
Streaming, Memory Limited Algorithms for Community
Detection:

Supplementary Material

A Algorithms

We present below three algorithms that constitute building blocks of the main algorithms presented
in the paper.

Algorithm 4 Approx (A, p̂, V , K )

Input: A, p̂, V , K
`? ← max{1, b|V | exp(−|V |p̂)c})
for v ∈ V do
xv ←

∑
w∈V Avw

end for
x? ← `?-th largest xv
Γ← {v|xv ≤ x?, v ∈ V }
Ā← (Avw)v,w∈Γ

(Q, σK)← Power Method (Ā,Γ,K) (Algorithm 5)
Output: (Q, σK ,Γ)

Algorithm 5 Power Method (A, V , K )
Input: A, V , K
Initial: Q0 ← Randomly choose K orthonormal vectors and τ? = dlog |V |e
for τ = 1 to τ? do
AQτ−1 = QτRτ

end for
σK ←K-th largest singular value of Rτ?
Output: (Qτ? , σK)
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Algorithm 6 Detection (Q,V,K)
Input: Q,V,K (let Qv denote the low of Q corresponding to v)
for i = 1 to log |V | do
Xi,v ← {w ∈ V : ‖Qw −Qv‖2 ≤ i

|V | log |V |}
Ti,0 ← ∅
for k = 1 to K do
v?k ← arg maxv |Xi,v \

⋃k−1
l=1 Ti,l|

Ti,k ← Xi,v?k
\
⋃k−1
l=1 Ti,l and ξi,k ←

∑
v∈Ti,k Qv/|Ti,k|.

end for
for v ∈ V \ (

⋃K
k=1 Ti,k) do

k? ← arg mink ‖Qv − ξi,k‖
Ti,k? ← Ti,k? ∪ {v}

end for
ri ←

∑K
k=1

∑
v∈Ti,k ‖Qv − ξi,k‖

2

end for
i? ← arg mini ri.
Sk ← Ti?,k for all k
Output: (Sk)k=1,...,K .

B Proofs

In this section, we provide the proofs of the following theorems.

Theorem 1 Assume that
√
γf(n) = o(1). Then under any clustering algorithm π, the expected

proportion of misclassified green nodes tends to 1/2 as n grows large, i.e., limn→∞ E[επ(n(g))] =
1/2.

Theorem 2 (i) If there exists a clustering algorithm that classifies the green nodes asymptotically
accurately, then we have:

√
γf(n) = ω(1).

(ii) If there exists an asymptotically accurate clustering algorithm (i.e., classifying all nodes asymp-
totically accurately), then we have: γf(n) = ω(1).

Theorem 4 When
√
γf(n) = ω(1), Algorithm 1 classifies the green nodes asymptotically accu-

rately.

Theorem 5 When γf(n) = ω(1), combining Algorithms 1 and 2 yields an asymptotically accurate
clustering algorithm.

Theorem 6 Assume that h(n) = ω( log(n)

min{f(n),n1/3}) and T = ω( n
min{f(n),n1/3}). Then with M =

Θ(nh(n) +n) bits, Algorithm 3, with block size B = h(n)n

min{f(n),n1/3} log(n)
and acquiring the T first
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columns of A, outputs clusters V̂1, . . . , V̂K such that with high probability, there exists a permuta-
tion σ of {1, . . . ,K} such that:

1

n

∣∣∣∣∣∣
⋃

1≤k≤K
V̂k \ Vσ(k)

∣∣∣∣∣∣ = O

(
exp(−T min{f(n), n1/3}

n
)

)
.

In the following, we denote by λi(X) the i-th largest singular value of matrix X .

B.1 Proof of Theorem 1

Preliminaries. In what follows, we denote by σ(g) ∈ {−1, 1}n(g)
a vector that represents the

repartition of nodes in the two communities, i.e., nodes v and w belong to the same community if
and only if σ(g)

v = σ
(g)
w . We also denote by σ̂(g) ∈ {−1, 1}n(g)

the estimate of σ(g) that a clustering
algorithm could return.

We further introduce the following notation. For any k > 0 and any two vectors x, y ∈
{−1, 1}k, we denote by dH(x, y) =

∑k
i=1 1(xi 6= yi) the Hamming distance between x and y and

define

d(x, y) =
1

k
min{dH(x, y), dH(x,−y)}.

For an estimate σ̂(g) of σ(g), the quantity d(σ̂(g), σ(g)) is exactly the fraction of misclassi-
fied green nodes. Hence if estimate σ̂(g) is obtained from algorithm π, we have επ(n(g)) =
d(σ̂(g), σ(g)). Note that d(σ̂(g), σ(g)) ≤ 1/2.

We first state key lemmas for this proof. Their proofs are postponed to the end of this section.

Lemma 7 For any α < 1/2 and estimate σ̂(g), we have as n(g) →∞

P(d(σ̂(g), σ(g)) > α) ≥ 1− n(g) −H(σ(g)|A)

n(g)(1−H(α))
+ o(1),

where H(α) = −α logα − (1 − α) log(1 − α) and H(σ(g)|A) is the conditional entropy of σ(g)

knowing A.

Lemma 8 As n(g) →∞, we have:

H(A)−H(A|σ(g)) ≤ o(n(g)) +O(n(g)γf(n)2).

