Supplementary Material

In this appendix, we collect some auxiliary results and we provide proofs of the results stated in the
main body of the paper.

A Auxiliary Results

Recall that a subset A of a real vector space X is called balanced if €A C A whenever |a| < 1.
Furthermore, A is called absorbing if for any x € X, x € AA for some A(z) > 0. For a proof of
the following lemma see e.g. [27, §1.35].

Lemma A.1. Let X be a real vector space and let A C X be a convex, balanced, and absorbing
set. The Minkowski functional p 4 of A, given, for every x € X, by the formula

pa(z) =inf{\ > 0:2 € \A}
defines a seminorm on X. In addition, if pa(x) > 0 for every x # 0, then 4 defines a norm on X.

The next result is due to von Neumann [10], see also [23].
Theorem A.2 (Von Neumann’s trace inequality). For any d X m matrices X and 'Y,

tr(XYT) < (0(X),o(Y)).

Equality holds if and only if X and 'Y admit a simultaneous singular value decomposition, that is

X =Udiag(c(X))V", Y =Udiag(e(Y))VT,
where U € R™ and V' € R™*™ are orthogonal matrices.

The following result, which is presented in [6, Section 2] is key for the proof of Theorem 3.5.
Proposition A.3. The unit ball of the vector k-support norm is equal to the convex hull of the set
{w e R?: card(w) <k, w2 < 1}.

Theorems 4.1 and 4.3 make use of the following result, which follows from [17], Theorem 3.1.

Lemma A4. Lerw € R, 8 > 0, and define g(0) = “’72 + 3260(0 > 0). For 0 < a < b, the unique
solution to the problem min{g(0) : a < 0 < b} is given by

a, ifl4<a,
0= o<l
b, il >

Proof. For fixed w, the objective function is strictly convex on Ri - and has a unique minimum on
(0, 00) (see Figure 1.b in [17] for a one-dimensional illustration). The derivative of the objective

function is zero for § = 6* := |w|/f, strictly positive below 6* and strictly increasing above 6*.
Considering these three cases we recover the expression in statement of the lemma. [ ]
B Proofs

Proof of Proposition 2.2. Consider the expression for the dual norm. The function || - || is a norm
since it is a supremum of norms. Recall that the Fenchel conjugate h* of a function 2 : R — R is
defined for every u € R? as h*(u) = sup {(u, w) — h(w) : w € R?}. It is a standard result from

convex analysis that for any norm || - ||, the Fenchel conjugate of the function h := 1| - ||? satisfies
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h* = Z|| - ||2, where || - ||, is the corresponding dual norm (see, e.g. [23]). By the same result, for
any norm the biconjugate is equal to the norm, that is (|| - [|*)* = || - ||. Applying this to the dual

norm we have, for every w € R4,

d
h(w) = sup {{(w,u) —h*(u)} = sup inf {Z (wiui — ;91%2) } .

u€Rd u€ERd €O i—1

This is a minimax problem in the sense of von Neumann [28], and we can exchange the order of
the inf and the sup, and solve the latter (which is in fact a maximum) componentwise. The gradient

with respect to u; is zero for u; = %*, and substituting this into the objective we get

It follows that the infimum expression in (3) defines a norm, and the two norms are duals of each

other as required. [ ]
Proof of Proposition 3.1. We make the change of variable ¢; = %’:{f and observe that the con-
straints on 6 induce the constraint set {¢ € (0, 1]%, 2;1:1 @i < p}, where p = cb__‘ff. Furthermore
d d
> b = alul3+ (b —a) ) o
i=1 i=1
The result then follows by taking the supremum over ¢. [ ]

Proof of Proposition 3.2. Equation 5 defines a norm and we will show that its norm coincides with
the dual of the ©-norm given by equation (4). To simplify the exposition we define the norm

2 v vi d
HU”q:Z?J’_Z;a ’UGRa
i€g i¢g
whose corresponding dual norm is
ful2, =0 ui+a) u?, ueR™
i€g i¢g

Furthermore for ezery u e R%and g C {1,...,d}, we define the vectors uj, = (u;l{;cq}), and
ujge = (Uilfiggy)iza-

