
A Technical Results

We now give detailed proofs of the theorems in the paper.

A.1 Altitude Training Phenomeon

We begin with a proof of our main generalization bound result, namely Theorem 1. The proof is
built on top of the following Berry-Esseen type result.
Lemma 5. Let Z1, ..., Z

d

be independent Poisson random variables with means �
j

2 R+, and let

S =

d

X

j=1

w
j

Z
j

, µ = E [S] , and �2
= Var [S]

for some fixed set of weights {w
j

}d
j=1. Then, writing F

S

for the distribution function of S and � for

the standard Gaussian distribution,
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where C
BE

 4.

Proof. Our first step is to write S as a sum of bounded i.i.d. random variables. Let N =

P

d

j=1 Zj

.
Conditional on N , the Z

j

are distributed as a multinomial with parameters ⇡
j

= �
j

/� where � =

P

d

j=1 �j

. Thus,

L �

S
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�N
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d
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X
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W
k

�

�N

!

,

where W
k

2 {w1, ..., wd

} is a single multinomial draw from the available weights with probability
parameters P [W

k

= w
j

] = ⇡
j

. This implies that,

S
d

=

N

X

k=1

W
k

,

where N itself is a Poisson random variable with mean �.

We also know that a Poisson random variable can be written as a limiting mixture of many rare
Bernoulli trials:

B(m) ) N, with B(m)
= Binom

✓

m,
�

m

◆

.

The upshot is that

S(m) ) S, with S(m)
=

m

X

k=1

W
k

I
k

, (21)

where the W
k

are as before, and the I
k

are independent Bernoulli draws with parameter �/m.
Because S(m) converges to S in distribution, it suffices to show that (20) holds for large enough m.
The moments of S(m) are correct in finite samples: E

⇥

S(m)
⇤

= µ and Var

⇥

S(m)
⇤

= �2 for all m.

The key ingredient in establishing (20) is the Berry-Esseen inequality [see, e.g., 26], which in our
case implies that
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where

s2
m

= Var [W
k

I
k

] ,

⇢
m

= E
h

|W
k

I
k

� E [W
k

I
k

]|3
i

,
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We can show that

s2
m

= E
h
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k

)
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⇥
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⇢
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⇣
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⌘
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.

Taking m to 1, this implies that
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]

3/2
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�
.

Thus, to establish (20), it only remains to bound E
h

|W |3
i

/E
⇥

W 2
⇤3/2. Notice that P

j

def
=

⇡
j

w2
j

/E
⇥

W 2
⇤

defines a probability distribution on {1, . . . , d}, and

E
h

|W |3
i

E [W 2
]

= E
P

[|W |]  max

j

{|w
j

|}.

Thus,
E
h
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}
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j

.

We are now ready to prove our main result.

Proof of Theorem 1. The classifier h is a linear classifier of the form

h (x) = I {S > 0} where S
def
=

d

X

j=1

w
j

x
j

,

where by assumption x
j

⇠ Poisson

⇣

�
(⌧)
j

⌘

. Our model was fit by dropout, so during training we
only get to work with x̃ instead of x, where

x̃
j

⇠ Binom (x
j

, 1� �) , and so unconditionally

x̃
j

⇠ Poisson

⇣

(1� �) �
(⌧)
j

⌘

.

Without loss of generality, suppose that c
⌧

= 1, so that we can write the error rate "
⌧

during dropout
as

"
⌧

= P
h

eS < 0

�

� ⌧
i

, where eS =

d

X

j=1

w
j

x̃
j

. (22)

In order to prove our result, we need to translate the information about eS into information about S.

