
Appendix

A Omitted Proofs of Lemmas

A.1 Proof of Lemma 2

Let there be k targets t such that pt > qt. We prove this lemma by induction on k. For k = 0, the
lemma trivially holds. Assume that for all k < k0 the result holds. Let k = k0. Let t be an arbitrary
target for which pt > qt. Since the set of pure strategies is closed under subset operation there is a
map, σ(·), such that for every pure strategy Mi (a column in matrix M ) such that Mti = 1, Mσ(i)

only differs fromMi in the tth row (target). Let I and I ′ indicate these strategies i.e. I = {i : Mti =
1}, I ′ = {σ(i) : Mti = 1}.

Define s ′ as follows: For all i ∈ I , let s′i = si · qtpt and s′σ(i) = sσ(i)+si · pt−qtqt
, and for any i /∈ I∪I ′,

let s′i = si. Consider p ′ that is induced by s ′: For t, p′t =
∑
i:Mti=1 s

′
i =

∑
i∈I si ·

qt
pt

= qt. For all
t′ 6= t,

p′t′ =
∑

i:Mt′i=1

s′i =
∑

i:Mt′i=1
and i∈I

(
s′i + s′σ(i)

)
+

∑
i:Mt′i=1

and i/∈I∪I′

s′i

=
∑

i:Mt′i=1
and i∈I

(
qt
pt
si + sσ(i) +

p− qt
pt

si

)
+

∑
i:Mt′i=1

and i/∈I∪I′

si

=
∑

i:Mt′i=1
and i∈I

(
si + sσ(i)

)
+

∑
i:Mt′i=1

and i/∈I∪I′

si =
∑

i:Mt′i=1

si

= pt′

We conclude that p ′ such that p′t = qt and for all t′ 6= t, p′t′ = pt, is implementable. p ′ and q differ
in only k0−1 indices and for all i, p′i ≥ qi, so using the induction hypothesis q is implementable.

A.2 Proof of Lemma 3

(1 =⇒ 2). Consider the minimal set of half-spaces that defines A. We know that this set is unique,
and is the collection of facet-defining half-spaces. Since A has a positive volume, for all i, (ei, ε)
is a facet, so it belongs to the set of half-spaces that define A. Take any half-space (h, b) in this
collection that is not of the form (ei, ε). There is a point p on the the boundary of (h, b) that is not
on the boundary of any other half-space (including (ei, ε)), so p � ε. For every i, define p i such
that pii = ε and pij = pj for all j 6= i. Then,

h · p i = h · p + h · (p ii − p) = b− hi(pi − ε).

Since p i ∈ A, hi ≤ 0. Since, ε ∈ A, h · ε = −‖h‖1ε ≥ b, so b ≤ −ε.
(2 =⇒ 1). For any p ∈ A and any ε � q � p, and any i, ei · q = qi ≥ ε. For any (h, b) ∈ H of
the second form,

h · q = h · p + h · (q− p) ≥ b,
where the last transition is by the fact that h and (q− p) are non-positive. So, q ∈ A.

A.3 Proof of Lemma 4

Let p /∈ P , by Lemma 3 one of the following cases holds: (1) There exists i, such that ei · p < 0.
In this case, ei · p ≤ kγ. So, p /∈ Rk. (2) There exists (h∗, b∗) ∈ HP such that h∗ · p < b∗. Let
(h, b) be the corresponding half-space of (h∗, b∗) inRk. Then,

h · p = h∗ · p + (h− h∗) · p < b∗ + (h− h∗) · p < b

where the last transition is by the fact that h � h∗, b > b∗, and p � 0.
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A.4 Proof of Lemma 5

If Rk = ∅ is empty then the result holds trivially. If Rk 6= ∅, then there exists p � kγ such that
p ∈ Rk. By Lemmas 2 and 3, P has half-spaces of the form (ei, 0) and (h∗, b∗), such that h∗ � 0
and b∗ ≤ 0. By construction of Rk, we have half-spaces of the form (ei, kγ) for all i, and half-
spaces (h, b + kγ) such that h = b 1γh

∗c � h∗. Since, kγ � p ∈ Rk, h · kγ = ‖h‖1kγ ≥ b. So,
b ≤ −kγ. The proof is completed by the fact that the conditions of Lemma 3 hold.

