
Coresets for k-Segmentation of Streaming Data

Supplementary Material

Guy Rosman Mikhail Volkov Dan Feldman
John W. Fisher III Daniela Rus

October 30, 2014

1 Introduction

In this supplementary material we detail the construction, properties, and proofs for a k-segment
mean coreset that allows efficient segmentation of high-dimensional signals. We define the k-
segment mean problem in Section 2. We describe a coreset for the 1-segment mean in Section 3.
We show why a similar construction is not possible for the k-segment mean problem in Section 4. In
Sections 5,6,7 we define the proposed coreset and prove its approximation properties. In Section 8
we extend the coreset so as to allow efficient segmentation by dynamic programming, adapting the
classical algorithm of [Bel61]. In Section 9 we discuss the case of streaming and the modifications
needed for the algorithm in order to run in streaming mode.

2 k-Segment mean

Let P = {(t1, p1), · · · , (tn, pn)} be a subset of Rd+1 where ti ∈ R and pi ∈ Rd for every i ∈ [n] =
{1, · · · , n}. The fitting cost (henceforth simply “cost”) from P to a k-segment f is the sum of
squared distances

cost (P, f) =
∑

(t,p)∈P

‖ (p− f(t)) ‖2, (1)

where here, as in the paper, ‖X‖2 =
∑

ij(Xij)
2 is the sum of squared entries of a matrix or a vector

X (known as the Frobenius norm for a matrix or the `2 Euclidean norm for a vector).
A k-segment mean of P is a k-segment f∗ : R → Rd that minimizes cost(P, f) over every k-

segment f : R → Rd. For α ≥ 1, an α-approximation for the k-segment mean of P is a k-segment
f such that cost(P, f) ≤ α · cost(P, f∗). For α, β > 0, an (α, β)-approximation for the k-segment
mean of P is a (k · β)-segment g such that cost(P, g) ≤ α · cost(P, f∗).

One of our main tool for computing approximations to the k-segment mean is the singular
value decomposition (SVD) which is defined as follows. For integers n, d ≥ 1 we denote by Rn×d
the set n × d matrices whose entries are in R. A unitary matrix is a matrix whose columns are
orthonormal vectors. The thin SVD of a matrix X ∈ Rn×d is X = UΣV T where both U ∈ Rn×d
and V ∈ Rd×d are unitary matrices, and Σ ∈ Rd×d is a diagonal matrix of non-negative and
non-increasing diagonal entries.

1

3 1-Segment Coreset

A (1, ε)-coreset approximates cost(P, f) for every 1-segment f up to a factor of 1 ± ε as defined
below.

Definition 1 ((1, ε)-coreset). Let P and C be two sets in Rd+1 and let ε, w > 0. The pair (C,w)
is a (1, ε)-coreset for P , if for every 1-segment f : R→ Rd we have

(1− ε)cost(P, f) ≤ w · cost(C, f) ≤ (1 + ε)cost(P, f).

For example, (P,w) is a (1, ε)-coreset for P with ε = 0 and w = 1. However, a coreset is efficient
if its size |C| is much smaller than P .

It is easy to compute cost(P, f) exactly by a matrix ΣV T of (d+ 2) rows using SVD, as shown
in Algorithm 1. In our coreset construction we use additional matrices Q and Y to turn this matrix
into a subset C of Rd+1 so that the cost cost(P, f) = cost(C, f) is still a point-wise cost, although a
weighted one. This allows us to improve the result later in this section, to get a less trivial coreset
C of only O(1/ε2) rows.

Algorithm 1: 1-SegmentCoreset(P)

Input: A set P = {(t1, p1), · · · , (tn, pn)} in Rd+1 .
Output: A (1, 0)-coreset (C,w) that satisfies Claim 2.

1 Set X ∈ Rn×(d+2) to be matrix whose ith row is (1, ti, pi) for every i ∈ [n].
2 Compute the thin SVD X = UΣV T of X.

3 Set u ∈ Rd+2 to be the leftmost column of ΣV T .

4 Set w := ‖u‖2
d+2 . /* w > 0 since ‖Σ‖ = ‖X‖ > 0 */

5 Set Q,Y ∈ R(d+2)×(d+2) to be unitary matrices whose leftmost columns are u/‖u‖ and
(
√
w, · · · ,

√
w)/‖u‖ respectively.

6 Set B ∈ R(d+2)×(d+1) to be the (d+ 1) rightmost columns of Y QTΣV T /
√
w.

7 Set C ⊆ Rd+1 to be the union of the rows in B ;
8 return (C,w).

Claim 2. Let P be a set of n points in Rd+1. Let (C,w) be the output of a call to 1-SegmentCoreset(P);
see Algorithm 1. Then (C,w) is a (1, 0)-coreset for P of size |C| = d+ 1. Moreover, C and w can
be computed in O(nd2) time.

Proof. Let f : R → Rd be a 1-segment. Hence, there are row vectors a, b ∈ Rd such that f(t) =
a + b t, for every t ∈ R. By definition of Q and Y we have Y QTu/ ‖u‖ = (

√
w, · · · ,

√
w)T / ‖u‖.

2

The leftmost column of Y QTΣV T is thus Y QTu = (
√
w, · · · ,

√
w)T . Therefore,

cost (P, f) =
n∑

(t,p)∈P

‖f(t)− p‖2 =
∑

(t,p)∈P

‖a+ bt− p‖2 =
∑

(t,p)∈P

∥∥∥∥[1 t
] [a
b

]
− p
∥∥∥∥2

=

∥∥∥∥∥∥X
 a
b
−I

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥UΣV T

 a
b
−I

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥Y QTΣV T

 a
b
−I

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥

√
w
...√
w

√
wB

 a
b
−I

∥∥∥∥∥∥∥

2

= w

∥∥∥∥∥∥∥
1

...
1

B

 a
b
−I

∥∥∥∥∥∥∥

2

= w
∑

(t,p)∈B

‖(a+ bt− p)‖2 = w · cost(C, f).

Construction Time. The matrices Q and Y can be computed in O(dn2) time using the QR
decomposition of

[
(1, · · · , 1)T I

]
and

[
u I

]
. Computing the thin SVD of an n× d matrix X also

takes O(nd2) time. Hence, the overall running time is O(nd2) [Pea01].

The size d + 1 and running time of the above (1, 0)-coreset C might be too large, for example
when d is in the order of n, or we are dealing with high dimensional space such as images or
text. On the other side, in the rest of the paper the construction of (1, ε)-coresets suffices. Using
recent results from [FSS13] and [GP14], the following theorem yields faster and smaller coreset
constructions when d� 1/ε.

Theorem 3. Let P ⊆ Rd+1 and let ε > 0. A (1, ε)-coreset C ⊆ Rd+1 for P of size |C| = O(1/ε2)
can be computed in O(nd/ε4) time.