From the definition of conditional entropy, we have

H(σ(g)|A) = H(σ(g))−H(A) +H(A|σ(g)) = n(g)(1− o(1)), (1)
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since H(σ(g)) = log
(
n(g)

n(g)/2

)
≥ n(g) − 1

2 log 2n(g) and we have H(A) − H(A|σ(g)) = o(n(g))

from Lemma 8. As soon as n(g) →∞, putting (1) into Lemma 7, we see that for any α < 1/2 and
any estimate σ̂(g),

P(d(σ̂(g), σ(g)) > α)→ 1.

If σ̂(g) is a random guess, i.e. for each v ∈ V (g), σ̂(g)
v is equal to 1 or −1 with probability 1/2

independently of the rest, then for any α < 1/2, as soon as n(g) → ∞, we have by the weak law
of large numbers, P(d(σ̂(g), σ(g)) > α)→ 1. Since we have

E[επ(n(g))] ≥ αP(d(σ̂(g), σ(g)) > α),

and α can be chosen as close to 1/2 as desired, the result follows.

B.2 Proof of Lemma 7

We define the event E = {d(σ̂(g), σ(g)) > α} and Pe its probability. We have

H(E, σ(g)|σ̂(g)) = H(σ(g)|σ̂(g)) +H(E|σ(g), σ̂(g))︸ ︷︷ ︸
0

= H(E|σ̂(g)) +H(σ(g)|E, σ̂(g))

≤ H(Pe) + Pe log

(
n(g)

n(g)/2

)
+ (1− Pe)(n(g)H(α) + log n(g)),

where the last inequality follows from H(E|σ̂(g)) ≤ H(E) = H(Pe) and the fact that

|{σ(g), d(σ(g), σ̂(g)) ≤ α}| =
αn(g)∑
i=0

(
n(g)

i

)
≤ (n(g)α+ 1)

(
n(g)

αn(g)

)
≤ n(g)2n

(g)H(α).

Using H(Pe) ≤ 1 and that
(
n(g)

n(g)/2

)
≤ 2n

(g)
for sufficiently large n(g), we get

Pe ≥
H(σ(g)|σ̂(g))− 1− n(g)H(α)− log n(g)

n(g)(1−H(α))− log n(g)
.

The claim follows from the data processing inequality which ensures H(σ(g)|σ̂(g)) ≥ H(σ(g)|A).

B.3 Proof of Lemma 8

Thanks to independence, we have

H(A)−H(A|σ(g)) = H(A(g))−H(A(g)|σ(g)) +H(A(r))−H(A(r)|σ(g))
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We first deal with the first term H(A(g))−H(A(g)|σ(g)). By the concavity of p 7→ H(p), we have
H(A(g)) ≤

(
n(g)

2

)
H
(p+q

2

)
and H(A(g)|σ(g)) = 2

(
n(g)/2

2

)
H(p) + (n

(g)

2 )2H(q). Hence, we get

H(A(g))−H(A(g)|σ(g)) ≤
(
n(g)

2

)
H(

p+ q

2
)− 2

(
n(g)/2

2

)
H(p)− (

n(g)

2
)2H(q)

=
(n(g))2

4

(
2H(

p+ q

2
)−H(p)−H(q)

)
+ o(n(g))

=
(n(g))2

4

(
p log

2p

p+ q
+ q log

2q

p+ q

)
+

(n(g))2

4

(
(1− p) log

2− 2p

2− p− q
+ (1− q) log

2− 2q

2− p− q

)
+ o(n(g))

≤(n(g))2

4

(
(p− q)2

p+ q
+

(p− q)2

2− p− q

)
+ o(n(g))

=o(n(g)) + o(n(g)γf(n)).

We denote by A(r)
v the row vector of A(r) corresponding to v ∈ V (r). For the second term, by

independence we have

H(A(r))−H(A(r)|σ(g)) = (n− n(g))
(
H(A(r)

v )−H(A(r)
v |σ(g))

)
.

For a vector x ∈ {−1, 1}V (g)
and σ(g), we define |x|+ =

∑
v∈V (g), σ

(g)
v =1

xv, |x|− =
∑

v∈V (g), σ
(g)
v =−1

xv

and |x| = |x|+ + |x|−. For a given σ(g), we have

P[A(r)
v = x|σ(g)] = ζ(|x|+, |x|−),

where

ζ(i, j) =
(( p

1−p)i( q
1−q )j + ( p

1−p)j( q
1−q )i)(1− p)

m
2 (1− q)

m
2

2
.

Since σ(g) is uniformly distributed,

P[A(g)
v = x] =

(
n(g)

n(g)/2

)−1 ∑
σ(g):

∑
v∈V (g) σ

(g)
v =0

P[A(g)
v = x|σ(g)]

=

(
n(g)

n(g)/2

)−1 |x|∑
i=0

(
|x|
i

)(
n(g) − |x|
n(g)/2− i

)
ζ(i, |x| − i) = η(|x|),

where

η(k) =

∑k
i=0

(
n(g)/2
i

)(n(g)/2
k−i

)
ζ(i, k − i)∑k

i=0

(
n(g)/2
i

)(n(g)/2
k−i

) .