A.5 Proof of Lemma 6

Note that there is a positive gap between the attacker’s payoff from attacking a best-response target
versus another target, i.e. mint/∈B Ua(t∗, pt∗)− Ua(t, pt) > 0. Since Ua is continuous and decreas-
ing in the coverage probability, for any t /∈ B, if pt > kγ there exists 0 < δ ≤ pt − kγ such that
Ua(t∗, pt∗) > Ua(t, pt − δ). Let q be defined such that for all t /∈ B, qt = pt − δ ≥ kγ, and for all
t ∈ B, qt = pt. Then by Lemma 5, q is implementable by some strategy sq in Rk. Furthermore,
b(q) = t∗, so, sq is also an optimal strategy. This contradicts the fact that s is a conservative optimal
strategy.

A.6 Proof of Lemma 7

Let p be the center of the ball. Then for any i, pi ≥ r ≥ kγ, so ei · p ≥ kγ. For any (h, b) defining
half-space ofRk and its corresponding half-space (h∗, b∗) of P we have:

h · p− b = h∗p− b∗ + (h− h∗) · p + (b∗ − b) ≥ r − γn− (γ + kγ) ≥ 0,

where the second transition is by the fact that h∗p = r is the margin of p from a normalized half-
space h∗, and that for any value x and 1/γ ∈ Z, γb 1γxc and γd 1γxe are within γ from x. Hence,
p ∈ Rkt .

A.7 Proof of Lemma 9

The boundaries of Rk are defined by (ei, kγ) for all i and a half-spaces (h, b + kγ) for every half-
space (h∗, b∗) ∈ HP such that h = γb 1γh

∗c and b = γd 1γ b
∗e. In addition Rkt is the intersection of

Rk with half-spaces Ut(t, pt) ≥ U(t′, pt′) for all t′ 6= t. Let dist(·) denote the signed distance of a
point from a half-space. For every i 6= t,

dist(q, (ei, (k − 1)γ)) =
ei · q− (k − 1)γ

‖ei‖2
= qi − (k − 1)γ ≥ pi +

γ

4
√
n
− (k − 1)γ

≥ kγ +
γ

4
√
n
− (k − 1)γ >

γ

2n
.

Moreover,

dist(q, (et, (k − 1)γ)) =
et · q− (k − 1)γ

‖et‖2
= qt − (k − 1)γ = pt −

γ

2
− (k − 1)γ

≥ kγ − γ

2
− (k − 1)γ ≥ γ

2n
.

Finally, for every (h, b+ (k − 1)γ),

dist(q, (h, b+ (k − 1)γ)) =
h · q− (b+ (k − 1)γ)

‖h‖2
≥ h · p + h · (q− p)− (b+ (k − 1)γ)

2

≥ h · (q− p) + γ

2
≥ − γ

8
√
n
‖h‖1 − ht

(
γ

4
+

γ

8
√
n

)
+
γ

2

≥ − γ

8
√
n
‖h‖1 +

γ

2
≥ − γ

8
√
n

(
√
n+ nγ) +

γ

2

≥ 3γ

8
−
√
nγ2

8
≥ γ

2n
,
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where the first inequality is by the fact that ‖h‖2 ≤ ‖h∗‖2 + γ
√
n ≤ 1 + γ

√
n < 2 (by the triangle

inequality), the penultimate inequality is by the fact that ‖h‖1 ≤ ‖h∗‖1 + nγ ≤
√
n‖h∗‖2 + nγ,

and the last inequality follows from γ = 1
(n+1)2L+1 <

1
n
√
n

.