Proof. It was proven in [FSS13] that a coreset for P and a family of query shapes, where each
shape is spanned by O(1) vectors in Rd, can be computed by projecting P on a (1/ε2) dimensional
subspace S that minimizes the sum of squared distances to P up to a (1 + ε) factor. The resulting
coreset approximates the sum of squared distances to every such shape up to a factor of (1 + ε).
The size of this coreset is n, the same as the input size, however the coreset is contained in an
O(1/ε2) dimensional subspace. We then compute a (1, 0)-coreset C for this low dimensional set
of n points in s = O(1/ε2) space using Claim 2. This will take additional O(ns2) time and the
resulting coreset will be of size O(s).

The subspace S can be computed deterministically in O(nd/ε4) using a recent result of [GP14].

As proven below, the 1-segment mean of C is an approximation to the 1-segment mean of P .
So, using C we can compute a fast approximation for the 1-segment mean of P .

Corollary 4. Let ε ∈ (0, 1). A (1 + ε)-approximation to the 1-segment of P can be computed in
O(nd/ε4) time.

Proof. Using Theorem 3 we compute a (1, ε)-coreset C of size |C| = O(1/ε2) in O(nd/ε4) time.
Then, using the singular value decomposition it is easy to compute a 1-segment mean f of C in
O(d · |C|2) = O(d/ε4) time. Hence, the overall running time is O(nd/ε4).

Let f∗ be a 1-segment mean of P and f be an arbitrary 1-segment. Since C is a (1, ε)-coreset
for P ,

cost(P, f) ≤ (1 + ε)cost(C, f) ≤ (1 + ε)cost(C, f∗) ≤ (1 + ε)2cost(P, f∗) ≤ (1 + 3ε)cost(P, f∗),

3

where in the last inequality we use the assumption ε < 1. Replacing ε with ε/3 in the above proof
proves the corollary.

4 No coreset C ⊆ Rd+1 for k ≥ 3

In the previous section we showed that a 1-segment coreset (C,w) of size independent of n exists
for every signal P . Unfortunately, the next example shows that, in general, for k ≥ 3 such a coreset
C must contain all the n points of P . This result justifies the more complicated definition of a
(k, ε)-coreset in the next section; See Definition 6.

Claim 5. For every integers n, c, d ≥ 1 there is a set P of n points in Rd+1 such that the following
holds. If C ⊆ Rd+1 and |C| < n then there is a 3-segment f such that either

cost(C, f) ≥ c · cost(P, f) or cost(P, f) ≥ c · cost(C, f).

Proof. Let P = {(i, 0, · · · , 0)}ni=1, a constant-0 signal. Consider the 3-segment f : R → Rd such
that f(t) = (0, · · · , 0) for every t ∈ R. We have cost(P, f) = 0. If cost(C, f) > 0 then cost(C, f) ≥
c · cost(P, f) as desired.

Otherwise, cost(C, f) = 0. Let (t, p) ∈ P \ C and consider a 3-segment g : R → Rd such that
g(t) = f(t) = (0, · · · , 0) for every t ∈ R \ {t} and g(t) 6= p. Hence,

cost(C, g) =
∑

(t′,p′)∈C

‖p′ − g(t′)‖2 =
∑

(t′,p′)∈C\(t,p)

‖p′ − g(t′)‖2

=
∑

(t′,p′)∈C

‖p′ − f(t′)‖2 = cost(C, f) = 0.

Since cost(P, g) = ‖p− g(t)‖2 > 0 the last two inequalities imply cost(P, g) ≥ c · cost(C, g).

5 Balanced Partition

A (k, ε)-coreset D for a set P approximates the fitting cost of a any query k-segment to P up to
a small multiplicative error of 1 ± ε. However, as proved in the previous section, such a coreset
cannot be just a weighted subset of Rd+1. Instead, we define a more involved data structure D that
represents the coreset, and define a new cost function cost′(D, f) that approximates the cost of P
to a k-segment f . We also assume that the time (first coordinate) is discrete between 1 to n. This
means that the projecting of P on any line can be described exactly in O(d) space using only the
first and last projected point, which motives the following structure of D.

The set D consists of tuples of the type (C, g, b, e). Each tuple corresponds to a different time
interval [b, e] in R and represents the set P (b, e) of points of P in this interval. The set C is a
(1, ε)-coreset for P (b, e). Our first observation is that if all the points of the k-segment f are on the
same segment in this time interval, i.e, {f(t) | b ≤ t ≤ e} is a linear segment, then the cost from
P (b, e) to f can be approximated well by C, up to (1 + ε) multiplicative error. We refer to these
tuples as coreset segments in the description of the algorithm.

The second observation is that if we project the points of P (b, e) on their 1-segment mean g, then
the projected set L of points will approximate well the cost of P (b, e) to f , even if f corresponds
to more than one segment in the time interval [b, e]. Unlike the previous case, the error here is

4

additive. However, the third observation is that, since f is a k-segment there will be at most k− 1
time intervals [b, e] that will intersects more than two segments of f . This motivates the following
definition of D and cost′.

Definition 6 (cost′(D, f)). Let D = {(C1, g1, b1, e1), (C2, g2, b2, e2), · · · , (Cm, gm, bm, em)} where
for every i ∈ [m] we have Ci ⊆ Rd+1, gi : R → Rd and bi ≤ ei ∈ R. For a k-segment f : R → Rd
and i ∈ [m] we say that Ci is served by one segment of f if {f(t) | bi ≤ t ≤ ei} is a linear segment.
We denote by Good(D, f) ⊆ [m] the union of indexes i such that Ci is served by one segment of f .
We also define Li = {gi(dte) | bi ≤ t ≤ ei}, the projection of Ci on gi.

Finally, we define cost′(D, f) to be

cost′(D, f) =
∑

i∈Good(D,f)

cost(Ci, f) +
∑

i∈[m]\Good(D,f)

cost(Li, f).

We will compute such a small structure D that approximates cost(P, f) for every k-segment f
using the above definition of cost′(D, f). Such a set D will be called a (k, ε)-coreset as follows.

Definition 7 ((k, ε)-coreset). Let P ⊆ Rd+1, k ≥ 1 be an integer, and let ε ∈ (0, 1/10). The set D
is a (k, ε)-coreset for P if for every k-segment f we have

(1− ε)cost(P, f) ≤ cost′(D, f) ≤ (1 + ε)cost(P, f).

Our coreset construction is based on an input parameter σ > 0 such that for an appropriate σ
the output is a (k, ε)-coreset. Recall that for α, β > 0, an (α, β)-approximation for the k-segment
mean of P is a (k · β)-segment g such that cost(P, g) ≤ α · cost(P, f∗). We show that using the
value cost(P, g) of such an approximation, even without knowing g, suffices to get a (k, ε)-coreset.
In the next section we will compute such an (α, β)-approximation for small α and β.