The key to the proof is to show that the sums S and eS have nearly Gaussian distributions. Let

µ =

d

X

j=1

�
(⌧)
j

w
j

and �2
=

d

X

j=1

�
(⌧)
j

w2
j

be the mean and variance of S. After dropout,

E
h

eS
i

= (1� �)µ and Var

h

eS
i

= (1� �)�2.
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Writing F
S

and Fe
S

for the distributions of S and eS, we see from Lemma 5 that
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and
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⌧

,

where  
⌧

is as defined in (9). Recall that our objective is to bound "
⌧

= F
S

(0) in terms of "̃
⌧

=

Fe
S

(0). The above result implies that

"
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, and
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�p
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⌧

.

Now, writing t =
p
1� � µ/�, we can use the Gaussian tail inequalities

⌧

⌧2 + 1

<
p
2⇡ e

⌧2

2
� (�⌧) <

1

⌧
for all ⌧ > 0 (23)

to check that for all t � 1,
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and so noting that in t�(�t) is monotone decreasing in our range of interest and that t 
p�2 log�(�t), we conclude that for all "̃
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. (24)

We can also write the above expression in more condensed form:

P
h

I{ bw · x(i)} 6= c
⌧

�

� ⌧ (i) = ⌧
i

(25)
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The desired conclusion (9) is equivalent to the above expression, except it uses notation that hides
the log factors.

Proof of Theorem 2. We can write the dropout error rate as

Err

�

⇣

ˆh
�

⌘

= Errmin +�,
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where Errmin is the minimal possible error from assumption (14) and� is the the excess error

� =

T

X

⌧=1

P [⌧ ] "̃
⌧

·
�

�

�

P
h

y(i) = 1

�

� ⌧ (i) = ⌧
i

� P
h

y(i) = 0

�

� ⌧ (i) = ⌧
i

�

�

�

.

Here, P [⌧ ] is the probability of observing a document with topic ⌧ and "̃
⌧

is as in Theorem 1. The
equality follows by noting that, for each topic ⌧ , the excess error rate is given by the rate at which we
make sub-optimal guesses, i.e., "̃

⌧

, times the excess probability that we make a classification error
given that we made a sub-optimal guess, i.e.,

�

�P
⇥

y(i) = 1

�

� ⌧ (i) = ⌧
⇤� P

⇥

y(i) = 0

�

� ⌧ (i) = ⌧
⇤

�

�.

Now, thanks to (14), we know that

Err

�

(h⇤
�

) = Errmin +O
✓

1p
�

◆

,

and so the generalization error ⌘̃ under the dropout measure satisfies

� = ⌘̃ +O
✓

1p
�

◆

.

Using (12), we see that
"̃
⌧

 �� (2↵ pmin)

for each ⌧ , and so

"̃
⌧
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✓
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�

◆

uniformly in ⌧ . Thus, given the bound (11), we conclude using (25) that

"
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⌘
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,

which directly implies (16). Note ⌘ will in general be larger than the "
⌧

, because guessing the
optimal label c

⌧

is not guaranteed to lead to a correct classification decision (unless each topic is
pure, i.e., only represents one class). Here, substracting the optimal error Err (h⇤

�

) allows us to
compensate for this effect.

Proof of Corollary 3. Here, we prove the more precise bound

Err

⇣

ˆh
�

⌘

� Err (h⇤
�

) = O
P

0

@

s

✓

d

n
+
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�(1��)

◆
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n

1, log
⇣n

d

⌘o1+�

1
1��

1

A . (27)

To do this, we only need to show that

Err

�

⇣

ˆh
�

⌘

� Err
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(h⇤
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) = O
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r

d

n
max

n

1, log
⇣n

d

⌘o

!

, (28)

i.e., that dropout generalizes at the usual rate with respect to the dropout measure. Then, by applying
(26) from the proof of Theorem 2, we immediately conclude that ˆh

�

converges at the rate given in
(17) under the data-generating measure.

Let dErr
�

(h) be the average training loss for a classifier h. The empirical loss is unbiased, i.e.,

E
h

d

Err

�

(h)
i

= Err

�

(h).

