
A Supplementary Material

A.1 Similarity Matrices

We begin here by detailing proofs for the main results of Section 2.

Proposition A.1 Given all pairwise comparisons C
i,j

2 {�1, 0, 1} between items ranked accord-

ing to the identity permutation (with no ties), the similarity matrix Smatch

constructed as given in (2)
is a strict R-matrix and

Smatch

ij

= n� (max{i, j}�min{i, j}) (9)

for all i, j 2 {1, . . . , n}.

Proof. Since items are ranked as {1, . . . , n} with no ties and all comparisons given, C
i,j

= �1 if
i < j and C

i,j

= 1 otherwise. Therefore we get from definition (2)

Smatch

i,j

=

min(i,j)�1X

k=1

✓
1 + 1

2

◆
+

max(i,j)�1X

k=min(i,j)

✓
1� 1

2

◆
+

nX

k=max(i,j)

✓
1 + 1

2

◆

= n� (max{i, j}�min{i, j}).

This means in particular that Smatch is strictly positive and its coefficients are strictly decreas-
ing when moving away from the diagonal, hence Smatch is a strict R-matrix. Formally, using
equation (4), we have for any i < j

Smatch

i,j

= n� (max{i, j}�min{i, j}) = n� j + i > n� (j + 1) + i = Smatch

i,j+1

,

and similarly Smatch

i+1,j

> Smatch

i,j

, which proves that Smatch is a strict R-matrix.

Proposition A.2 When the variables are ordered according to the order given by ⌫, and the number

of observations is large enough, then Sglm

is a strict R matrix.

Proof. Without loss of generality, we suppose the true order is {1, . . . , n}, with ⌫(1) > . . . > ⌫(n).
For any i, j, k such that i > j, using the GLM assumption (i) we get

P
i,k

= H(⌫(i)� ⌫(k)) > H(⌫(j)� ⌫(k)) = p
j,k

.

Since empirical probabilities Q
ij

converge to p
ij

, when the number of observations is large enough,
we also get Q

i,k

> Q
j,k

for any i, j, k such that i > j � k (we focus wlog on the lower triangle),
and we can therefore remove the absolute value in the expression of Sglm

ij

for i > j. Hence for any
i > j we have

Sglm

i+1,j

� Sglm

i,j

=

1

2

 
�

nX

k=1

|Q
i+1,k

�Q
j,k

|+

nX

k=1

|Q
i,k

�Q
j,k

|

!

=

1

2

 
nX

k=1

�(Q
i+1,k

�Q
j,k

) + (Q
i,k

�Q
j,k

)

!

=

1

2

 
nX

k=1

Q
i,k

�Q
i+1,k

!
< 0.

Similarly for any i > j, Sglm

i,j�1

� Sglm

i,j

< 0, so Sglm is a strict R-matrix.

A.2 Spectral Algorithm

The next technical lemmas extend the results in Atkins et al. [1998]. The first one shows that without
loss of generality, the Fiedler value is simple.
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Lemma A.3 If A is an irreducible R-matrix, up to a uniform shift of its coefficients, A has a simple

Fiedler value and a monotonic Fiedler vector.

Proof. We use [Atkins et al., 1998, Th. 4.6] which states that if A is an irreducible R-matrix with
A

n,1

= 0, then the Fiedler value of A is a simple eigenvalue. Since A is a R-matrix, A
n,1

is among
its minimal elements. Subtracting it from A does not affect the positivity of A and we can apply
[Atkins et al., 1998, Th. 4.6]. Monotonicity of the Fiedler vector then follows from [Atkins et al.,
1998, Th. 3.2].

The next lemma shows that the Fiedler vector is strictly monotonic if A is a strict R-matrix.

Lemma A.4 Let A 2 S
n

be a R-matrix. Suppose there are no distinct indices r < s such that for

any k 62 [r; s], A
r,k

= A
r+1,k

= . . . = A
s,k

, then, up to a uniform shift, the Fiedler value of A is

simple and its Fiedler vector is strictly monotonic.