We have, for every u € R, u # 0, that
{w, u) Lgeg, (Vg 1)

sup = sup
werd W] {vg} degk [vgllg

.9

o Seea Il
- {vg} degk HUQHQ

< 13
< maxful|. g, (13)

where we have used Cauchy-Schwarz and Holder inequalities. We can make the first inequality tight
by setting vy = Ag(bu|, + auj4e) and the second inequality tight by requiring A, = 0 whenever
g & argmax  cg, |[ull« g, see e.g. [29, Sects. 5.4.14. and 5.4.15]. Note that the right hand side in
(13) is maximized when g = {i1,...,i;} such that |u;,| > - - |u;, | and the expression coincides
with (4) for p = k. [ |
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Proof of Proposition 3.3. Consider the definition of the norm ||w||e in (3). We make the change of

variables ¢; = 6;;':;, and write

d 2 d 2

2 : wy v wj
wl|3 = min —* = ~min , 14
lwlle 96@; 0; aase‘b; bi + 7 (9

where we have defined v = 72— and ® = {¢ € (0,1]¢: 25:1 ¢; < k}. We observe that

d 2 d 2

. 2 2 . . 2 Zi . wy
min {||lw — z||5 + 7|z = min min w; — 2;)° +vy=+ p = ymin , 15
min {l 15 +~1z0%} min min { 21( i — %) 7@} 7¢e<b 25y (15)

1=

where we have interchanged the order of the minimization problems and solved for z; component-
wise. The result follows by combining equations (14) and (15). |

Proof of Lemma 3.4. Let g(w) = ||w|lo. We need to show that g is a norm which is invariant
under permutations and sign changes. By Proposition 2.2, ¢ is a norm, so it remains to show that
g(wi, ..., wq) = g(Wx(1y, - - ., Wr(q)) for every permutation 7, and g(Jw) = g(w) for every diago-
nal matrix J with entries +1. The latter property is immediate. The former property follows since
the set ©-norm is permutation invariant. [ |

Proof of Proposition 3.5. For any W € R?*™ define the following sets
Ty = {W € R”™ . rank(W) < k, |[W||r < 1}, Ap = co(T}),
and consider the following functional
AW) =inf{A > 0: W € A}, W € R™>™, (16)

By Lemma A.1, \ defines a norm on R4*™ with unit ball equal to A;. Since the constraints in
T} involve spectral functions, the sets T}, and Ay are invariant to left and right multiplication by
orthogonal matrices. It follows that A is a spectral function, that is A(W) is defined in terms of
the singular values of W, and by von Neumann’s Theorem [10] the norm it defines is orthogonally
invariant and we have

AW) =1inf{A > 0: W € XA}
=inf{\ > 0:0(W) € \Cy}

= [le(M)ll

where we have defined the set C, = co{w € R : ||wl||z < 1, card(w) < k} and we have used the
fact that the unit ball of the k-support norm is the convex hull of C}, [6, Section 2] in the penultimate
step. It follows that the norm defined by (16) is the spectral k-support norm.

|
Proof of Proposition 3.6. By von Neumann’s trace inequality (Theorem A.2) we have

1 1 1
EHW - Z|% + mHZH%k) == (W% +12|% —2(W, 2)) + m”Z”%k)

IS

(lo (W3 + lo(2)]3 ~ 240 (W),0(2))) + o (2

vV
SR

1 1
= o W) = o(2)I + 5—llo(2) -
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Furthermore the inequality is tight if W and Z have the same ordered set of singular vectors. Hence
min $ W~ 2%+ 121 b = min o (W) — 213 + [l | = o (W)
ZeRanl a F b —a (k) ZGRd a 2 b —a (k) (k)’

where the last equality follows by Proposition 3.3 [ ]

Proof of Theorem 4.1. We solve the constrained optimization problem

d o d
inf{ztgfza<9i<b,29i<c}. (17)

i=1 ' i=1
To simplify notation we assume without loss of generality that w; are positive and ordered
nonincreasing, and note that the optimal 6; are ordered nonincreasing. To see this, let 8% =

2 ~
argming o Zle % Now suppose that 67 < ¢ for some ¢ < j and define ¢ to be identical
to 0%, except with the 7 and j elements exchanged. The difference in objective values is

zd:wi_zd:ﬂz(w?_wz) 1
) 0r ! N I ’
which is negative so 6* cannot be a minimizer.

We further assume without loss of generality that w; % 0 for all ¢, and ¢ < db (see Remark B.1
below). The objective is continuous and we take the infimum over a closed bounded set, so a
solution exists, the solution is a minimum, and it is unique by strict convexity. Furthermore, since
¢ < db, the sum constraint will be tight at the optimum.