5



Since η(0) = ζ(0, 0), η(1) = ζ(1, 0) = ζ(0, 1), and
(
n(g)

k

)
η(k) =

∑k
i=0

(
n(g)/2
i

)(n(g)/2
k−i

)
ζ(i, k−i),

H(A(r)
v )−H(A(r)

v |σ(g))

= −
n(g)∑
k=0

(
n(g)

k

)
η(k) log η(k) +

n(g)/2∑
i=0

n(g)/2∑
j=0

(
n(g)/2

i

)(
n(g)/2

j

)
ζ(i, j) log ζ(i, j)

=

n(g)/2∑
i=0

n(g)/2∑
j=0

(
n(g)/2

i

)(
n(g)/2

j

)
ζ(i, j) log

ζ(i, j)

η(i+ j)

=

n(g)∑
k=2

k∑
i=0

1i≤n(g)/21k−i≤n(g)/2

(
n(g)/2

i

)(
n(g)/2

k − i

)
ζ(i, k − i) log

ζ(i, k − i)
η(k)

≤
n(g)∑
k=2

k∑
i=0

1i≤n(g)/21k−i≤n(g)/2

(
n(g)/2

i

)(
n(g)/2

k − i

)
ζ(i, k − i)k log(

p

q
)

≤
∑

2≤k≤n(g)

(n(g)p)kk log(
a

b
)

= O((n(g))2p2),

where the last equality stems from n(g)p = o(1). Thus,

(n−m)
(
H(A(r)

v )−H(A(r)
v |σ(g))

)
= O(n(n(g))2p2) = O(n(g)n

(g)

n
f(n)2) = O(n(g)γf(n)2),

and the lemma follows since f(n) ≥ 1 so that f(n)2 ≥ f(n).

B.4 Proof of Theorem 2

In the remaining proofs, we use m instead of n(g) to denote the number of green nodes. We
first consider case (i) with γ = Θ(1). In this case, a necessary condition for the existence of an
asymptotically accurate clustering algorithm is that the fraction of green nodes outside the largest
connected component of the observed graph vanishes as n → ∞. This condition imposes that
f(n)→∞.

We now consider case (i) with m = o(n), i.e. γ = o(1). Denote by Φ the true hidden
partition (V

(g)
1 , V

(g)
2 ) for green nodes. Let PΦ be the probability measure capturing the randomness

in the observations assuming that the network structure is described by Φ. We also introduce a
slightly different structure Ψ. The latter is described by clusters V ′(g)1 = V

(g)
1 ∪ {v2} \ {v1},

V
′(g)

2 = V
(g)

2 ∪ {v1} \ {v2} with arbitrary selected v1 ∈ V (g)
1 and v2 ∈ V (g)

2 .
Let π ∈ Π denote a clustering algorithm for green nodes with output (V̂

(g)
1 , V̂

(g)
2 ), and let

E = V̂
(g)

1 4 V
(g)

1 be the set of misclassified nodes under π. Note that in general in our proofs, we
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always assume without loss of generality that |V̂ (g)
1 4 V

(g)
1 | ≤ |V̂

(g)
1 4 V

(g)
2 |, so that the set of

misclassified nodes is really E . Further define B = {v1 ∈ V̂ (g)
1 } as the set of events where node v1

is correctly classified. We have ε(m) = |E|/m.
Let xi,j be equal to one if there is an edge between nodes i and j and zero otherwise.With

a slight abuse of notation, we define the boolean functions p(·) and q(·) as follows: p(1) =
af(n)/n = p, q(1) = bf(n)/n = q and p(0) = 1 − p(1), q(0) = 1 − q(1). We introduce L
(a quantity that resembles the log-likelihood ratio between PΦ and PΨ) as:

L =
∑

i∈V ′(g)
1

log
q(xi,v1)p(xi,v2)

p(xi,v1)q(xi,v2)
+
∑

i∈V ′(g)
2

log
p(xi,v1)q(xi,v2)

q(xi,v1)p(xi,v2)

+
∑
v∈V (r)

log

∏
i∈V ′(g)

1

p(xv,i)
∏
i∈V ′(g)

2

q(xv,i) +
∏
i∈V ′(g)

1

q(xv,i)
∏
i∈V ′(g)

2

p(xv,i)∏
i∈V (g)

1

p(xv,i)
∏
i∈V (g)

2

q(xv,i) +
∏
i∈V (g)

1

q(xv,i)
∏
i∈V (g)

2

p(xv,i)
,

In what follows, we establish a relationship between E[ε(m)] and L. For any function g(m),

PΨ{L ≤ g(m)} = PΨ{L ≤ g(m), B̄}+ PΨ{L ≤ g(m),B}. (2)

We have:

PΨ{L ≤ g(m), B̄} =

∫
{L≤g(m),B̄}

dPΨ

=

∫
{L≤g(m),B̄}

∏
i∈V ′

1

ν(xi,v1)ν(xi,v2)

p(xi,v1)q(xi,v2)

∏
i∈V ′

2

ν(xi,v1)ν(xi,v2)

q(xi,v1)p(xi,v2)
dPΦ

≤ exp(g(m))PΦ{L ≤ g(m), B̄} ≤ exp(g(m))PΦ{B̄}
≤ 2 exp(g(m))EΦ[ε(m)], (3)

where the last inequality comes from the fact that,

PΦ{B} ≥ 1− PΦ{v1 /∈ V̂ (g)
1 } ≥ 1− 2EΦ[ε(n)].

We also have:
PΨ{L ≤ g(m),B} ≤ PΨ{B} ≤ 2EΨ[ε(m)]. (4)

By (3) and (4)
PΨ{L ≤ g(n)} ≤ 2EΦ[ε(n)] exp(g(n)) + 2EΨ[ε(n)].