The size of the resulting coreset depends on α and β. In particular, for α = β = 1 the following
lemma implies that there exists a (k, ε)-coreset of size O(k/ε2) for every input set P .

Algorithm 2: BalancedPartition(P, ε, σ).

Input: A set P = {(1, p1), · · · , (n, pn)} in Rd+1

an error parameters ε ∈ (0, 1/10) and σ > 0.
Output: A set D that satisfies Lemma 8.

1 Q := ∅; D = ∅ ;

2 pn+1:= an arbitrary point in Rd ;
3 for i := 1 to n+ 1 do
4 Q := Q ∪ {(i, pi)};
5 f∗ := a 2-approximation to the 1-segment mean of Q. /* See Corollary 4 */

6 λ := cost(Q, f∗) ;
7 if λ > σ or i = n+ 1 then
8 T := Q \ {(i, pi)} /* Define the new coreset segment data up to i */

9 C := a (1, ε/4)-coreset for T /* See Claim 2 */

10 g := a 2-approximation to the 1-segment mean of T /* See Corollary 4 */

11 b := i− |T |;
12 e := i− 1;
13 D := D ∪ {(C, g, b, e)}/* Add a new coreset segment */

14 Q := {(i, pi)}/* Start aggregating a new coreset segment */

15 return D

5

Lemma 8. Let P = {(1, p1), · · · , (n, pn)} such that pi ∈ Rd for every i ∈ [n]. Suppose that
h : R→ Rd is an (α, β)-approximation for the k-segment mean of P , and let

σ =
ε2cost(P, h)

100kα
.

Let D be the output of a call to BalancedPartition(P, ε, σ); See Algorithm 2.
Then D is a (k, ε)-coreset for P of size

|D| = O(k) ·
(α
ε2

+ β
)
,

and can be computed in O(dn/ε4) time.

Proof. Let m = |D| and f be a k-segment. We denote the ith coreset segment in D by (Ci, gi, bi, ei)
for every i ∈ [m]. For every i ∈ [m] we have that Ci is a (1, ε/4)-coreset for a corresponding subset
T = Ti of P . By the construction of D we also have P = T1 ∪ · · · ∪ Tm.

Using Definition 6 of cost′(D, f), Good(D, f) and Li, we thus have

|cost(P, f)− cost′(D, f)|

= |
m∑
i=1

cost(Ti, f)−

 ∑
i∈Good(D,f)

cost(Ci, f) +
∑

i∈[m]\Good(D,f)

cost(Li, f)

 |
= |

∑
i∈Good(D,f)

(cost(Ti, f)− cost(Ci, f)) +
∑

i∈[m]\Good(D,f)

(cost(Ti, f)− cost(Li, f))

≤
∑

i∈Good(D,f)

|cost(Ti, f)− cost(Ci, f)|+
∑

i∈[m]\Good(D,f)

|cost(Ti, f)− cost(Li, f)| ,

(2)

where the last inequality is due to the triangle inequality. We now bound each term in the right
hand side.

For every i ∈ Good(D, f) we have that Ci is a (1, ε/4)-coreset for Ti, so

|cost(Ti, f)− cost(Ci, f)| ≤ εcost(Ti, f)

4
. (3)

For every i ∈ [m] \Good(D, f), we have

|cost(Ti, f)− cost(Li, f)| =

∣∣∣∣∣∣
∑

(p,t)∈Ti

‖p− f(t)‖2 −
ei∑
t=bi

‖gi(t)− f(t)‖2
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

(p,t)∈Ti

(
‖p− f(t)‖2 − ‖gi(t)− f(t)‖2

)∣∣∣∣∣∣ (4)

≤
∑

(p,t)∈Ti

∣∣‖p− f(t)‖2 − ‖gi(t)− f(t)‖2
∣∣ (5)

≤
∑

(p,t)∈Ti

(
12‖gi(t)− p‖2

ε
+
ε‖p− f(t)‖2

2

)
(6)

=
12cost(Ti, gi)

ε
+
εcost(Ti, f)

2
≤ 24σ

ε
+
εcost(Ti, f)

2
, (7)

6

where (5) is by the triangle inequality, and (6) is by the weak triangle inequality (see [FSS13, Lemma
7.1]). The inequality in (7) is because by construction cost(T, f∗) ≤ σ for some 2-approximation
f∗ of the 1-segment mean of T . Hence, cost(T, gi) ≤ 2cost(T, f∗) ≤ 2σ.

Plugging (7) and (3) in (2) yields

|cost(P, f)− cost′(D, f)| ≤
∑

i∈Good(D,f)

εcost(Ti, f)

4
+

∑
i∈[m]\Good(D,f)

(
24σ

ε
+
ε

2
cost(Ti, f)

)

≤
(ε

4
+
ε

2

)
cost(P, f) +

24kσ

ε
,

where in the last inequality we used that fact that |[m] \ Good(D, f)| ≤ k − 1 < k since f is a
k-segment. Substituting σ yields

|cost(P, f)− cost′(D, f)| ≤ 3ε

4
cost(P, f) +

εcost(P, h)

4α
≤ 3ε

4
cost(P, f) +

εcost(P, f)

4
= εcost(P, f).

Bound on |D|: Let j ∈ [m − 1], consider the values of T , Q and λ during the execution of
Line 8 when T = Tj is constructed. Let Qj = Q and λj = λ. The cost of the 1-segment mean of Qj
is at least λj/2 > σ/2 > 0, which implies that |Qj | ≥ 3 and thus |Tj | ≥ 1. Since Qj−1 is the union
of Tj−1 with the first point of Tj we have Qj−1 ⊆ Tj−1∪Tj . By letting g∗ denote a 1-segment mean
of Tj−1 ∪ Tj we have

cost(Tj−1 ∪ Tj , g∗) ≥ cost(Qj−1, g
∗) ≥ λj/2 > σ/2.

Suppose that for our choice of j ∈ [m−1], the points in Tj−1∪Tj are served by a single segment
of h, i.e, {h(t) | bj−1 ≤ t ≤ ej} is a linear segment. Then

cost(Tj−1, h) + cost(Tj , h) = cost(Tj−1 ∪ Tj , h) ≥ cost(Tj−1 ∪ Tj , g∗) > σ/2. (8)

Let G ⊆ [m − 1] denote the union over all values j ∈ [m − 1] such that j is both even and
satisfies (8). Summing (8) over G yields

cost(P, h) =
∑
j∈[m]

cost(Ti, h) ≥
∑
j∈G

(cost(Tj−1, h) + cost(Tj , h)) ≥ |G|σ/2. (9)

Since h is a (βk)-segment, at most (βk)−1 sets among T1, · · · , Tm are not served by a single segment
of h, so |G| ≥ (m− βk)/2. Plugging this in (9) yields cost(P, h) ≥ (m− βk)σ/4. Rearranging,

m ≤ 4cost(P, h)

σ
+ βk = O

(
kα

ε2

)
+ βk. (10)

Running time: In Theorem 3 it was shown how to compute a (1, ε)-coreset C in time O(dn/ε4)
for n points using the algorithm in [GP14]. This algorithm is dynamic and supports insertion of a
new point in O(d/ε4) time. Therefore, updating the 1-segment mean f∗ and the coreset C can be
done in O(d/ε4) time per point, and the overall running time is O(nd/ε4).

