Fast Training of Pose Detectors in the Fourier Domain
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A Proofs

This appendix contains proofs that were not included in the main paper to meet length requirements.
See Appendix B for MATLAB code and additional figures.

A.1 Proof of Theorem 1

Though the main claim of the Theorem is the last one, there are also other claims which we will
prove in turn.

The data matrix X and the uncentered covariance matrix X X are not circulant in general.

This can be demonstrated with a simple counterexample. Consider the following transformation @,
which simply reverses the order of any 3 X 1 input vector:

0 0 1
Q=010 (A1)
1 00
It is orthogonal and cyclic with period s = 2 (Q% = Q° = I).
The corresponding data matrix (Eq. 1) is not square, and thus cannot be circulant [1]]
X = [ Tow2 T ] (A2)
Tr3 X9 T1

Another necessary (but not sufficient) condition for a matrix to be circulant is that its diagonal
elements are constant [1]. By direct computation, the uncentered covariance matrix X X fails this
requirement; its diagonal elements are given by [:1:% + 23, 222, 23 + 9:%] .

The data matrix X and the uncentered covariance matrix X X are circulant for Q = P.

This is an earlier result [2].

The Gram matrix G = X X is circulant.

We have

Gpr — (QPX)T er _ XT (Qp)*l QTX — XTQT—pX _ XTQ(r—p)mod SX7 (A3)
where the second equivalence is due to orthogonality, and the last one is due to cyclicity. The strict
dependence on (r — p) mod s implies that G is circulant [1].



A.2 Fast solution in the dual for training with multiple transformed images

We are given n sample groups, each of them containing s transformed versions of an image x;. Let
us organize the data into n blocks X (i), one per sample group, each block with size s x m:

X(i) = Co(xi), i=1,...,n (A4)

The full ns x m data matrix is obtained by vertical concatenation of all the X (7). We can compute the
corresponding Gram matrix easily since it is just the product of two block matrices. It is composed
of n? blocks, each one of size s x s, defined by

G(i,j) = X (i) X(5), i,j=1,...,n. (AS)

The Ridge Regression (RR) problem with an ns x ns Gram matrix composed of these blocks is
given by

-1

: = : : + A : ; (A.6)
where a(7) are s x 1 vectors of solution coefficients, and y (i) are s x 1 vectors of target labels.

Each block G (i, ) verifies Theorem 1, which means that they are circulant. As such, they are
defined by their first row,

G(i,j) = C (x; CH(x;5)) - (A7)

We can diagonalize the blocks of the Gram matrix individually, by transforming the problem (block-
wise) to the Fourier domain. Eq. [A.6is equivalent to

N a -1

G(1,1) - G(Ln) y(1)
: - : Y S (A.8)
G(n,1) - G(n,n) y(n)
with the Fourier- domam variables &(i) = Ua(i), y(i) = Uy(7), and

G(i,5) = UG (i, U, ij=1,..m, (A9)
The identity [ is unaffected by U because the later is unitary.

Since G(i, j) is circulant, G/(4, j) must be diagonal, i.e.,

Gprliyj) =0, if p £ 7. (A.10)

We can turn the Gram matrix with diagonal blocks into a block-diagonal matrix by a permutation of
its rows and columns. Define s blocks, each one n x n, with elements obtained just by reordering

the elements of G/(4, j):

Gli(p, 1) = Gpe(i, ), i,j=1,...,n. (A.11)

The two forms offer different views into the same data. & (4,7) describes the interactions through
pose-space, after fixing two samples ¢ and j. G'(p, ) emphasizes the interactions between pairs of
samples, for a given Fourier frequency.



Given Eq. and Eq. [A.11] we know that the off-diagonal G’ (p, r') blocks must be zero, i.e.,

G'(p,r)=0,ifp#r, (A.12)
with 0 denoting an n X n matrix of zeros. The RR problem in the permuted domain is then
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a’'(1) G'(1,1) 0 0 y'(1)
R O A SV B I A W
a/(s) 0 0 o Gl(s,9) y'(s)

where o (p) = &, (i) and y}(p) = ¥,(i) are the remaining variables under the same permutation.

By direct computation with the rules of block matrices, we obtain

o/ (1) (G'(1,1) + AI): y'(1)
ag)::(G@m+y)y@)7 Al
o/ (s) (G (s,8) + M) y'(s)
or more concisely,
o' (p) = (G'(p,p) + \X)" "y (p), p=1,...,s. (A.15)

Note that Eq. hinges on the earlier definitions of &'(p), G'(p, p) and y’(p), which are Fourier-
transformed and permuted versions of the original quantities.