Since EΦ[ε(n)] = EΨ[ε(n)] = E[ε(n)] and E[ε(n)] = o(1), choosing g(m) = log
(

1
8E[ε(m)]

)
, we

obtain:

lim inf
m→∞

PΨ{L ≥ log

(
1

8E[ε(m)]

)
} > 1

2
. (5)
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By Chebyshev’s inequality, PΨ{L ≥ EΨ[L] + 2σΨ[L]} ≤ 1
4 . Therefore, to be valid the above

inequality,

EΨ[L] + 2σΨ[L] ≥ log

(
1

8E[ε(m)]

)
, (6)

which implies that EΨ[L] + 2σΨ[L] = ω(1) since E[ε(m)] = o(1).
We define KL(p, q) = p log(p/q) + (1 − p) log((1 − p)/(1 − q)). From the definition of L,

we can easily bound EΨ[L] and σΨ[L]2 :

EΨ[L] ≤m · (KL(p, q) +KL(q, p))

+ n
∑

0≤i,j≤m
2
−1

(
m/2− 1

i

)(
m/2− 1

j

)
pi+1qj + pjqi+1

2
log

pi+1qj + pjqi+1

piqj+1 + pj+1qi

≤m · (KL(p, q) +KL(q, p)) + n
∑

1≤k≤m
mkpk+1k log

p

q

≤O(γf(n)) + np log
a

b

∑
1≤k≤m

kmkpk ≤ O(γf(n)) + np log
a

b

∞∑
k=1

k(mp)k

≤O(γf(n)) + np log
a

b

∞∑
k=1

(2mp)k

σΨ[L]2 ≤m((p+ q)(log
a

b
)2 + (2− p− q)(log

1− q
1− p

)2)

+ n
∑

0≤i,j≤m
2
−1

(
m/2− 1

i

)(
m/2− 1

j

)
pi+1qj + pjqi+1

2

(
log

pi+1qj + pjqi+1

piqj+1 + pj+1qi

)2

≤4mp(log
a

b
)2 + n

∑
1≤k≤m

mkpk+1k2(log
a

b
)2

≤O(γf(n)) + np(log
a

b
)2
∞∑
k=1

k2(mp)k ≤ O(γf(n)) + np(log
a

b
)2
∞∑
k=1

(3mp)k. (7)

Therefore, the necessary condition for EΨ[L] + 2σΨ[L] = ω(1) is that np
∑∞

k=1(3mp)k = ω(1).
We conclude this proof from that np

∑∞
k=1(3mp)k = ω(1) if and only if γf(n)2 = ω(1).

We now prove point (ii). Note that the probability for a red node to be isolated is at least
(1−af(n)/n)γn ≈ exp(−aγf(n)). If there exists an asymptotically accurate clustering algorithm,
then the fraction of such isolated red nodes should vanishes and hence γf(n)→∞.

B.5 Proof of Theorem 4

The proof proceeds in two steps. Step 1. We first establish that if σ
(g)
K√
mp̂(g)

· 1{mp̂(g)≥50} = ω(1),

then the spectral method applied to the matrix A(g) is asymptotically accurate. We also show that
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if σ′
K√
mp̂′
· 1{mp̂′≥50} = ω(1), then the spectral method applied to the matrix of indirect edges A′ is

asymptotically accurate. Step 2. We show that if γf(n) = ω(1), then σ
(g)
K√
mp̂(g)

·1{mp̂(g)≥50} = ω(1)

with high probability (w.h.p.), and if γf(n) = O(1) and
√
γf(n) = ω(1), then σ′

K√
mp̂′
·1{mp̂′≥50} =

ω(1) w.h.p..

Preliminaries. We first state three lemmas to analyze the performance of Approx, PowerMethod,
and Detection algorithms. Their proofs are postponed to the end of this section. In what follows,
let V = {1, . . . , n} and let A ∈ Rn×n. For any matrix Z ∈ Rn×n, λK(Z) denotes the K-th largest
singular value of Z.

Lemma 9 With probability 1 − O(1/n), the output (Q, σK) of the PowerMethod algorithm with
input (A, V,K) (Algorithm 5) satisfies that σK = Θ(λK(A)).

Lemma 10 Let A,M ∈ Rn×n and let M = UΛUT be the SVD of M where Λ ∈ RK×K . Assume
that ‖A −M‖ = o (λK(M)), the output (Q, σK) of the PowerMethod algorithm (Algorithm 5)
with input (A, V,K) satisfies:

‖UT⊥Q‖ = O

(
‖A−M‖
λK(M)

)
= o(1),

where U⊥ is an orthonormal basis of the space perpendicular to the linear span of U .

Lemma 11 Assume that the set V is partitioned into K subsets (Vk)1≤k≤K . Further assume that
for any k, |Vk|n > 0 does not depend on n. Let W be the V × K matrix with for all (v, k),
Wvk = 1/

√
|Vk| if v ∈ Vk and 0 otherwise. Let W⊥ be an orthonormal basis of the space

perpendicular to the linear span of W . The output (Sk)1≤k≤K of the Detection algorithm with
input (Q,V,K) satisfies: if ‖W T

⊥Q‖ = o(1), then there exists a permutation ζ of {1, . . . ,K} such
that ∣∣∣⋃K

k=1 Sk \ Vζ(k)

∣∣∣
n

= O
(
‖W T
⊥Q‖2

)
.