7

6 (α, β)-Approximation

Algorithm 3: Bicriteria(P, k)

Input: A set P ⊆ Rd+1 and an integer k ≥ 1
Output: An (O(log n), O(log n))-approximation to the k-segment mean of P .

1 if n ≤ 2k + 1 then
2 f := a 1-segment mean of P ;
3 return f ;

4 Set t1 ≤ · · · ≤ tn and p1, · · · , pn ∈ Rd such that P = {(t1, p1), · · · , (tn, pn)}
5 m← {t ∈ R | (t, p) ∈ P}
6 Partition P into 4k sets P1, · · · , P2k ⊆ P such that for every i ∈ [2k − 1]:

(i) | {t | (t, p) ∈ Pi} | =
⌊m

4k

⌋
, and

(ii) if (t, p) ∈ Pi and (t′, p′) ∈ Pi+1 then t < t′.

;7 for i := 1 to 4k do
8 Compute a 2-approximation gi to the 1-segment mean of Pi
9 Q := the union of k + 1 signals Pi with the smallest value cost(Pi, gi) among i ∈ [2k].

10 h := Bicriteria(P \Q, k)
11 Set

f(t) :=

{
gi(t) ∃(t, p) ∈ Pi such that Pi ⊆ Q
h(t) otherwise

.

;12 return f ;

Theorem 9. Let f : R→ Rd be the output of a call to Bicriteria(P, k). Then

(i) f is a (βk)-segment for some β = O(log n).

(ii) cost(P, f) ≤ αcost(P, f∗), where α = log2 n, and f∗ is a k-segment mean of P .

(iii) f can be computed in O(dn) time.

Proof. (i) In every recursive iteration of the algorithm we remove (k − 1) subsets of P , whose
overall size is

|Q| ≥ (k − 2) ·
⌊ n

2k

⌋
≥ (k − 2) ·

(n
2k
− 1
)

=
n

2
− n

k
− (k − 2) ≥ n

2
− n

3
− n

12
=

n

12
,

where in the last inequality we used the assumption k ∈ [3, n/12]. Hence, the size of P reduced by
a constant fraction in each recursive iteration and we have O(log n) iterations.

Each subset Pi in Q contributes at most 2 segments to f , so the number of segments in f
increases by O(k) in each of the O(log n) recursive iterations. Hence, the final output f has
O(k log n) segments.

(ii) Consider the value of P during one of the recursive iterations. Since f∗ is a k-segment,
every set in P1, · · · , P2k is served by one segment of f∗, except at most k − 1 such subsets. Let
M ⊆ [2k] denote the indexes of these (at most k − 1) subsets, and let W = [2k] \M denote the

8

rest, such that Q =
⋃
i∈W Pi. Hence,

cost(P, f∗) ≥
∑
i∈W

cost(Pi, f
∗) ≥

∑
i∈W

min
g

cost(Pi, g) ≥ 1

2

∑
i∈[2k]\M

cost(Pi, gi), (11)

where the minimum is over every 1-segment g : R→ Rd. Since

|[2k] \M | = 2k − |M | ≥ 2k − (k − 1) = k + 1,

we have ∑
i∈[2k]\M

cost(Pi, gi) ≥
∑
i∈W

cost(Pi, gi) =
∑
i∈W

cost(Pi, f) = cost(Q, f).

Plugging the last inequality in (11) yields cost(Q, f) ≤ 2cost(P, f∗). Summing over all iterations
proves the claim.

(iii) In each recursive iteration, the dominated running time is in the “for” loop in Lines 7–8.
We compute a 2-approximation gi for the 1-segment mean of a set Pi of m points in O(md) time
using Corollary 4. Hence, the overall time to compute Lines 7–8 is O(nd). Since the size of P
reduced by a constant fraction in each recursive iteration, the overall running time is dominated
by the first iteration which takes O(nd) time.

7 (k, ε)-Coreset

We now define the k-segment coreset, present a coreset construction algorithm, prove bounds on
how well the coreset represents data with respect to the fitting cost to a k-segment query, and
establish the running time complexity of the algorithm.

Algorithm 4: Coreset(P, k, ε)

Input: A set P = {(1, p1), · · · , (n, pn)} in Rd+1 .
Output: A (k, ε)-coreset (C,w) that satisfies Theorem 10.

1 Compute h← Bicriteria(P, k) ; See Algorithm 3

2 Set σ ← ε2cost(P,h)
100k log2 n

3 Set D ← BalancedPartition(P, ε, σ) ; See Algorithm 2
4 return D

Theorem 10. Let P = {(1, p1), · · · , (n, pn)} such that pi ∈ Rd for every i ∈ [n]. Let D be the
output of a call to Coreset(P, k, ε); see Algorithm 2.
Then D is a (k, ε)-coreset for P of size

|D| = O(k) ·
(

log n

ε2

)
,

and can be computed in O(dn/ε4) time.

Proof. By Theorem 9, h is an (α, β)-approximation for the k-segment mean of P for α = log2 n
and β = O(log n). Theorem 10 then follows by substituting α and β in Theorem 8.

9

8 Weak (k, ε) Coreset for Efficient Segmentation

When computing an optimal k-segmentation for our data, we are bounded by the scale of the data
in yet another aspect – the number of possible locations for each segment endpoint is O(N). This
means we cannot run algorithms with a linear complexity in the data size, let alone a quadratic one,
as the original method of [Bel61]. While the coreset we propose handles gracefully k-segmentations
whose endpoints lie on the coreset segments boundaries, it does not handle the more general case,
where we want endpoints that do not coincide with out coreset segment endpoints. In the endpoint
limited case, we use the same dynamic programming framework suggested by Bellman in [Bel61].

Since the number of possible segments endpoints is O
(

(kα)
ε2

+ βk
)

, the number of steps in the

algorithm is

O

((
(kα)

ε2
+ βk

)2

k

)
. (12)

For the more general case (without endpoint constraints), we now describe an additional new
approximation tool in use by our algorithm when computing efficient k-segmentation. During the
computation of an optimal segmentation, exhaustive search must be performed when updating the
segmentation for the k + 1-segments induction step. Since an O(N) operation such as this is too
costly to compute, we require a way of approximating this search.

