A Proofs

A.1 Proof of Theorem 1

Proof of Lemma 1. Denote the solution to problem (4) by B*(D). Suppose that M, is an (n, B)-
rate estimation code M,, with risk E d(6™, M,,(X™)) < D. We have

B > I(X"™; Mo (X™))/n 9
> B* (Ed(6", M, (X)) ®)
> B*(D), ©)

where (7) follows from the fact that M,,(X™) takes at most 2B yalues; (8) follows from the defi-
nition of B*(+); (9) follows from the monotonicity of B*(-) and the fact that E d(0™, M, (X™)) <
D. O

Proof of Lemma 2. Suppose that 6" satisfies the conditions in problem (4). Write v = ¢2 /(o2 + c?).
Fori =1,2,...,n, consider the decomposition

E(6: — 0,)* = E(6: — 7 Xi + X, — 6,)°

= E(6; — vX:)* + E(6; — vX;)* - 2E ((Hi — 7 X:)(0; — in))

o%c?

i +E(6; —7X:)>

The last equality follows from
E ((5,-, X (0 — ’yXi)) ) (IE(G,; — X, | X)E(0; — X, | Xi)) =0,

where we have used the fact that §; — X; — 6; is a Markov chain and that E(6; | X;) = vX,.
Summing over ¢ = 1,...,n, we have
Ede" ) = - LR X"
0",0") = PR +Ed(0",7X™).

A lower bound on the mutual information can be obtained as

1 ~ 1 ~ 1 « ~

—I(X™0") = —I(vX™0") > — I(vX;;0;

I(XT0") = TGX ") = — S 1(0X,s6)

i=1

h(vXi) — h(vX; | gi))
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-ié;(;bgafia“;ng”X"@y>

_ %log(ﬂcii& — ig;logE(fyXi - @)2

> %IOgUQCi—icZ - %logEd(gn,vX”) (11)
- §logEd(9n,§n) - 2
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where (10) follows from the fact that the normal distribution maximizes the entropy for a given
second moment, (11) follows from the concavity of the log function, and the other inequalities

follow from the properties of mutual information and entropy. Since E d(0™,0™) < D, we have

4
1 ~ 1 ==
—I(X™;0™) > = log L{;zﬁ
n 2 - e

On the other hand, a calculation shows that the following joint distribution
0" ~ N (0,4%(0% + 2 = D)), X"~ N (07/7,DL), 0"~ N(/X"90%L,). (12)

achieves the lower bound, which concludes the proof. O

Proof of Theorem 1. Suppose that M, is an (n, B)-rate estimation code. Let 7,,, the prior on 6", be
N(0,c?1I,). According to Lemmas 1 and 2

2.2 4 ~
gc € 9728 _ /Exnd(an,en)dwn(e”)

+
02 4+c2  o24¢?

< /Exnd(H", M, (X™))dm,(67),
where " follows the distribution specified in (12). It then suffices to show that as n — oo
/ Exnd(67, My (X™))dmn(6") < sup  Exnd (6™, My (X™).
0" €0, (c)
In fact, if the above inequality holds taking a supremum over M,, € M, p gives the desired lower

bound. Recall that ©,,(c) = {6" : L """ | 62 < ¢?}. Paralleling the argument in [9, 13], we have

i=1"1%

/ Excnd (67, M, (X™))drm, (67)
:/ Exn»d(0", M, (X"™))dm,(0") +/
On(c)

On(c)

Ex»d(0", My (X™))dm, (0"

< sup Exnd(6”, M, (X™)) + / Exnd (67, M, (X™))drn (67).
On(c) 0.0

It remains to show that

/ Exnd(0", My (X™))dmn(07) —s 0.
@,L(c)

where ©,,(c) denotes the complement of ©,,(c). For a fixed § € (0, 1), let 7, s be a N'(0, ¢25°1,,)
prior on #™. Replacing 7, by m,, 5, and using the Cauchy-Schwarz inequality, we get

/ Exnd(0", M, (X™))dmy, 5(0™)
O,(c)
||0"|| dm, 5(9”)+2/ EXn—HM(X”)HQdﬂ'n(;(H )

<2/
e
< 2,/ E,. ,[07]* + 2275 (Gn( )) (13)

Now we bound the two terms in the formula above. First,

s (6270) :p<;ieg>8>
" 0, \° — 52
(5 (6 )5
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where the last inequality is due to the following large deviation inequality: if Z1, ..., Z, ~ N (0,1)

and 0 < t < 1, then
lz Z2_1 <26_nt2/8.
n 2 <

n (|4 § § 2 2
ﬂ'noHe H ]Eﬂ'no 7 + Eﬂ'n 601 Tn 667
i#]

= n]E,TW;tQil + <;L) 262

= 0(n?).