Step 1. We use the notations introduced in the pseudo-codes of the various algorithms. LetM (g) =

E[A(g)] and M ′ = E[A′]. Let A(g)
Γ = (A

(g)
vw)v,w∈Γ(g) and M (g)

Γ = (M
(g)
vw )v,w∈Γ(g) . Analogously,

we define A′Γ = (A′vw)v,w∈Γ′ and M ′Γ = (M ′vw)v,w∈Γ′ .

We prove that if σ′
K√
mp̂′
· 1{mp̂′≥50} = ω(1), then the spectral method applied to the matrix of

indirect edges A′ is asymptotically accurate. We omit the proof of the asymptotic accuracy of the

spectral method applied to A(g) under the condition σ
(g)
K√
mp̂(g)

· 1{mp̂(g)≥50} = ω(1) (since it can be

conducted in the same way).
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Recall that σ′K denotes the K-th largest singular value of the trimmed matrix A′Γ. Observe that
by assumption, for n large enough, mp̂′ ≥ 50. Hence applying the law of large numbers, we can
conclude that the largest singular value ξ1 of A′ scales at most as mp̂′ w.h.p.. Since σ′K ≤ σ′1 ≤ ξ1

(where σ′1 is the largest singular value of A′Γ) and σ′
K√
mp̂′

= ω(1), we deduce that mp̂′ = ω(1)

w.h.p.. Hence the trimming step in the Approx algorithm applied to (A′, p̂′, V (g),K) does remove
a negligible proportion of green nodes, i.e., w.h.p. |V (g) \ Γ| = o(|V (g)|) or equivalently |Γ′| =
m(1 + o(1)).

Observe that w.h.p., p̂′ =
∑
u,vM

′
uv

m2 (1 + o(1)) = Θ(maxuv{M ′uv})(1 + o(1)) by the law of
large numbers and

∑
w∈Γ′ A′vw = O(mp̂′) for all v ∈ Γ′. From random matrix theory [2], with

probability 1 − O(1/m), ‖A′Γ −M ′Γ‖ = O(
√
mp̂′). Next we apply Lemma 9 to (A′Γ,Γ

′,K) and

deduce that σ′K = Θ(λK(A′Γ)) w.h.p.. From λK(M ′Γ) ≥ λK(A′Γ) − ‖A′Γ −M ′Γ‖, and σ′
K√
mp̂′

=

ω(1), we deduce that w.h.p.,
λK(M ′Γ)

‖A′Γ −M ′Γ‖
= ω(1).

If M ′Γ = UΛUT , we deduce from Lemma 10 applied to A′Γ and M ′Γ that w.h.p., ‖UT⊥Q‖ = o(1).
We can now apply Lemma 11 replacing V by Γ′ and Vk by Γ′ ∩ V (g)

k . Observe that the linear span
of U coincides with that of W (refer to Lemma 11 for the definition of W ). Hence, w.h.p., the
nodes Γ′ are accurately classified, and so are the nodes in V (g).

Step 2. We distinguish two cases: 1. γf(n) = ω(1); 2. γf(n) = O(1) and
√
γf(n) = ω(1).

Case 1. Assume that γf(n) = ω(1). By the law of large numbers, mp̂(g) = Θ(γf(n)) w.h.p..
Since λK(M

(g)
Γ ) = Ω(γf(n)), ‖A(g)

Γ −M
(g)
Γ ‖ = Θ(

√
mp̂(g)) = Θ(

√
γf(n)) and λK(A

(g)
Γ ) ≥

λK(M
(g)
Γ ) − ‖A(g)

Γ −M (g)
Γ ‖, we get λK(A

(g)
Γ )√

mp̂(g)
= ω(1) w.h.p.. Since σ(g)

K = Θ(λK(A
(g)
Γ )) from

Lemma 9, w.h.p.
σ

(g)
K√
mp̂(g)

· 1{mp̂(g)≥50} = ω(1).

Case 2. Assume that γf(n) = O(1) and
√
γf(n) = ω(1). We first compute M ′ij for any i, j ∈

V (g). For notational simplicity, αk =
|V (g)
k |
n and βk =

|V (r)
k |
n .

(i) Let i, j be two green nodes belonging to the same community, i.e., i, j ∈ V (g)
k . Let v ∈ V (r)

k .
We have:

P

Avi = 1 = Avj ,
∑

w∈V (g)

Avw = 2

 = p2(1− p)αkn−2
∏
l 6=k

(1− q)αln.

This probability is equivalent to p2 exp(−αkpn −
∑

l 6=k αlqn) when n → ∞. Similarly, when

v ∈ V (g)
k′ for some k′ 6= k, the probability P[Avi = 1 = Avj ,

∑
w∈V (g) Avw = 2] is equivalent to
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q2 exp(−αk′pn−
∑

l 6=k′ αlqn) when n→∞. We deduce that:

M ′ij ∼ p2nβkηk + q2n
∑
k′ 6=k

βk′ηk′ , as n→∞, (8)

where ηk = exp(−αkpn−
∑

l 6=k αlqn).

(ii) Let i, j be two green nodes belonging to different communities, i.e., i ∈ V (g)
k and j ∈ V (g)

` , for
k 6= `. Using the same analysis as above, we have:

M ′ij ∼ pq(βkηk + β`η`)n+ q2n
∑

k′ /∈{k,`}

βk′ηk′ as n→∞. (9)

From (8)-(9) and the law of large numbers, we get w.h.p., mp̂′ = Θ(γf(n)2) (this comes from
the facts that γf(n) = O(1) and αkpn = Θ(γpn) = Θ(γf(n))). As a consequence, mp̂′ = ω(1)
w.h.p.. Thus, in the trimming process in the Approx algorithm applied to (A′, p̂′, V (g),K), we
must have |V (g) \ Γ′| = o(|V (g)|) w.h.p..