Given this unbiasedness condition, standard methods for establishing rates as in (28) [e.g., 27] only
require that the loss due to any single training example (x(i), y(i)) is bounded, and that the training
examples are independent; these conditions are needed for an application of Hoeffding’s inequality.
Both of these conditions hold here.
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A.2 Distinct Topics Assumption

Proposition 6. Let the generative model from Section 2 hold, and define

⇡(⌧)
= �(⌧)/

�

�

�

�(⌧)
�

�

�

1

for the topic-wise word probability vectors and

⇧ = (⇡(1), . . . ,⇡(T )
) 2 Rd⇥T

for the induced matrix. Suppose that ⇧ has rank T , and that the minimum singular value of ⇧ (in

absolute value) is bounded below by

|�min (⇧)| �
s

T

(1� �)�

 

1 +

r

log+
�

2⇡

!

, (29)

where log+ is the positive part of log. Then (14) holds.

Proof. Our proof has two parts. We begin by showing that, given (29), there is a vector w with
kwk2  1 such that

I
n

w · ⇡(⌧) > 0

o

= c
⌧

, and
�

�

�

w · ⇡(⌧)
�

�

�

� � 1

p

(1� �)�
�

�1

✓

1p
�

◆

(30)

for all topics ⌧ ; in other words, the topic centers can be separated with a large margin. After that,
we show that (30) implies (14).

We can re-write the condition (30) as

min

n
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⌧
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,

or equivalently that
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where S = diag(c
⌧

) is a diagonal matrix of class signs. Now, assuming that rank(⇧) � T , we can
verify that

min
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⇢
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,

where the last line followed by hypothesis. Now, by (23)
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=
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�
.

Because ��1 is monotone increasing, this implies that
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✓
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✓
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,

and so (30) holds.

14



Now, taking (30) as given, it suffices to check that the sub-optimal prediction rate is O
⇣

1/
p
�
⌘

uniformly for each ⌧ . Focusing now on a single topic ⌧ , suppose without loss of generality that
c
⌧

= 1. We thus need to show that

P [w · x̃  0] = O
✓

1p
�

◆

,

where x̃ is a feature vector thinned by dropout. By Lemma 5 together with (11), we know that

P [w · x̃  0]  �
 

� E [w · x̃]
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◆

.

By hypothesis,
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◆

,

and we can check that

Var [w · x̃] = (1� �)

d

X
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j

�
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j

 (1� �)�(⌧)

because kwk2  1. Thus,
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◆◆

=
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�
,

and (14) holds.

A.3 Dropout Preserves the Bayes Decision Boundary

Proof of Proposition 4. Another way to view our topic model is as follows. For each topic ⌧ , define
a distribution over words ⇡(⌧) 2 �d�1: ⇡(⌧) def

= �(⌧)/k�(⌧)k1. The generative model is equivalent
to first drawing the length of the document and then drawing the words from a multinomial:

L
i

⇠ Poisson

⇣

k�(⌧)k1
⌘

, and x(i)
�

� ⌧ (i), L
i

⇠ Multinom

⇣

⇡(⌧ (i)), L
i

⌘

. (31)

Now, write the multinomial probability mass function (31) as

P
m

[x; ⇡, L] =
L!

x1! · · ·xp

!

⇡x1
1 · · ·⇡xd

d

For each label c, define ⇧
c

to be the distribution over the probability vectors induced by the distri-
bution over topics. Note that we could have an infinite number of topics. By Bayes rule,

P
⇥

x = v
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� y = c
⇤

= P
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3
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⇥
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⇤
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c
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R

P
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h
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i

d⇧
c

0
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.

The key part is that the distribution of L doesn’t depend on c, so that when we condition on x =

v, it cancels. As for the joint distribution of (ex, y), note that, given ⇡ and eL =

P

d

j=1 x̃j

, x̃ is
conditionally Multinom(⇡, eL). So then

P
⇥
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In both cases, L and ˜L don’t depend on the topic, and when we condition on x and x̃, we get the
same distribution over y.
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