Proof. By Lemma A.3, the Fiedler value of A is simple (up to a uniform shift of A). Let x be the
corresponding Fiedler vector of A, x is monotonic by Lemma A.3. Suppose [r; s] is a nontrivial
maximal interval such that x

r

= x
r+1

= . . . = x
s

, then by [Atkins et al., 1998, lemma 4.3], for any
k 62 [r; s], A

r,k

= A
r+1,k

= . . . = A
s,k

, which contradicts the initial assumption. Therefore x is
strictly monotonic.

We now show that the condition of A.4 on A are equivalent to A being strict-R.

Lemma A.5 An R-matrix A 2 S
n

is strictly R if and only if there are no distinct indices r < s such

that for any k 62 [r; s], A
r,k

= A
r+1,k

= . . . = A
s,k

.

Proof. Let A 2 S
n

a R-matrix. Let us first suppose there are no distinct indices r < s such that
for any k 62 [r; s], A

r,k

= A
r+1,k

= . . . = A
s,k

. By lemma A.4 the Fiedler value of A is simple
and its Fiedler vector is strictly monotonic. Hence by proposition 3.2, only the identity and reverse
identity permutations of A produce R-matrices. Now suppose there exist two distinct indices r < s
such that for any k 62 [r; s], A

r,k

= A
r+1,k

= . . . = A
s,k

. In addition to the identity and reverse
identity permutations, we can locally reverse the order of rows and columns from r to s, since the
sub matrix A

r:s,r:s

is an R-matrix and for any k 62 [r; s], A
r,k

= A
r+1,k

= . . . = A
s,k

. Therefore at
least four different permutations of A produce R-matrices, which means that A is not strictly R.

Combining previous lemma we obtain the main result of this section.

Proposition A.6 Given all pairwise comparisons between totally ordered variables and assuming

there are no ties between items, performing algorithm SerialRank, i.e. sorting the Fiedler vector of

the matrix Smatch

defined in (3) recovers the true ranking.

Proof. From Proposition 2.3 we get that, under our assumptions, Smatch is a pre-strict R-matrix.
Now combining the equivalent definition of strict-R matrices in lemma A.5 with lemma A.4, we
deduce that Fiedler value of Smatch is simple and its Fiedler vector has no repeated values. Hence
by theorem 3.2, only the two permutations that sort the Fiedler vector in increasing and decreasing
order produce strict R-matrices and are therefore candidate rankings (since from Proposition 2.3
Smatch is a strictly R-matrix when ordered according to the true ranking). Finally we can choose
between the two candidate rankings (increasing and decreasing) by picking the one with the least
upstets.

A.3 Robustness to Corrupted and Missing Comparisons

We show that Smatch remains pre-strict-R even when the comparison matrix originally derived from
a total order has a random pattern of errors, whereas the point score vectors defined at the beginning
of Section 4 has ties. Then using the same argument as in the proof of proposition A.6, we deduce
that algorithm SerialRank, i.e. sorting the Fiedler vector of the matrix Smatch defined in (3) recovers
the exact ranking when the pattern of errors is random (proposition 4.1). Similar results are derived
for missing comparisons.
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Proposition A.7 Given all pairwise comparisons C
s,t

2 {�1, 1} between items ranked according

to their indices, suppose the sign of one comparison C
i,j

is switched, with i < j. If j � i > 2 then

Smatch

defined in (3) remains strict-R, whereas the score vector w has ties between items i and i+1

and items j and j � 1.

Proof. We give some intuition on the result in Figure 1. We write the true score and comparison
matrix w and C, while the observations are written ŵ and ˆC respectively. This means in partic-
ular that ˆC

i,j

= �C
i,j

= 1. To simplify notations we denote by S the similarity matrix Smatch

(respectively ˆS when the similarity is computed from observations). We first study the impact of a
corrupted comparison C

i,j

for i < j on the score vector ŵ. We have

ŵ
i

=

nX

k=1

ˆC
k,i

=

nX

k=1

C
k,i

+

ˆC
j,i

� C
j,i

= w
i

+ 2 = w
i+1

,

similarly ŵ
j

= w
j�1

, whereas for k 6= i, j, ŵ
k

= w
k

. Hence, the incorrect comparison induces two
ties in the score vector w.