We also deduce from the above analysis that we can represent M ′Γ as follows:

M ′Γ = M
(g)
Γ′,KΛ′(M

(g)
Γ′,K)T ,

where M (g)
Γ′,K is a Γ′ × K matrix where the k-th column of M (g)

Γ′,K is the column vector of M (g)
Γ

corresponding to v ∈ V (g)
k , and Λ′ is a K×K diagonal matrix where k-th element is βkηkn. Since

‖M(g)

Γ′,Kx‖
‖x‖ = Ω(

√
mp) for any x ∈ RK×1, λK(M ′Γ) = Ω(mnp2 min

1≤k≤K
ηk) = Ω(γf(n)2). By the

law of large numbers, w.h.p., mp̂′ = Θ(γf(n)2). Then, as in the analysis of Case 1, we conclude
that w.h.p.

σ′K√
mp̂′
· 1{mp̂′≥50} = ω(1).

B.6 Proof of Lemma 9

To conclude σK = Θ(λK(A)), we show that σK = O(λK(A)) (Step 1) and σK = Ω(λK(A))
(Step 2).

Step 1. When ‖A‖ = Θ(λK(A)), this is trivial since singular values of Rτ? have to be less
than ‖A‖. Let ‖A‖ = ω(λK(A)). Then, there exists ` < K such that λ`(A) = ω(λK(A)) and
λ`+1(A) = Θ(λK(A)). We denote by ŨjΛ̃ŨTj be the SVD of rank j approximation of A. Let
QK,τ? denote the K-th column vector of Qτ? . Analogously with Step 1 of the proof of Lemma 10,
we can show that ‖ŨTj QK,τ?‖ = O(λK(A)

λj(A) ) for all j ≤ `. Therefore, σk = O(λK(A)).

Step 2. When λn(A) = Θ(λK(A)), this is trivial since singular values of Rτ? have to be larger
than λn(A). Let λn(A) = o(λK(A)). Then, there exists ` ≥ K such that λ`+1(A) = o(λK(A))
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and λ`(A) = Θ(λK(A)). Analogously with Step 1 of the proof of Lemma 10, we can show that
‖(Ũ`)T⊥QK,τ?‖ = O(

λ`+1(A)
λ`(A) ) = o(1), where (Ũ`)⊥ is an orthonormal basis of the perpendicular

to the linear span of Ũ`. Therefore, σk = Ω(λ`(A)) = Ω(λK(A)).

B.7 Proof of Lemma 10

We denote by Ã = Ũ Λ̃ŨT be the SVD of rank K approximation of A. Let U⊥ and Ũ⊥ be
orthonormal bases of the perpendicular spaces to the linear spans of U and Ũ , respectively. Since

‖UT⊥Qτ?‖ = ‖UT⊥(Ũ ŨT + Ũ⊥Ũ
T
⊥)Qτ?‖ ≤ ‖UT⊥ Ũ ŨTQτ?‖+ ‖UT⊥ Ũ⊥ŨT⊥Qτ?‖

≤ ‖UT⊥ Ũ‖‖ŨTQτ?‖+ ‖UT⊥ Ũ⊥‖‖ŨT⊥Qτ?‖ ≤ ‖UT⊥ Ũ‖+ ‖ŨT⊥Qτ?‖,

to conclude this proof, we will show that ‖ŨT⊥Qτ?‖ = O
(
‖A−M‖
λK(M)

)
and ‖UT⊥ Ũ‖ = O

(
‖A−M‖
λK(M)

)
.

Step 1. ‖ŨT⊥Qτ?‖ = O
(
‖A−M‖
λK(M)

)
: Let x1 be the right singular vector of ŨT⊥Qτ+1 corresponding

to the largest singular value and x̃1 be a K × 1 vector such that x1 = Rτ+1x̃1. Then,

‖ŨT⊥Qτ+1‖22 =
‖ŨT⊥Qτ+1x1‖22
‖x1‖22

=
‖ŨT⊥Qτ+1Rτ+1x̃1‖22
‖Rτ+1x̃1‖22

=
‖ŨT⊥Qτ+1Rτ+1x̃1‖22

‖ŨTQτ+1Rτ+1x̃1‖22 + ‖ŨT⊥Qτ+1Rτ+1x̃1‖22

=
‖ŨT⊥AQτ x̃1‖22

‖ŨTAQτ x̃1‖22 + ‖ŨT⊥AQτ x̃1‖22

≤ ‖A−M‖22
(λK(M)− ‖A−M‖2)2(1− ‖ŨT⊥Qτ‖22) + ‖A−M‖22

, (10)

where the last inequality stems from that

‖ŨT⊥AQτ x̃1‖2 ≤ ‖ŨT⊥A‖‖Qτ‖‖x̃1‖2 ≤ ‖ŨT⊥A‖‖x̃1‖2 = λK+1(A)‖x̃1‖2 ≤ ‖(A−M)‖‖x̃1‖2
‖ŨTAQτ x̃1‖2 = ‖(ŨTAŨŨTQτ + ŨTAŨ⊥Ũ

T
⊥Qτ )x̃1‖2 = ‖ŨTAŨŨTQτ x̃1‖2

≥ λK(A)‖ŨTQτ x̃1‖2 ≥ (λK(M)− ‖A−M‖)‖ŨTQτ x̃1‖

≥ (λK(M)− ‖A−M‖)
√

1− ‖ŨT⊥Qτ‖22‖x̃1‖.