For an integer n ≥ 1 we denote [n] = {1, · · · , n}. Let k, n ≥ 1 be a pair of integers. A function
f : R → [0,∞) is non-decreasing over [n] if f(i) ≤ f(j) for every i ≤ j in [n], and non-increasing
if f(i) ≥ f(j) for every i ≤ j in [n]. A function is monotonic if it is either non-increasing or
non-decreasing. A function g : R → [0,∞) is k-piecewise monotonic if [n] can be partitioned into
k consecutive sub-intervals [n] = [i1] ∪ ([i2] \ [i1]) · · · ∪ ([n] \ [ik−1]) such that g is monotonic over
each one of them.

Algorithm 5: PiecewiseCoreset(n, s, ε)

Input: An integer n ≥ 1 , a function s : [n]→ (0,∞) and an error parameter ε > 0.
Output: A vector w = (w1, · · · , wn) that satisfies Lemma 11.

1 Set t :=
∑n

j=1 sj and B := ∅ ;

2 for i = 1 to n do

3 Set bi :=

⌈∑i
j=1 si

εt

⌉
‘/* Hence, bi ≤ d1/εe */

4 if bi 6∈ {bj | j ∈ B} then
5 B := B ∪ {i}
6 for each j ∈ B do
7 Set Ij := {i ∈ [n] | bi = bj};

8 wj :=

{
1
sj

∑
i∈Ij si j ∈ B

0 otherwise.
;

9 return (w1, · · · , wn)

10

Lemma 11. Let k, n ≥ 1 be a pair of integers, ε > 0 and let f, s : [n] → (0,∞) be a pair
of k-piecewise monotonic functions. Let w = (w1, · · · , wn) ∈ Rn denote the output of a call to
PiecewiseCoreset(n, s, ε/(4k

∑n
i=1 si)); see Algorithm 5. If for every i ∈ [n]

f(i) ≤ si
n∑
j=1

f(j) (13)

then

(1− ε)
n∑
i=1

f(i) ≤
n∑
i=1

wif(i) ≤(1 + ε)
n∑
i=1

f(i).

Proof. For every i ∈ [n] let

hi =
f(i)

si
∑n

j=1 f(j)
.

We will prove that for a vector w that is returned from a call to PiecewiseCoreset(n, s, ε) we
have ∣∣∣∣∣∣

∑
i

si
t
· hi −

∑
j∈B

wjsj
t
· hj

∣∣∣∣∣∣ ≤ 4εk, (14)

Multiplying this by t
∑n

i=1 f(i) yields

|
n∑
i=1

f(i)−
∑
j∈B

wjf(j)| = |
n∑
i=1

f(i)−
n∑
j=1

wjf(j)| ≤ 4ktε
∑
i

f(i).

Replacing ε by ε/(4kt) proves Lemma 11.
Since both s and f are k-piecewise monotonic, h is 2k-monotonic. Hence, there is a partition

Π = {[i1], [i2] \ [i1], · · · , [n] \ [i2k−1]} of [n] into consecutive 2k intervals such that hi is monotonic
over each of these intervals.

Let Ij = {i ∈ [n] : bi = bj} for every j ∈ B. For every I ∈ Π we define Good(I) = {j ∈ B | Ij ⊆ I}.
Their union is denoted by Good =

∑
I∈Π Good(I). Hence,∣∣∣∣∣∣

∑
i∈[n]

si
t
· hi −

∑
j∈B

wjsj
t
· hj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈[n]

si
t
· hi −

∑
j∈B

∑
i∈Ij si

t
· hj

∣∣∣∣∣∣ =
∑
j∈B

∑
i∈Ij

si
t
· (hi − hj)

≤

∣∣∣∣∣∣
∑

j∈B\Good

∑
i∈Ij

si
t
· (hi − hj)

∣∣∣∣∣∣ (15)

+
∑
I∈Π

∣∣∣∣∣∣
∑

j∈Good(I)

∑
i∈Ij

si
t
· (hi − hj)

∣∣∣∣∣∣ . (16)

We now bound (15) and (16). Put j ∈ B. By Line 4 of the algorithm we have |Ij ∩B| = 1 and∑
i∈Ij si/t ≤ ε. Hence, ∣∣∣∣∣∣

∑
i∈Ij

si
t
· (hi − hj)

∣∣∣∣∣∣ ≤ ε(max
i∈Ij

hi −min
i∈Ij

hi) ≤ ε, (17)

11

where the last inequality holds since hi ≤ 1 for every i ∈ [n], by (13). Since each set I ∈ Π contains
consecutive numbers, we have |B \Good| ≤ 2k. Using this and (17), we bound (15) by∣∣∣∣∣∣

∑
j∈B\Good

∑
i∈Ij

si
t
· (hi − hj)

∣∣∣∣∣∣ ≤ |B \Good| · ε ≤ |Π|ε ≤ 2εk. (18)

Put I ∈ Π and denote the numbers in Good(I) by Good(I) = {k, k + 1, · · · , `}. Recall that h
is monotonic on I. Without loss of generality, assume that h is non-decreasing on I. Therefore,
summing (17) over Good(I) yields

|
∑

j∈Good(I)

∑
i∈Ij

si
t

(hi − hj)| ≤
∑̀
j=k

∣∣∣∣∣∣
∑
i∈Ij

si
t

(hi − hj)

∣∣∣∣∣∣ ≤
∑̀
j=k

ε(max
i∈Ij

hi −min
i∈Ij

hi)

≤ ε
`−1∑
j=k

(min
i∈Ij+1

hi −min
i∈Ij

hi) = ε(min
i∈I`

hi −min
i∈I1

hi) ≤ ε,

where in the last derivation we used the fact that hi ≤ 1 for every i ∈ [n]. Summing over every
I ∈ Π bounds (16) as,

∑
I∈Π

∣∣∣∣∣∣
∑

j∈Good(I)

∑
i∈Ij

si
t
· (hi − hj)

∣∣∣∣∣∣ ≤ |Π| · ε ≤ 2εk.

Plugging (18) and the last inequality in (15) and (16) respectively proves (14) as∣∣∣∣∣∣
∑
i∈[n]

si
t
· hi −

∑
j∈B

wjsj
t
hj

∣∣∣∣∣∣ ≤ 4εk

For every p, q ∈ Rd we denote D(p, q) = ‖p − q‖2, where ‖p − q‖ is the Euclidean distance
between p and q.