Now we show that the similarity matrix defined in (3) breaks these ties, by showing that it is a strict
R-matrix. Writing ˆS in terms of S, we get

[

ˆC ˆCT

]

i,t

=

X

k 6=j

⇣
ˆC
i,k

ˆC
t,k

⌘
+

ˆC
i,j

ˆC
t,j

=

X

k 6=j

(C
i,k

C
t,k

)+

ˆC
i,j

C
t,j

=

⇢
[CCT

]

i,t

� 2 if t < j⇥
CCT

⇤
i,t

+ 2 if t > j.

We thus get
ˆS
i,t

=

⇢
S
i,t

� 1 if t < j
S
i,t

+ 1 if t > j,

(remember there is a factor 1/2 in the definition of S). Similarly we get for any t 6= i

ˆS
j,t

=

⇢
S
j,t

+ 1 if t < i
S
j,t

� 1 if t > i.

Finally, for the single corrupted index pair (i, j), we get

ˆS
i,j

=

1

2

0

@n+

X

k 6=i,j

⇣
ˆC
i,k

ˆC
j,k

⌘
+

ˆC
i,i

ˆC
j,i

+

ˆC
i,j

ˆC
j,j

1

A
= S

i,j

� 1 + 1 = S
i,j

.

For all other coefficients (s, t) such that s, t 6= i, j, we have ˆS
s,t

= S
s,t

. Meaning all rows or
columns outside of i, j are left unchanged. We first observe that these last equations, together with
our assumption that j � i > 2 and the fact that the elements of the exact S in (4) differ by at least
one, mean that

ˆS
s,t

�

ˆS
s+1,t

and ˆS
s,t+1

�

ˆS
s,t

, for any s < t

so ˆS remains an R-matrix. Note that this result remains true even when j� i = 2, but we need some
strict inequalities to show uniqueness of the retrieved order. Indeed, because j � i > 2 all these R
constraints are strict except between elements of rows i and i + 1, and rows j � 1 and j (idem for
columns). These ties can be broken using the fact that

ˆS
i,j�1

= S
i,j�1

� 1 < S
i+1,j�1

� 1 =

ˆS
i+1,j�1

� 1 < ˆS
i+1,j�1

which means that ˆS is still a strict R-matrix (see Figure 1) since j � 1 > i+ 1 by assumption.

We now extend this result to multiple errors.

Proposition A.8 Given all pairwise comparisons C
s,t

2 {�1, 1} between items ranked according

to their indices, suppose the signs of m comparisons indexed (i
1

, j
1

), . . . , (i
m

, j
m

) are switched. If

the following condition (10) holds true,

|s� t| > 2, for all s, t 2 {i
1

, . . . , i
m

, j
1

, . . . , j
m

} with s 6= t, (10)

then Smatch

defined in (3) remains strict-R, whereas the score vector w gets 2m ties.

12



Proof. We write the true score and comparison matrix w and C, while the observations are written ŵ
and ˆC respectively, and without loss of generality we suppose i

l

< j
l

. This means in particular that
ˆC
il,jl = �C

il,jl = 1 for all l in {1, . . . ,m}. To simplify notations we denote by S the similarity
matrix Smatch (respectively ˆS when the similarity is computed from observations).

As in the proof of proposition A.7, corrupted comparisons indexed (i
l

, j
l

) induce shifts of ±1

on columns and rows i
l

and j
l

of the similarity matrix Smatch, while Smatch

il,jl
values remain the

same. Since there are several corrupted comparisons, we also need to check the values of ˆS at
the intersections of rows and columns with indices of corrupted comparisons. Formally, for any
(i, j) 2 {(i

1

, j
1

), . . . (i
m

, j
m

)} and t 62 {i
1

, . . . , i
m

, j
1

, . . . , j
m

}

ˆS
i,t

=

⇢
S
i,t

+ 1 if t < j
S
i,t

� 1 if t > j,

Similarly for any t 62 {i
1

, . . . , i
m

, j
1

, . . . , j
m

}

ˆS
j,t

=

⇢
S
j,t

� 1 if t < i
S
j,t

+ 1 if t > i.

Let (s, s0) and (t, t0) 2 {(i
1

, j
1

), . . . (i
m

, j
m

)}, we have

ˆS
s,t

=

1

2

⇣
n+

P
k 6=s

0
,t

0

⇣
ˆC
s,k

ˆC
t,k

⌘
+

ˆC
s,s

0 ˆC
t,s

0
+

ˆC
s,t

0 ˆC
t,t

0

⌘

=

1

2

⇣
n+

P
k 6=s

0
,t

0 (C
s,k

C
t,k

)� C
s,s

0C
t,s

0
� C

s,t

0C
t,t

0

⌘

Without loss of generality we suppose s < t, and since s < s0 and t < t0, we get

ˆS
s,t

=

⇢
S
s,t

if t > s0

S
s,t

+ 2 if t < s0.