Let ζ =
‖A−M‖22

(λK(M)−‖A−M‖2)2 . Since ‖A−M‖2λK(M) = o(1), ζ = O(
‖A−M‖22
λK(M)2 ) = o(1). Then, from

(10),

1− ‖ŨT⊥Qτ+1‖22 ≥ 1− ζ

1− ‖ŨT⊥Qτ‖22 + ζ
=

1− ‖ŨT⊥Qτ‖22
1− ‖ŨT⊥Qτ‖22 + ζ

.
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When 1 − ‖ŨT⊥Qτ‖22 ≤ ζ, 1 − ‖ŨT⊥Qτ+1‖22 ≥
1−‖ŨT⊥Qτ‖

2
2

2ζ . From this, one can easily check that

when τ ≥ log(ζ/(1−‖ŨT⊥Q0‖22))

log(1/2ζ) , 1−‖ŨT⊥Qτ‖22 ≥ ζ, 1−‖ŨT⊥Qτ+1‖22 ≥ 1/2, and 1−‖ŨT⊥Qτ+2‖22 ≥

1−2ζ. Therefore, when log |V |
2 ≥ log(ζ/(1−‖ŨT⊥Q0‖22))

log(1/2ζ) , ‖ŨT⊥Qτ?‖2 = O
(
‖A−M‖
λK(M)

)
. Since ζ = o(1),

to complete this proof, it is sufficient to show that 1 − ‖ŨT⊥Q0‖22 ≥ 1/Poly(n) with probability
1−O(1/n), where Poly(n) is a polynomial function of n with finite order. By Theorem 1.2 of [4]
(Please refer to the proof of Lemma 10 of [3]) we can conclude this part with Poly(n) = 1/n4.

Step 2. ‖UT⊥ Ũ‖ = O
(
‖A−M‖
λK(M)

)
: We can get an upper bound and a lower bound for ‖AU⊥‖ as

follows:

‖AU⊥‖ = ‖(M +A−M)U⊥‖ = ‖(A−M)U⊥‖ ≤ ‖A−M‖
‖AU⊥‖ = ‖(Ã+A− Ã)U⊥‖ ≥ ‖ÃU⊥‖ − ‖(A− Ã)U⊥‖ ≥ ‖Ũ Λ̃ŨTU⊥‖ − ‖A− Ã‖

≥ λK(A)‖ŨTU⊥‖ − ‖A− Ã‖ ≥ (λK(M)− ‖A−M‖)‖ŨTU⊥‖ − ‖A−M‖.

When we combine above bounds, ‖ŨTU⊥‖ ≤ 2‖A−M‖
(λK(M)−‖A−M‖) = O

(
‖A−M‖
λK(M)

)
.

B.8 Proof of Lemma 11

From the definitions ofW andW⊥,Q = WW TQ+W⊥W
T
⊥Q. Since rows ofW corresponding to

the nodes from the same cluster are the same, the rows of WW TQ are also the same for the node
from the same clusters. Let WW TQ(k) be the rows of WW TQ corresponding to v ∈ Vk. Let
v(k`) ∈ RK×1 such that k-th row and `-th row are 1/

√
|Vk| and −1/

√
|V`|, respectively and other

elements are zero. Then, ‖WW TQ(k) −WW TQ(`)‖2 = ‖W TQv(k`)‖2. Since ‖W TQx‖ ≥√
1− ‖W T

⊥Q‖2‖x‖,

‖WW TQ(k)−WW TQ(`)‖2 = Ω(
1− ‖W T

⊥Q‖2

n
) = Ω(

1

n
) for all k 6= `.

Therefore, with some positive C > 0,

C
|
⋃
k,`:k 6=` Sk

⋂
V`|

n
≤

∑
k,`:k 6=`

∑
v∈Sk

⋂
V`

‖WW TQ(k)−WW TQ(`)‖2

≤ 2
∑

k,`:k 6=`

∑
v∈Sk

⋂
V`

‖WW TQ(k)− ξi?,k‖2 + ‖ξi?,k −WW TQ(`)‖2

≤ 4
∑

k,`:k 6=`

∑
v∈Sk

⋂
V`

‖WW TQ(`)− ξi?,k‖2

≤ 8
∑

k,`:k 6=`

∑
v∈Sk

⋂
V`

‖WW TQ(`)−Qv‖2 + ‖Qv − ξi?,k‖2

≤ 8‖W⊥W T
⊥Q‖2F + 8ri? ≤ 8K‖W⊥W T

⊥Q‖2 + 8ri? ≤ 8K‖W T
⊥Q‖2 + 8ri?
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To conclude this proof, we need to show that ri? = O(‖W T
⊥Q‖2). Let it be an integer between

1 and log n such that ‖W⊥W
T
⊥Q‖

2
F

nδ2 ≤ it

n logn ≤
δ2

n with positive constant δ close to 0. There exists
such it for any δ, since ‖W⊥W T

⊥Q‖2 = o(1) and the rank of W⊥W T
⊥Q is K. Then,∣∣∣ ⋃

1≤k≤K
{v ∈ Vk : ‖Qv −WW TQ(k)‖2 ≤ it

4n log n
}
∣∣∣ ≥ n− ‖W⊥W T

⊥Q‖2F
4n log n

it

≥ n(1− 4δ2).

