it lies on cycles. Mpower can rec-
ognize this and make a better choice.

J/

8 Additional Experiments

All of the experiments reported il were also run at other settings. In particular, the eandisults
show the poor performance of the standard Bethe approxamatiestimating singleton marginals
for attractive models with low singleton potentials, andigate how clamping repairs this. Here, in
Figure$ -9, we show results for the same topologies usimbitiher singleton potentials,, ., = 2
for attractive models, and also show results with low sitayiepotentialsl;,, ., = 0.1 for general
(non-attractive) models.

Note that in some examples of attractive models, when thestamp’ variable was clamped, the
resulting Bethe approximation tog Z appears to worsen (see Figliré 9a), which seems to conflict
with Theoreni b. The explanation is that in these examplesk=iNolfe is failing to find the global
Bethe optimum, as was confirmed by spot checking.

Next we show results for a particular fixed topology we callaartp’, see Figur&10, which illus-
trates how maxW can sometimes select a poor variable to cls¥aexplain the Mpower selection
heuristic and demonstrate that it performs much better isrtdpology.
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8.1 Mpower heuristic

We would like an efficient way to select a variable to clampahkties on many heavy simple cycles.
One problem is how to define heavy. Even with a good definiitds,still NP-hard to search over
all simple cycles. The idea for Mpower is as follows: assigeleedg€g(i, j) a weight based on
|W,;| and create a matri¥/ of these weights. I/ is raised to thésith power, then théth diagonal
element inM* is the sum over all paths of lengkhfrom i to i of the product of the edge weights
along the path. Ideally, we might consider the spifi” , M* and use the diagonal elements to rank
the vertices, choosing the one with highest total scorealteg (12), it is sensible to assign edge
weights)M;; based on possible; , ; values. Given Lemmal2, a first idea is to use e~ Wisl,
However, we'd like to be sure that the matrix serje§- , M* is convergent, allowing it to be
computed as/ — M)~ — I (since we shall be interested only in ranking the diagomaisein fact
there is no need to subtrakat the end). Thus, we need the spectral radiud) < 1. A sufficient
condition is that all row sums are 1. Since each termh — e~/"iil < 1 and there at most — 1
such elements in any row, our first heuristic was toldgt = — (1 — e~I"i1). We then made two
adjustments.

First, note that the seriés -, M* overcounts all cycles, though at an exponentially decasstey

It is hard to repair this. However, it also includes reldivkeigh value terms coming from paths
from i to any neighboy and straight back again, along with all powers of these. Vrilshlike

to discard all of these, hence from eath diagonal term of I — M)~!, we subtract; /(1 — s;),
wheres; is theith diagonal term of\/2. This is very similar to the final version we used, and gives
only very marginally worse results on the examples we careidl

For our final version, we observe thiat- e ~1"iil decays rapidly, anet tanh |, Given the form

of the loop series expansion for a single cycle, which costainh % terms (Weller et all, 2014,
Lemma 5), we tried instead using;; = ﬁ tanh % and it is for this heuristic that results
are shown in Figures11 (fdf,,.. = 2) and12 (forT},.. = 0.1). Observe that for this topol-
ogy, Mpower performs close to optimally (almost the samaltess for best Clamp), significantly
outperforming maxW in most settings. Note, however, thahmexperiments on random graphs
reported ind5, Mpower did not outperform the simpler maxW heuristic. uiture work, we hope to
improve the selection methods.
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