Similar results apply for other intersections of rows and columns with indices of corrupted
comparisons (i.e. shifts of 0, +2, or �2). For all other coefficients (s, t) such that s, t 62

{i
1

, . . . , i
m

, j
1

, . . . , j
m

}, we have ˆS
s,t

= S
s,t

. We first observe that these last equations, together
with our assumption that j

l

� i
l

> 2, mean that
ˆS
s,t

�

ˆS
s+1,t

and ˆS
s,t+1

�

ˆS
s,t

, for any s < t

so ˆS remains an R-matrix. Moreover, since j
l

� i
l

> 2 all these R constraints are strict except
between elements of rows i

l

and i
l

+1, and rows j
l

� 1 and j
l

(similar for columns). These ties can
be broken using the fact that for k = j

l

� 1

ˆS
il,k = S

il,k � 1 < S
il+1,k

� 1 =

ˆS
il+1,k

� 1 < ˆS
il+1,k

which means that ˆS is still a strict R-matrix since k = j
l

� 1 > i
l

+ 1. Moreover, using the same
argument as in the proof of proposition A.7, corrupted comparisons induces 2m ties in the score
vector w.

Using similar arguments as above, we study exact ranking recovery conditions with missing com-
parisons.

Proposition A.9 Given pairwise comparisons C
s,t

2 {�1, 0, 1} between items ranked according

to their indices, suppose only one comparison C
i,j

is missing, with j � i > 1 (i.e. C
i,j

= 0), then

Smatch

defined in (3) remains strict-R and the score vector remains strictly monotonic.

Proof. We use the same proof technique as in proposition A.7. We write the true score and com-
parison matrix w and C, while the observations are written ŵ and ˆC respectively. This means in
particular that ˆC

i,j

= 0. To simplify notations we denote by S the similarity matrix Smatch (re-
spectively ˆS when the similarity is computed from observations). We first study the impact of the
missing comparison C

i,j

for i < j on the score vector ŵ. We have

ŵ
i

=

nX

k=1

ˆC
k,i

=

nX

k=1

C
k,i

+

ˆC
j,i

� C
j,i

= w
i

+ 1,
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similarly ŵ
j

= w
j

� 1, whereas for k 6= i, j, ŵ
k

= w
k

. Hence, w is still strictly increasing if
j > i+ 1. If j = i+ 1 there is a tie between w

i

and w
i+1

. Now we show that the similarity matrix
defined in (3) is a R-matrix. Writing ˆS in terms of S, we get

[

ˆC ˆCT

]

i,t

=

X

k 6=j

⇣
ˆC
i,k

ˆC
t,k

⌘
+

ˆC
i,j

ˆC
t,j

=

X

k 6=j

(C
i,k

C
t,k

) =

⇢
[CCT

]

i,t

� 1 if t < j⇥
CCT

⇤
i,t

+ 1 if t > j.

We thus get
ˆS
i,t

=

⇢
S
i,t

�

1

2

if t < j
S
i,t

+

1

2

if t > j,

(remember there is a factor 1/2 in the definition of S). Similarly we get for any t 6= i

ˆS
j,t

=

⇢
S
j,t

+

1

2

if t < i
S
j,t

�

1

2

if t > i.

Finally, for the single corrupted index pair (i, j), we get

ˆS
i,j

=

1

2

0

@n+

X

k 6=i,j

⇣
ˆC
i,k

ˆC
j,k

⌘
+

ˆC
i,i

ˆC
j,i

+

ˆC
i,j

ˆC
j,j

1

A
= S

i,j

� 0 + 0 = S
i,j

.

