
Supplementary material

Proof of Theorem 2.1

Algorithm simpleHC correctly reconstructs the graph G if for every edge e = {i, j} not
in E(G), at least one observed independent set vector ‡(k) contains both i and j. Let
Ak

ij = {‡(k)
i = 0 or ‡(k)

j = 0} be the event that at least one of i or j is missing from ‡(k),
and let Aij = fln

k=1Ak
ij . We have by the union bound and independence of Ak
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The last inequality is from Lemma 2.3, with the value of “ the quantity in the statement of
the Lemma. To make P(error) approach zero at the rate 1/p it su�ces to take n = 3“≠1 log p .
This proves the theorem.

Proof of Theorem 2.2

Consider the set of graphs Gm obtained by taking an arbitrary graph on m nodes with
maximum degree d, and to each vertex v adding d nodes u1, . . . , ud with edges {v, ui}. The
total number of nodes is p = m(d+1). Thus we are working with the set of graphs consisting
of m = p/(d + 1) stars of degree d, with all remaining edges going between centers of stars.

The goal is to determine the correct subset of the
!

m
2
"

remaining edges. Fix a constant c > 0
and consider any graph G œ Gm missing at least cm edges. Note that such graphs consist
of almost all of Gm (a proportion 1 ≠ o(1)).
We bound the number of samples required by the maximum-likelihood (ML) rule (equiv-
alent to algorithm simpleHC) to reconstruct G. As observed in Section 2, the ML graph
contains the edge e = {i, j} between star centers i and j if and only if none of the sets
‡(1), ‡(2), . . . , ‡(n) contains both i and j. Thus, in order for ML to give the correct graph, for
each missing edge e = {i, j} it is necessary to observe a “witness” ‡(k) with ‡(k)

i = ‡(k)
j = 1.

We proceed by upper bounding the probability of observing a witness for each of the cm
missing edges. Each star center i is included in a particular random independent set ‡(k)

with probability at most
q = 1

2 · (2⁄)d
,

hence ‡(k) is a witness for missing edge {i, j} with probability at most q2. Hence the expected
number of missing edges which within n samples have no witness is at least cm(1 ≠ q2)n,
and a second moment argument shows that one must take

n Ø (1 + o(1)) log m

≠ log(1 ≠ q2) = �
!
(2⁄)2d log m

"
,

where we used the fact that ≠ log(1 ≠ q2) = q2 + o(q4) and q≠1 = (2⁄)d.

Proof of Lemma 2.3

We can decompose the partition function as

ZG =
ÿ

I

⁄|I| =
ÿ

IœS?,?

⁄|I| +
ÿ

IœS?,j

⁄|I| +
ÿ

IœSi,?

⁄|I| +
ÿ

IœSi,j

⁄|I|

: = Z?,? + Z?,j + Zi,? + Zi,j , (4.4)
where Sij = {I : i, j œ I}, Si,? = {I : i œ I, j /œ I}, etc. Now, ZG and ZG+e are the same
except ZG+e does not have the last term Zi,j . We bound the last term by first noting that

|Si,j | · 2d Ø |S?,j | . (4.5)
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This is because for each independent set I with i œ I, there are at most 2d distinct inde-
pendent sets I Õ with i /œ I Õ with some subset of (at most d) neighbors of i included. One
way of observing this is defining the map f : S?,j æ Si,j by I ‘æ {i} fi I \ N (i). The map
f takes at most 2d sets I Õ œ S?,j to each I œ Si,j , which implies (4.5).

Now, each such set I Õ mapping to I has weight at most a factor ⁄d≠1 larger than I, so
2d⁄d≠1Zi,j Ø Z?,j . (4.6)

Similar reasoning gives
2d⁄d≠1Zi,j Ø Zi,?, and 22d⁄2d≠2Zi,j Ø Z?,? . (4.7)

Using these estimates, we obtain

P({i, j} ™ I) =
q

I:{i,j}™I ⁄|I|
q

I ⁄|I| = Zi,j

Z
Ø 1

1 + 4 · (2⁄)d≠1 + 4 · (2⁄)2d≠2 ,

proving the lemma.