Lemma 12. Let p1, · · · , pn be a set of points on a line in Rd such that ‖p1 − p2‖ = · · · = ‖pn−1 −
pn‖ = ∆ for some ∆ ≥ 0 and the first coordinate of pi is i for every i ∈ [n]. Let ` : R → Rd be a
function such that {(x, `(x)) | x ∈ R} is a line in Rd+1. Then for every i ∈ [n]

‖pi − `(i)‖22 ≤
4
∑

j∈[i] ‖pi − `(i)‖22
i

.

Proof. Since P is contained in a line, it can be shown [FFS06] that there is a point q ∈ Rd and a
positive number w > 0 such that for every i ∈ [n]

‖pi − `(i)‖2 = w‖pi − q‖2. (19)

Let D̃ : [0,∞)→ [0,∞) be a monotone non-decreasing function and r ∈ [0,∞) such that D(xeδ) ≤
erδD(x) for every x, δ > 0. It can be shown that for ρ = max

{
2r−1, 1

}
and every a, b, c ∈ M in a

metric space (M, dist) we have

D̃(dist(a, c)) ≤ ρ(D̃(dist(a, b)) + D̃(dist(b, c)));

12

See [FS12]. In particular, for the case M = Rd, dist(a, b) = w‖a − b‖, we denote D(a, b) =
D̃(w‖a− b‖) to obtain

D(a, c) ≤ ρ(D(a, b) +D(b, c)). (20)

Let m = 1
i

∑
j∈[i]D(pj , q) and i ∈ [n]. We will prove that

D(pi, q) ≤ 4mρ2. (21)

In particular, for D̃(x) = x2 we have r = 2, ρ = 1 and

‖pi − `(i)‖22 = D̃(‖pi − `(i)‖) = D̃(w‖pi − q‖) = D(pi, q)

≤ 4m =
4
∑

j∈[i] ‖pi − `(i)‖22
i

, (22)

where the second equality is by (19), and (22) is by (21).
Indeed, let Q = {j ∈ [i] | D(pj , q) ≤ 2m}. By Markov’s inequality,

|Q| ≥ i

2
. (23)

Hence, there are ps, pt ∈ Q such that s− t ≥ i/2. Using this and (20)

D(ps, pt) ≤ ρ(D(ps, q) +D(q, pt)) ≤ 2ρm. (24)

Since s− t ≥ i/2,

∆‖pi − ps‖ = ∆(i− s) ≤ ∆(i− i/2) = ∆i/2 ≤ ∆(s− t) = ∆‖ps − pt‖.

Since D̃ is non-decreasing, the last equation implies D(pi, ps) ≤ D(ps, pt). Together with (24) we
get D(pi, ps) ≤ 2ρm. Using the last inequality and the fact that ps ∈ Q proves (21) as

D(pi, q) ≤ ρ(D(pi, ps) +D(ps, q)) ≤ ρ(2ρm+ 2m) ≤ 4mρ2.

A function g : R→ Rd is a 2-piecewise linear function if the set {(x, g(x)) | x ∈ R} is the union
of two linear segments in Rd+1.

Corollary 13. Let (w1, · · · , wn) ∈ Rn be the output of a call to PiecewiseCoreset(n, s, cε
logn)

where c is a sufficiently large universal constant, n ≥ 1, ε > 0 and s is the function that maps every

i ∈ [n] to si = max
{

4
i ,

4
n−i+1

}
.

Then for every set (1, p1), · · · , (n, pn) of n points that is contained in a line in Rd+1 and every
2-piecewise linear function g : R→ Rd the following hold:

1. w has ‖w‖0 = O
(

logn
ε

)
non-zeroes entries.

2. w can be computed in O(log n) · ‖w‖0 time and ‖w‖0 space.

3.

(1− ε)
n∑
i=1

‖g(i)− pi‖2 ≤
n∑
i=1

w2
i ‖g(i)− pi‖2 ≤(1 + ε)

n∑
i=1

‖g(i)− pi‖2.

13

Proof. (i) Put ε′ = cε log n. By Line 8 of the algorithm, ‖w‖0 = |B|. Since B consists of distinct
integers bi ∈ [1, 1/ε′ + 1] we have ‖w‖0 = |B| = O(1/ε′) = O(log(n)/ε).
(ii) Since bi is monotonic over i ∈ [n], we can use binary search on [n] to compute the smallest
i ∈ [n] such that bi 6∈ B. In each of the O(log n) iterations we compute bj for some j ∈ [n]. Since∑i

j=1 si is a sum of two harmonic series, bj can be computed in O(1) time. As explained in (i),

|B| = O(log(n)/ε) so the overall time is O(log(n)/ε′) = O(log2 n/ε). We only need to store w
during this recursion, which takes ‖w‖0 space.
(iii) Put i ∈ [n] and let f(i) = ‖pi − g(i)‖2. Since (1, p1), · · · , (n, pn) are on a line, we have
that ‖p1 − p2‖ = · · · = ‖pn−1 − pn‖ = ∆ for some ∆ ≥ 0. Since g is 2-piecewise linear function,
there is a line {x, `(x)} for some ` : R → Rd such that `(j) = g(j) for every j ∈ [i] or every
j ∈ {i, i+ 1, · · · , n}. Without loss of generality, we assume the first case. By Lemma 12,

f(i) = ‖pi − g(i)‖22 = ‖pi − `(i)‖22 ≤
4
∑

j∈[i] ‖pi − `(i)‖22
i

≤ si
∑
j∈[i]

‖pi − `(i)‖22 = si
∑
j∈[i]

f(j). (25)

Since g is 2-piecewise linear and p1, · · · , pn are points on a line, we have that f is 4-monotonic
over [n]. The function s is 2-monotonic. We also have that

cε

log n
≤ ε

4k
∑n

i=1 si

for a sufficiently small constant c. Plugging this and (25) in Lemma 11 then proves the theorem as

(1− ε)
n∑
i=1

f(i) ≤
n∑
i=1

wif(i) ≤(1 + ε)
n∑
i=1

f(i).

We show how to compute a (1 + ε)-approximation to the k-segment mean of the original signal
P using its coreset. The technique can be used to solve any other optimization problem over
k-segments, assuming that we have an existing algorithm for a weighted signal. For example, if
priors are given (weights for each segment) or we want to minimize the cost over some subset of
k-segments (e.g., (k,m)-segment mean).

We assume that we are given a possibly inefficient algorithm Slow-Segmentation (“black
box”) that will be used to extract the will compute the k-segment mean of a small set that is based
on the coreset. The algorithm Slow-Segmentation gets a set Q of pairs ((t, p), w) where t ∈ R,
(t, p) is a point in Rd+1, and w > 0 denote its weight. The algorithm then returns the k-segment
mean of Q, i.e., the k-piecewise linear function that minimizes the weighted cost

costW (Q, f) :=
∑

((t,p),w)∈Q

w‖ (p− f(t)) ‖2,

We will run this algorithm only on a small set Q, whose size is roughly the size of the core-
set. In what follows we describe the algorithm Fast-Segmentation that uses the coreset and
Slow-Segmentation to get a fast approximation of the k-segment mean of the original set P .