For all other coefficients (s, t) such that s, t 6= i, j, we have ˆS
s,t

= S
s,t

. Meaning all rows or
columns outside of i, j are left unchanged. We first observe that these last equations, together with
our assumption that j � i > 2, mean that

ˆS
s,t

�

ˆS
s+1,t

and ˆS
s,t+1

�

ˆS
s,t

, for any s < t

so ˆS remains an R-matrix. To show uniqueness of the retrieved order, we need j � i > 1. Indeed,
when j � i > 1 all these R constraints are strict, which means that ˆS is still a strict R-matrix, hence
the desired result.

We can again extend this result to the case where multiple comparisons are missing.

Proposition A.10 Given pairwise comparisons C
s,t

2 {�1, 0, 1} between items ranked according

to their indices, suppose m comparisons indexed (i
1

, j
1

), . . . , (i
m

, j
m

) are missing, i.e. C
il,jj = 0

for i = l, . . . ,m. If the following condition (11) holds true,

|s� t| > 1 for all s 6= t 2 {i
1

, . . . , i
m

, j
1

, . . . , j
m

} (11)

then Smatch

defined in (3) remains strict-R and the score vector remains strictly monotonic.

Proof. Proceed similarly as in the proof of proposition 4.1, except that shifts are divided by two.

We also get the following corollary.

Corollary A.11 Given pairwise comparisons C
s,t

2 {�1, 0, 1} between items ranked according to

their indices, suppose m comparisons indexed (i
1

, j
1

), . . . , (i
m

, j
m

) are either corrupted or missing.

If condition (7) holds true then Smatch

defined in (3) remains strict-R.

Proof. Proceed similarly as the proof of proposition 4.1, except that shifts are divided by two for
missing comparisons.

We now study how frequent are the configurations that allow exact ranking recovery using spectral
ranking, in other words how many comparisons can be corrupted before the ranking stops being
exact with probability close to one.

Proposition A.12 Given a comparison matrix for a set of n items with m corrupted comparisons

selected uniformly at random from the set of all possible item pairs. Algorithm SerialRank guaran-

tees that the probability of recovery p(n,m) satisfies p(n,m) � 1� �, provided that m = O(

p

�n).
In particular, this implies that p(n,m) = 1� o(1) provided that m = o(

p

n).
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Proof. Let P be the set of all distinct pairs of items from the set {1, 2, . . . , n}. Let X be the set of
all admissible sets of pairs of items, i.e. containing each X ✓ P such that X satisfies condition (7).
We consider the case of m � 1 distinct pairs of items sampled from the set P uniformly at random
without replacement. Let X

i

denote the set of sampled pairs given that i pairs are sampled. We are
interested in the following quantity:

p(n,m) = P (X
m

2 X ).

Given a set of pairs X 2 X , let T (X) be the set of nonadmissible pairs, i.e. containing (i, j) 2 P\X
such that X [ (i, j) /2 X .

We have
P (X

m

2 X ) =

X

x2X :|x|=m�1

✓
1�

|T (x)|

|P|� (m� 1)

◆
P (X

m�1

= x). (12)

Note that every selected pair from P contributes at most 6n � 10 nonadmissible pairs, hence, for
every x 2 X we have

|T (x)|  2(3n� 5)|x|.

Combined with (12) and the fact |P| =

�
n

2

�
, we have

P (X
m

2 X ) �

 
1�

2(3n� 5)�
n

2

�
� (m� 1)

(m� 1)

!
P (X

m�1

2 X ).

From this it follows

p(n,m) �

m�1Y

i=1

 
1�

2(3n� 5)�
n

2

�
� (i� 1)

i

!

which further implies

p(n,m) �

m�1Y

i=1

✓
1�

i

a(n,m)

◆

where

a(n,m) =

�
n

2

�
� (m� 1)

2(3n� 5)

.

Notice that for m = o(n) we have

m�1Y

i=1

✓
1�

i

a(n,m)

◆
⇠ exp

✓
�6

m2

n

◆
for large n.

Hence, given � > 0, p(n,m) � 1 � � provided that m = O(

p

n�). If � = o(1), the condition is
m = o(

p

n).

A.4 Numerical Experiments

A.4.1 England Premier League

We provide results on seasons 2011-2012, 2012-2013 and 2013-2014 in figure 4.
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Figure 4: Percentage of upsets (i.e. disagreeing comparisons, lower is better) defined in (8), for
various values of k and ranking methods, on England Premier League 2011-2012 season (left),
2012-2013 season (center), and 2013-2014 season (right).
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