Proof of Lemma 3.2

We start by defining restricted partition function summations: Let
Sab = {‡ œ {0, 1}p : ‡a = ‡b = 1} ,

Sa? = {‡ œ {0, 1}p : ‡a = 1, ‡b = 0} ,

and analogously for S?b and S??. We then define Zab =
q

‡œSab
exp(H(‡)) and again

analogously for Za?, Z?b, Z??.
We first prove case (i) of the lemma, in which we assume that (a, b) /œ E(G) and lower
bound the probability

P(‡a = 1|‡b = 1) = Zab

Zab + Z?b
.

To this end, consider the map f : S?b æ Sab defined by taking a configuration ‡, setting
‡i = 0 for neighbors i œ N(a), and then setting ‡a = 1. Since the assumption (a, b) /œ E(G)
implies that ‡a = ‡b = 1 is a valid assignment to these variables, the definition of f implies
in particular that (f(‡))b = 1 if ‡b = 1, so indeed f(‡) œ Sab for ‡ œ S?b.

Now, at most 2deg(a) sets are mapped by f to any one set (since the neighbors of a can be in
any configuration), and for any ‡ œ S?b, exp(H(f(‡)) Ø exp(H(‡) ≠ h(deg(a) + 1)). This
shows that 2deg(a) exp[h(deg(a) + 1)]Zab Ø Z?b , and proves part (i) of the lemma.
We now turn to case (ii), assuming that (a, b) œ E(G). Consider the map g : Sab æ S?b

taking ‡ œ Sab and setting ‡a = 0 (removing node a from the independent set). The map g
is one-to-one, and H increases by — due to resolving the conflict on edge (a, b), but decreases
by ha Æ h due to omitting node a: exp(H(g(‡))) Ø exp(H(‡) + — ≠ h). This shows that
Zab Ø e≠—+hZ?b , and completes the proof.

Proof of Lemma 3.5

We start by computing the probability that a particular sample ‡(i) is in AU , or equivalently
that ‡U = 0. Let W ™ V be any subset of nodes, and denote by xW an assignment
to the corresponding variables. Due to the antiferromagnetic nature of the interaction,
the distribution (3.2) satisfies the monotonicity property P(‡a = 1|‡W = xW ) Æ P(‡a =
1|‡W = xW , ‡b = 0) for any neighbor b œ N(a)\W . This monotonicity together with Bayes’
rule gives

P(‡U = 0) =
|U |Ÿ

i=1
P(‡ui = 0|‡u1 = · · · = ‡ui≠1 = 0) Ø

|U |Ÿ

i=1
P(‡ui = 0|‡N(ui) = 0)

=
|U |Ÿ

i=1
[1 + ehi ]≠1 .
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Denoting the last displayed quantity by q, we see that the number of samples obtained, |AU |,
stochastically dominates a Binom(n, q) random variable. Hoe�ding’s inequality proves the
lemma.

Proof of Lemma 4.4

Calculating correlation relative to the uniform distribution U (see Equation (4.1)), we have
for S ”= T with |S fl T | = ⁄

eps

U
≠ 1,

pT

U
≠ 1

f

U
=

ÿ

xœ{≠1,+1}p

2≠p(2ppS(x) ≠ 1)(2ppT (x) ≠ 1)

=
ÿ

xœ{≠1,+1}p

2ppS(x)pT (x) ≠ 1 . (4.8)

Now
ÿ

xœ{≠1,+1}p

2ppS(x)pT (x) = 2p

Z2

ÿ

x

exp(c · (‰S(x) + ‰T (x)))

= 2p · 2p≠2N+⁄

Z2

ÿ

xSflT

ÿ

xS�T

exp(c · (‰S(x) + ‰T (x)))

(a)= 2p · 2p≠2N+⁄

Z2

ÿ

xSflT

22N≠2⁄ · 1
4 ·

!
e2c + e≠2c + 2

"

= 22p≠2

Z2 (ec + e≠c)2 (b)= 1 .

Step (a) follows from the fact that for any fixed xSflT , half the assignments to xS\T result in
‰S = 1 and half ‰S = ≠1, and similarly for xT \S ; step (b) is from the formula (4.3) for Z.
For the case S = T , we have

ÿ

xœ{≠1,+1}p

2ppS(x)pT (x) = 2p

Z2

ÿ

x

exp(c · (‰S(x) + ‰T (x)))

= 2p · 2p≠1

Z2 (e2c + e≠2c)

= 22p≠2

Z2 2(ec + e≠c)2 ≠ 4
(ec + e≠c)2 = 2 ≠ 4

(ec + e≠c)2 .

Plugging this into (4.8) completes the proof.
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