14

Algorithm overview The input to the algorithm Fast-Segmentation is a signal P of n points
in Rd, an error parameter ε > 0, and an integer k ≥ 1. In addition, the algorithm gets a pointer to
the algorithm Slow-Segmentation.

Algorithm 6: Fast-Segmentation(P, k, ε,Slow-Segmentation)

Input:

• A set P = {(1, p1), · · · , (n, pn)} in Rd+1,

• an integer k ≥ 1,

• an error parameter ε > 0, and

• an algorithm Slow-Segmentation(Q, k) that computes the k-segment mean of a given
weighted set Q.

Output: A (1 + ε)-approximation f to the k-segment mean of P .

1 D ← Coreset(P, k, ε); See Algorithm 4.
2 Identify D = {(C1, g1, b1, e1), .., (Cm, gm, bm, em)}
3 Q← ∅
4 for i← 1 to m do
5 Pi ← {(bi, gi(bi)), · · · , (ei, gi(ei))}
6 (w1, · · · , wn)← PiecewiseCoreset(|Pi|, s, cε/ log(n)), where c and s are defined in

Corollary 13.

7 Q← Q ∪
{

(t, p), w2
j) | (t, p) is the jth point of the signal Pi

}
8 h← Slow-Segmentation(Q, k)
9 for i← 1 to m do

10 Ti ← {bi, · · · , ei}
11 if {h(t) | t ∈ Ti} consists of at most 2-segments then
12 f(t)← h(t) for every t ∈ Ti
13 else
14 f(t)← gi(t) for every t ∈ Ti
15 return f

Recall that for a k-segment f : R → Rd and i ∈ [m] we say that Ci is served by one segment
of f if {f(t) | bi ≤ t ≤ ei} is a linear segment. The next lemma states the weighted set Q that is
computed in Line 7 of Algorithm 6 is a weak coreset in the following sense. For every k-segment f
such that each cell Ci is served by at most two segments of f , the cost of P and the weighted cost
of Q to f are approximately the same. In Theorem 9 we prove that a k-segment mean has this
property, and thus can be computed from this coreset Q.

Lemma 14 (Weak coreset). Let f be a k-segment such that Ci is served by at most two segments
of f , for every i ∈ [m]. Then

min
f

cost(P, f) ≤ min
f

costW (Q, f) ≤ (1 + ε) min
f

cost(P, f).

Proof. Put i ∈ [m] and Pi =
{

(t1, p1), · · · , (t|Pi|, p|Pi|)
}

. Since Ci is served by at most two segments

15

of f , then Pi is also served by at most two segments of f . By Corollary 13,

(1− ε)
|Pi|∑
j=1

wj‖f(tj)− pj‖2 ≤
|Pi|∑
j=1

w2
j‖f(tj)− pj‖2 ≤(1 + ε)

|Pi|∑
j=1

‖f(tj)− pj‖2.

Hence, letting Qi =
{

(tj , pj), w
2
j) | wj > 0, j ∈ [|Pi|]

}
, by Line 7 of Algorithm 6 we obtain

|cost(Pi, f)− costW (Qi, f)| =

∣∣∣∣∣∣
|Pi|∑
j=1

‖f(tj)− pj‖2 −
|Pi|∑
j=1

w2
j‖f(tj)− pj‖2

∣∣∣∣∣∣
≤ ε

|Pi|∑
j=1

‖f(tj)− pj‖2 = εcost(Pi, f).

Summing over every i ∈ [m] yields

|cost(P, f)− costW (Q, f)| ≤ εcost(P, f).

Theorem 15. Let P = {(1, p1), · · · , (n, pn)} be a set in Rd+1, ε ∈ (0, 1/2), and k ≥ 1 be an
integer. Let f : R→ Rd be the output of a call to Fast-Segmentation(P, k, ε,SegAlg). Then f
is a (1 + ε)-approximation to the k-segment mean of P , i.e.,

cost(P, f) ≤ (1 + ε) min
f ′

cost(P, f ′),

where the minimum is over every k-segment g : R→ Rd.

Proof. Let h be the k-segment that is computed in Line 8 of the algorithm Fast-Segmentation(P, k),
and let i ∈ [m]. We first prove that cost(Pi, f) ≤ cost(Pi, h) by case analysis: (i) f(t) = hi(t) for
every t ∈ Ti, and (ii) f(t) = gi(t) for every t ∈ Ti.
Case (i): In this case cost(Pi, f) = cost(Pi, h) by definition of Pi.
Case (ii): In this case cost(Pi, f) = cost(Pi, gi). By its construction, gi is a 2-approximation for the
1-segment mean of Pi. Since the points of Pi lie on a line, we thus have cost(Pi, gi) = 0. Hence,

cost(Pi, f) = cost(Pi, gi) = 0 ≤ cost(Pi, h).

Summing cost(Pi, f) ≤ cost(Pi, h) over i ∈ [m] yields

cost(P, f) ≤ cost(P, h). (26)

Suppose that h∗ minimizes cost(P, f ′) over every k-segment f ′ : R→ Rd. Similarly to (26), it can
be shown that there is a k-segment f∗ such that

cost(P, f∗) ≤ cost(P, h∗),

16

and Ci is served by at most two segments of f∗, for every i ∈ [m]. We then have

cost(P, f) ≤ costW (Q, f)

1 + ε
(27)

≤ costW (Q, h)

1 + ε
(28)

≤ costW (Q, f∗)

1 + ε
(29)

≤ (1− ε)cost(P, f∗)

1 + ε
(30)

≤ (1 + 10ε)cost(P, f∗), (31)

where (28) holds by (26), Eq. (27) and (30) hold by Lemma 14, Eq. (29) is by the optimality of h,
and (31) holds since ε ≤ 1/2. Replacing ε with ε/10 proves this theorem.

8.1 Efficient k-Segment Mean Computation using the coreset

However, since we cannot allow linear time search over the data, we add the additional constraints
that there cannot be more than one k-segment endpoint inside each coreset-segment, and that
each of the k-segments starts and terminates at an endpoint of the coreset segments. This allows
us to use the coreset obtained by Algorithm 2 for cost computations coreset, and perform the
computation of all linear segment costs required in [Bel61] on a sublinear number of sampling
points, reducing overall algorithm complexity from O(kN2) to O(k3log2N). By construction of the
piecewise coresets, and the segments Ci computed in Algorithm 2, the cost computed with these
limitations on the endpoints is an ε approximation of the cost of our solution on the real data.
Specifically, our solution is an ε-approximation to the real optimal solution.

The modifications required compared to the algorithm of [Bel61] for this case are as follows

• During the search over uk′ , uk′ is allowed only to be at locations which are part of the piecewise
coreset of some segment in D.