From this, since ‖Qv−Qw‖2 ≤ 2‖Qv−WW TQ(k)‖2+2‖Qw−WW TQ(k)‖2, when v satisfying
that ‖Qv −WW TQ(k)‖2 ≤ it

4n logn ,

|Xit,v| ≥ |Vk| − 4δ2n.

On the other hand, since ‖Qv − Qw‖2 ≥ 1
2‖Qv −WW TQ(k)‖2 − ‖Qw −WW TQ(k)‖2, when

v satisfying that ‖Qv −WW TQ(k)‖2 ≥ it

n logn ,

|Xi,v| ≤ 4δ2n.

With small enough constant δ, therefore, when v and w satisfy that ‖Qv−WW TQ(k)‖2 ≤ it

4n logn

and ‖Qw −WW TQ(k)‖2 ≥ it

n logn , |Xi,v| > |Xi,w|, which indicates that the origin of Tit,k is at

least ‖Qvk −WW TQ(k)‖2 ≤ it

n logn and |Tit,,k| ≥ |Vk| − 4δ2n. Since ‖ · ‖ is a convex function,
by Jensen’s inequality, for all k,

‖WW TQ(k)− ξit,k‖2 ≤

∑
v∈Tit,k

‖WW TQ(k)−Qv‖2

|Tit,k|
≤
‖W⊥W T

⊥Q‖2F
|Vk| − 4δ2n

= O(
‖W T
⊥Q‖2

n
).

Therefore,

rit =

K∑
k=1

∑
v∈Tit,k

‖Qv − ξit,k‖2 ≤
K∑
k=1

∑
v∈Vk

‖Qv − ξit,k‖2

≤ 2
K∑
k=1

∑
v∈Vk

‖Qv −WW TQ(k)‖2 + ‖WW TQ(k)− ξit,k‖2

≤ 2‖W⊥W T
⊥Q‖2F + 2

K∑
k=1

∑
v∈Vk

‖WW TQ(k)− ξit,k‖2

= O(‖W T
⊥Q‖2) + 2

K∑
k=1

∑
v∈Vk

‖WW TQ(k)− ξit,k‖2 = O(‖W T
⊥Q‖2).

Since ri? ≤ rit , ri? = O(‖W T
⊥Q‖2).
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B.9 Proof of Theorem 5

Let µ(v, S
(g)
k ) = E[

∑
w∈S(g)

k

Avw] and V ar(v, S(g)
k ) = E[(µ(v, S

(g)
k ) −

∑
w∈S(g)

k

Avw)2]. Since

|
⋃K
k=1(S

(g)
k \ V (g)

k )| = o(|V (g)|) from Theorem 4, µ(v,S
(g)
k )

|S(g)
k |

= p(1 + o(1)) and V ar(v,S
(g)
k )

|S(g)
k |

=

p(1 + o(1)) when v ∈ Vk, and µ(v,S
(g)
k )

|S(g)
k |

= q(1 + o(1)) and V ar(v,S
(g)
k )

|S(g)
k |

= q(1 + o(1)) when v /∈ Vk.

By Chebyshev’s inequality, when v ∈ Vk, v ∈ Sk with high probability since
µ(v,S

(g)
k )−µ(v,S

(g)

k′ )√
V ar(v,S

(g)
k )

=

ω(1) for all k′ 6= k when γf(n) = ω(1).

B.10 Proof of Theorem 6

In this proof, we use Chernoff bound as the form of Lemma 8.1 in [1].
From Theorem 4, Algorithm 1 classifies the arrival nodes at each time block with dimin-

ishing fraction of misclassified nodes. Between S(τ)
i and S(τ+1)

j , the number of connections is

Θ(B2 f̄(n)
n ) = Θ( h2(n)n

min{f(n),n1/3} log2 n
) = ω(1) from the condition of this theorem. Let µ(k, i) =∑

v∈V̂i

∑
w∈S(τ)

k

Awv∑
v∈V̂i

∑
w∈S(τ)

k

1 . By the Chernoff bound, with high probability (since
∑

v∈V̂i
∑

w∈S(τ)
k

Awv =

ω(1)), µ(k, i) = p(1 − o(1)) when |S
(τ)
k

⋂
Vi|

|S(τ)
k |

= 1 − o(1) and µ(k, i) = q(1 + o(1)) when

|S(τ)
k

⋂
Vi|

|S(τ)
k |

= o(1). Therefore, with high probability, S(τ)
k is merged with V̂s(k) such that

|S(τ)
k

⋂
Vs(k)|

|S(τ)
k |

=

1− o(1). Thus, |V̂k
⋂
Vk|

|V̂k|
= 1− o(1) for all k with high probability.

Since |V̂k
⋂
Vk|

|V̂k|
= 1 − o(1) for all k, one can easily show using the Chernoff bound that

Nv,k

|V̂k|
≥ p(1 − p−q

4 ) when v ∈ Vk and
Nv,k′

|V̂k′ |
≤ q(1 + p−q

4 ) when v /∈ Vk′ with probability

1 − O(exp(−cT f(n)
n )) with a constant c > 0. Thus, the probability for that Nv,k

|V̂k|
≤ Nv,k′

|V̂k′ |
for

v ∈ Vk and k 6= k′ is O(exp(−cT f(n)
n )).
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