A.3 Formulation using multi-dimensional arrays

To make Eq. [A.T5|more self-contained, we can express it using multi-dimensional arrays, by tracing
back the elements of o' (p), G'(p, p) and y’'(p).

Define the n X n X s array of unique inner-products g, with elements

8ijp = X; Q" 'x;. (A.16)
Also, define the n x s matrix Y, where the element Y;), is the label of sample image ¢ for pose p.

Then Eq. can be implemented by taking the DFT of Y along the second dimension and the
DFT of g along the third dimension, i.e.,

Y = Fo (V) (A.17)
g =Fp3 (g), (A.18)

and computing the n X s solution in the Fourier domain, A, with

Aw: (g"p"‘)‘I)il i/'pv p=1,...,s, (A.19)

where A.p denotes the pth column from A (and similarly for f’), while g4, slices the pth subarray
(of size n x n) along the third dimension of g. For reference, the slicing operator e works the same
way as the slicing operator : in Matlab or NumPy.

Note that Eq. [A.T9]and Eq. [A.T5]are exactly the same, except with different notation.

We can retrieve the solution from Fourier space by taking the IDFT of A along the second dimension,



A=F5) (4). (A.20)
The element A;,, is the dual coefficient of sample image ¢ for pose p.

A.4 Solution for a single classifer

Using the data matrix in Eq. [A.4]and the solution in the dual from Eq. [A.T9]
w = Z XT(i) A . (A21)

A.5 Solution for multiple pose classifiers

For multiple pose classifiers, we have

W = [ Wo ‘ ‘ Ws—1 :| :iXT(i) [ POAq',-

. ‘ PsflAi. :|
= ZR:XT(Z')CT (Ase) (A.22)

because permuting the rows of the labels Y results in the same permutation being applied to the
rows of the solution A. Diagonalizing with U, we obtain

-1 (zn: diag (21;*,) ]-"(X(i))) , (A23)

where * denotes complex-conjugation. Note that a product by a diagonal matrix on the left simply
amounts to multiplying each row with one of the diagonal elements.

If X is the m x n x s data matrix, Fourier-transformed in the third dimension, we can rewrite Eq.

[A.23]as

Wep

(g..p + A7

forp=1,...,s, and recover W by taking the IDFT over the second dimension.

Xeop
Xeo

A.6 Complex-valued Support Vector Regression in the Dual

We build on the primal solution for complex-valued Support Vector Regression (SVR) given in
[2]] (complex-SVR for short). We will restate it briefly. The standard L2-SVR, with squared e-
insensitive loss |WH Xj — Y |6 = max (O7 ’WH X; — yj| — 6)2, amounts to the following optimiza-
tion problem:

V\H

min ||w|® +
w

Z whx; —y;l . (A.24)
It can be adapted for problems in the complex domain by defining the extended loss function [2],

WHx—y|€: |Re(wa—y)|€+|Im(wa—y)| , (A.25)

€



where Re () and Im (+) denote the real and imaginary parts of a complex number, respectively. This
complex-SVR can be shown [2] to be equivalent to a real-valued SVR with the following change of
variables:

x - | X X1
| X; —Xg

y' = | YR (A.26)
L YI

w = WR 7
L WI

where, for conciseness, the subscripts R and I denote real and imaginary parts, respectively (e.g.,
Xpr=Re(X)and X; =Im (X)).

The algorithm that we propose in this work encodes each sub-problem as a complex-valued Gram
matrix (G, not a data matrix X. This requires us to express the complex-SVR in the dual variables
instead.

By direct computation, the complex-valued Gram matrix G obtained from the complex-valued X is

G=XX"=X}+X7+i (X1 X} — XrX]) =Gr+iGy, (A.27)
where we used ¢ to denote a pure imaginary unity.

Again by direct computation, the real-valued Gram matrix G’ obtained from the equivalent Eq.
is

o - x'x'T _ X%+ X7 XrXT - X/ X% (A28)
X XE— XpXT X2+ X7
Comparing Eq. to[A.28] we see that
T
o= | Gr G , (A.29)
Gr Gr

and thus we can use Eq. [A.29to express the complex-valued G of a complex-valued SVR with an
equivalent real-valued G. A simple implementation is shown in Algorithm 3 (Appendix B).
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