Consider the Lagrangian function
2
7

d d
L(e,a)=2“0fj+a12<zei—c>7 (18)
i=1 !

i=1
where 1/a? is a strictly positive multiplier, and « is to be chosen to make the sum constraint tight,
call this value o*. Let 8* be the minimizer of L(6, a*) over  subject to a < 6; < b.

We claim that 6* solves equation (17). Indeed, for any 6 € [a,b]?, L(0*,a*) < L(,a*), which
implies that

If in addition we impose the constraint ijl 0; < c, the second term on the right hand side is at
most zero, so we have for all such 6

whence it follows that 8* is the minimizer of (17).

We can therefore solve the original problem by minimizing the Lagrangian (18) over the box con-
straint. Due to the coupling effect of the multiplier, the problem is separable, and we can solve the
simplified problem componentwise using Lemma A.4. It follows that

a, if a< ﬁ,
: a b
Hi: a|wi|, lf |wl‘ §a§ ‘wi‘7
b, if o> ‘w—”,‘,
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where o > 0 is such that Z?Zl 0;(c) = c. Note also that in the main body of the paper we use the
equivalent compact notation 6; = 0, () = min(b, max(a, ajw;|)).

The minimizer then has the form

9:(b,...,b79q+1,...,Qd,g,a,...,a),
N—— ——
q L

where g, ¢ € {0,...,d} are determined by the value of a which satisfies

d d—t
S(a) = Zﬁi(a) =gb+ Z a|w;| + La = ¢,
i=1 i=q+1

ie.a=p/ (Z?;;H |wz|), where p = ¢ — ¢b — {a.

The value of the norm follows by substituting 6 into the objective and we get

° o b p Z a

i=q+1 i=d—L{+1

1 1 1
= ~llwell3 + = llwrll} + = [lwell3,
b P a

as required. We can further characterize ¢ and ¢ by considering the form of 6;. By construction we
have 0, > b > 0441 and 04_¢ > a > 04_p41, or equivalently

|Wgt1]

|’LUZ‘ > b

, and

- 1 -
|wa—e| > 2 Z wi| > |wa é+1|7

and we are done. ]

Remark B.1. The case where some w; are zero follows from the case that we have considered in the
theorem. If w; = 0 forn < i < d, then clearly we must have §; = « for all such i. We then consider

w2

the n-dimensional problem of finding (61, .. ., d,,) that minimizes Z?:l o> subjectto a < 0; < b,
and Y " | 0; < ¢, where ¢ = ¢ — (d — n)a. As ¢ > da by assumption, we also have ¢’ > na, so
a solution exists to the n-dimensional problem. If ¢ < bn, then a solution is trivially §; = b for all
i = 1...n. In general, ¢ > bn, and we proceed as per the proof of the theorem. Finally, a vector

that solves the original d-dimensional problem will be given by (61, ...,0,,a,...,a).

Proof of Theorem 4.2. Following Theorem 4.1, we need to determine o* to satisfy the coupling
constraint S(a*) = ¢. Each component 0; is a piecewise linear function in the form of a step

2
. i=1
be the set of the 2d critical points, where the o are ordered nondecreasing. The function S(«) is
a nondecreasing piecewise linear function with at most 2d critical points. We can find o* by first
sorting the points {a'}, finding o’ and o such that

S(a’) < e < S(a'th)

function with a constant positive slope between the values a/|w;| and b/|w;|. Let the set {o}

by binary search, and then interpolating o* between the two points. Sorting takes O(d logd).
Computing S(a') at each step of the binary search is O(d), so O(d logd) overall. Given o’ and
a1 interpolating o* is O(1), so the algorithm overall is O(d log d) as claimed. [ |
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Proof of Theorem 4.3. Using the infimum formulation of the norm, we solve

d
o 1 9 A x;
min inf {2 E (x; —w;) +§ E 91}

Rd
TERT €O i—1 i—1

We can exchange the order of the optimization and solve for z first. The problem is separable and a
direct computation yields that x; = g _7;_”/\ Discarding a multiplicative factor of A/2, and noting that

the infimum is a minimum, the problem in § becomes

d 9 d
maln{;ei_i_)\.ag@lgb,Z@ch}.

i=1

This is exactly like problem (17) after the change of variable 6, = 6; + . The remaining part of the
proof then follows in a similar manner to the proof of Theorem 4.1. [ ]
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