• For each line segment (uk′ , b), its fitting solution and cost is obtained by concatenating row-
wise the matrices Ci from each segment i of D completely contained inside (uk′ , b), along
with the sampling points inside (uk′ , b) from partially contained segments of D, into a single
matrix C(uk′ ,b)

, and solving for the linear segment using C(uk′ ,b)
.

• h (uk′ , uk′) is defined to be infinite if two segment endpoints are inside a coreset segment.

The algorithm is described as Algorithm 7. Let Lcoreset denote the maximum number of inner-
points per segment obtained from Algorithm 5. The number of segment fitting cost computations
done is

O

((
(kα)

ε2
+ βk

)2

L2
coresetk

)
(32)

Theorem 16. Given a coreset D as described in Algorithm 2, and a set of piecewise-coresets
computed as in Algorithm 5 for each segment, Algorithm 7 finds an ε-approximation of the k-
segment mean in time O(polylog(n) poly(k))

17

Algorithm 7: Solving for k-segmentation using a coreset

1: for b = 1, 2, . . . ,m do
2: Update the 1-segment solution for each subsegment starting at t = 1

f1(b) = h (1, b)

3: end for
4: for k′ = 1, 2, . . . ,K do
5: for b = 1, 2, . . . ,m do
6: for uk′ = 1, 2, . . . , b do
7: Update the k’-segment solution by updating the cost fk′ based on the (k′ − 1)-segment

solution fk′−1

fk′(b) = min
1≥uk′≥b

[h (uk′ , b) + fk′−1(uk′)] ,

where h (uk′ , b) is computed using the appropriate matrix C(uk′ ,b)
.

8: end for
9: end for

10: end for

Proof. Computation time is determined by the number of sampling points over the whole sig-
nal. Since each segment has n points at most, we have O(lognε) sampling points according to

Corollary 13. Since there are
(

(kα)2

ε2
+ βk

)
segments according to Equation 10, we have overall

O(lognε

(
(kα)
ε2

+ βk
)

) sampling points. Therefore our algorithm requires O
((

logn
ε

(
(kα)
ε2

+ βk
))

k
)

estimations of linear segment fittings. Each line segment estimation involves constructing a matrix

composed out of O
(

(kα)
ε2

+ βk
)

complete segments plus possibly O(lognε) sampling points, and in-

verting it. We note that each segment (partial or full) contributes O(logn) rows to the matrix, and
that its width is O(d). Hence, inverting it is O(polylog(n) poly(k)), therefore the algorithm takes
O(polylog(n) poly(k)) to complete. The approximation property of the algorithms comes from the
approximation of the coresets

9 Parallel and Streaming Implementation

One major advantage of coresets is that they can be constructed in parallel as well as in a streaming
setting. The main observation is that the union of coresets is a coreset — if a data set is split into
subsets, and we compute a coreset for every subset, then the union of the coresets is a coreset of
the whole data set. This allows us to have each machine separately compute a coreset for a part
of the data, with a central node which approximately solves the optimization problem; see [FSS13,
Theorem 10.1] for more details and a formal proof.

When discussing streaming coresets, one must define the merging and reduction operations used
in streaming, and show that the coresets create are still efficient and accurate. We build our merge
and reduce operations as a modification of the coreset algorithm as given in Algorithm 4, so that
it compacts coreset segments rather than signal points. For this we modify Algorithms 2,3 as we

18

now describe.
First, we look at Algorithm 3, we modify it in the following way. In line 6 of the algorithm,

the original segments from both child coresets are taken. Partitioning is done by unifying existing
coreset segments into sections Pi. Iterating over Theorem 9, we note that part i is kept by the
reduction of parts at each turn. Looking at the proof of part ii we note that we only use the coreset
segments’ cost as represented for 1-segments, and this can be computed by the C matrices, starting
from the end of Equation 11. This holds also for the joined and compacted matrices.

Next, we look at Algorithm 2, and modify it to utilize the child coresets’ coreset segments
in order to construct a new set of coreset segments for the combined span. This requires several
modification the the algorithm – notibly, the accumulation of a new coreset segment Q is done solely
in terms of adding new child coreset segments. We note that f∗ and λ in lines 5 and 6 respectively
can be computed for concatenations of coreset segments, in terms of their (1, ε/4)-coresets. We note
that C,g can be computed using the C matrices of the child coresets. We do so by concatenating
the C child matrices, and recomputing the SVD for the concatenated matrix.

Specifically, let (U1, S1, V1) and (U2, S2, V2) be the SVD of matrices P1, P, 2 corresponding to
the coreset segments creation. It’s easy to show that

∥∥∥∥∥∥(S1V
T

1

) a
b
−I

∥∥∥∥∥∥
2

F

+

∥∥∥∥∥∥(S2V
T

2

) a
b
−I

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
(
S1V

T
1

S2V
T

2

) a
b
−I

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥UTJ
(
S1V

T
1

S2V
T

2

) a
b
−I

∥∥∥∥∥∥
2

F

= (33)

∥∥∥∥∥∥SJV T
J

 a
b
−I

∥∥∥∥∥∥
2

F

,

where (UJ , SJ , VJ) is the SVD of

(
S1V

T
1

S2V
T

2

)
, and we used the properties of the Frobenius norm,

the isometry properties of unitary matrices, and properties of (UJ , SJ , VJ), respectively. Once CJ
is computed gJ can be computed easily.

Looking at the proof of Lemma 8, we note that the treatment of good coreset segments remains
the same. The coreset segments that do not belong to Good(D, f) still amount to the same cost
bounds, due to the construction of gJ .

References

[Bel61] Richard Bellman, On the approximation of curves by line segments using dynamic pro-
gramming, Commun. ACM 4 (1961), no. 6, 284.

[FFS06] D. Feldman, A. Fiat, and M. Sharir, Coresets for weighted facilities and their applications,
Proc. 47th IEEE Ann. Symp. on Foundations of Computer Science (FOCS), 2006, pp. 315–
324.

19

[FS12] Dan Feldman and Leonard J. Schulman, Data reduction for weighted and outlier-resistant
clustering, SODA, 2012, pp. 1343–1354.

[FSS13] D. Feldman, M. Schmidt, and C. Sohler, Turning big data into tiny data: Constant-size
coresets for k-means, PCA and projective clustering, Proceedings of ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA) (2013).

[GP14] M. Ghashami and J. M. Phillips, Relative Errors for Deterministic Low-Rank Matrix
Approximations (to appear), 2014.

[Pea01] Karl Pearson, On lines and planes of closest fit to systems of points in space, London,
Edinburgh and Dublin Philosophical Magazine and Journal of Science 2 (1901), no. 11,
559–572, Sixth Series.

20