As for the utility half-spaces of the form Ua(t, qt) − Ua(t′, qt′) ≥ 0, for every t′, the probability q
has moved away by at least min(γ2 ,

γ
4
√
n

) ≥ γ
2n from every half-space. Moreover, by reducing the

coverage probability on the attacked target and increasing it on other targets, the attacker receives
even larger payoff from attacking t, so q still induces an attack on t, i.e. q ∈ Pt. Finally, the signed
distance of q from every half-space is greater than γ

2n , therefore q ∈ Rk−1 ∩ Pt = Rk−1t , and it
has distance γ

2n from the boundaries ofRk−1t .

A.8 Proof of Lemma 10

Let Rkt be represented as a system {p : ApT � b} where there is a row (constraint) for each half-
space that definesRk, and a row for each t′ 6= t of the formUa(t, pt)−Ua(t′, pt′) ≥ 0. Furthermore,
assume that A is normalized so that every row has integral coefficients. Note that by the definition
of the game representation length, each coefficient of the utility rows is at most 2L. Moreover, by
the definition of the defining half-spaces ofRk, each coefficients of the feasibility constraints are at
most (n+ 1)2L+1.

We know that each basic solution to the above LP is at the intersection of n independent constraints
of A. Let p∗ be such a solution. Let D represent those n hyper-planes. Using Cramer’s rule, for all
i, p∗i = det(Di)

det(D) , where the Di is D with its ith column replaced by b. Using Hadamard’s inequality,

det(D) ≤
n∏
i=1

√√√√ n∑
j=1

d2ij ≤
n∏
i=1

(n+ 1)2L+1
√
n ≤ n2n2n(L+1) ≤ 22n(L+1),

Where the last inequality is by the fact that L > n log n.

A.9 Proof of Lemma 11

Let p∗ be the optimal strategy in Rkt . By Lemma 10, for all i, p∗i has a denominator of at most
22n(L+1). Note that the difference between two distinct rational numbers with denominators at most
22n(L+1) is at least 1

24n(L+1) .

Strategy p is a 1
26n(L+1) -approximate optimal strategy and the utilities have representation length of

at most L, so

p∗t − pt ≤ 2L · 1

26n(L+1)
<

1

24n(L+1)
.

Therefore, p∗t ∈ [pt, pt + 1
24n(L+1) ). Since this range is smaller than the difference between two

rational numbers with denominator at most 22n(L+1), there is at most one such rational number
in this range, to which our algorithms sets p∗t . Note that the absence of such a rational number is
contradictory to Lemma 10 or the fact that p was a 1

26n(L+1) -approximate optimal strategy.

For all i, let p′i ≥ kγ be the smallest coverage probability, with accuracy 1
25n(L+1) , such that

Ua(t, pt) ≥ Ua(i, p′i). Then, p∗i ≥ p′i − 1
25n(L+1) . Let ri and qi, respectively, be the smallest and

second smallest rational numbers with denominator at most 22n(L+1) in the range [p′i− 1
25n(L+1) , 1).

We claim that p∗i = ri or qi. To prove this claim, it is sufficient to show that for all i, Ua(i, qi) ≤
Ua(t, p∗t ). Since qi is the second smallest rational number with denominator at most 22n(L+1) in the
given range, then qi ≥ p′i − 1

25n(L+1) + 1
24n(L+1) >

1
24n(L+1)+1 . Then,

Ua(i, p′i)− Ua(i, qi) ≥
1

2L
(qi − p′i) ≥

1

24n(L+1)+L+1

>
2L

26n(L+1)
≥ 2L (Ud(t, p

∗
t )− Ud(t, pt))

> Ua(t, pt)− Ua(t, p∗t ).
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Since, Ua(t, pt) ≥ Ua(i, p′i), the above inequality implies that Ua(i, qi) ≤ Ua(t, p∗t ). So, for each
i, it is sufficient to query the attacker to see whether Ua(i, ri) ≤ Ua(t, p∗t ) if so then p∗i = ri, else
p∗i = qi.

For each i, this algorithm makes O(log 25(L+1)) = O(L) queries to find p′i with accuracy 1
25n(L+1) .

Values of p∗t , ri and qi are computed without any best-response queries. Because p∗i = ri or qi, step
4, is repeated at most n times, so there are n additional queries. In conclusion, our algorithm makes
O(nL+ n) = O(nL) many queries in total.
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