Next, we note that

Therefore, we have from (13)

/ Exnd(6", My (X™))dmn 5 (67)

O, (c)

< 2. V2 exp <M> O(n) + 2¢? exp <”(1_52)2> —0

1664 844
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for any § € (0, 1). The conclusion then follows by letting § 1 1. O

A.2 Proof of Theorem 2

ProofofTheoremZ Suppose that [|6"|/n = b> < ¢? and that X; ~ N (6;,0%). Writing b? =

| X™||2/n —o?and 7 = W’ we have the decomposition of the loss

o 1, «

= o A% +§X” —on?

1, - 2 . N N
=, 19" -7 x|’ + [FXT =07 |* 4+ = (0" = X" FX" —0").

A1 A2 A3
(i) Term A; characterizes the quantization error. It has the following decomposition
1 nn 1 =~ n 2 nm Syvn
Ar= =107 + A2 X - = (0", 7XT).
n n n
By Lemma 3 and Lemma 5 below, we have

1 1 <X" X logn
X2 - b2 - 0% = Op ()7 —V1-2"2B =0p ( )
n Vi)l

and therefore

1 - b1 —2725) b 1
—10"™(1* = = 1-2728) 4 0p | —
’fLH || o2 + B2 02+62( )+ P \/ﬁ )

1, ) b b 1

~F2 X" = — = Op | —

ol Pl e 2y P\ )

2 2 12 b(1 — 2-2B 5

—(0",7X") = — v ntd -2 (XXM

n n g2 4 2 o2 + b2

22021 — 2728 (X, X)
\/(02 +32)(02+52) [ X1]
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(i)

(iii)

2b* 9B 1
which, combined together, gives us
b b 2v* 1
Ay = —5——(1-2728 - 1-272P) 4 0p | —
! 02+b2( )+02+b2 02+b2( ) +0p N

v 2728 1 0p [
o2 102 P\n)

Term A, does not involve random codebook, and is essentially the average loss of a James-
Stein-type estimator. Suppose that A,, is an n X n orthonormal matrix such that A4,0" =
(v/nb,0,...,0)T, which we will denote by 7". Let Y™ = A, X". Then Y™ ~ N (77", 021)

and || X"|| = ||Y™||. Expressing A5 in terms of Y, we have
1 = n n
Ao =~ |7X" = 0"
n
1.
= — |74, X" _An9n||2
n
1 = n n
= — 7Y™ — 7|2
n
1,\2 2 ~ 1/1 2
= —F|Y"||F —29b—=+b
ol L Loy

_ﬁ+0 L
Tz P \n)

The last equality is because

Tiwie 2 (L) Yoo (1
LA “‘OP<¢%>’ 7 b_0P<\/ﬁ)'

Finally, it can be shown that the cross term satisfies A3 = Op(4/ 107%) by exploiting the

geometry of the vectors, and using the fact that most vectors are nearly orthogonal to each
other in a high dimensional space. In fact, write

)

n _

D4(1 — 2-2B)
nbt(1 —2727) +
b2 + o2

S
|

n

Then in the decomposition

2 - N L~ 2~ 2 N
(0" —AX" X" =0") = ~ (6" 0" AX" —6")+— (6", X" —0") = Z (X" FX" =0,

S|

the first term is Op(ﬁ), since ﬁHé” - §”|| = Op(ﬁ) and ﬁHﬁX" — 6™|| has bounded

second moment, and the third term is
@Y™,V - )

Y, 1
~2 Yn 2 2,\ 1 _ )
Y 7675 Op NG

2/\ n = n n
—(AX"HX" - 0") =
n

S| 3 I

Now consider the second term

2~ 2 ~ 2 ~
20 AXT - 07 = 2@ AX - 0" + (7 - ) (@, X7)

T 0:X; 2 1 ~
= Z’L, satisfying E(fy —ANO", X™) = Op (\/ﬁ> and (X", X" —0™) = 0.
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Thus, we are left with one last term to analyze:

2~ 2 [nb*(1—2-2B) _
2 qxn gy = 2 L2 T e xe g
n n b2+0-2

r1-2-2B) 1
= L2 e L (e gy
b2 + o2 Vn

The scaling factor in front of the inner product is some constant plus an Op(ﬁ) term, so
we consider the inner product. Notice that the projection of X™ onto the orthogonal space of
X", Projxn»1 (X"™), is independent of X™. Furthermore, by symmetry, Proj .. (X™) has a
spherical distribution in R"~*, and has a length v'1 — 2728 +-Op(1%6™). That is, we can write

Projyn1 (X®) =L, -U"

where U™ follows the uniform distribution on sphere S*~! and L,, = v/1 —2-28+0 p(lo%).
Conditioning on X", since (X", 7X™ — ™) = 0, we have

P <<X”, in(ﬁxn —0") >t| X" = :r")

- 1
<Pr0anL(X”)’Pron,u(ﬁ(,an —0M)) >t X" = :C")

(
— P (Ll Ga" — 00" ") > 1)

n—2

12 :
<K 1-—
< M( Kl =G —e">||2>

where K7 and K are positive constants, and the last inequality follows from Lemma 6 below.
It then follows that

Je8

1 ~ 7747 n
TR Gx" ) > 1)

= /IP’ ((X", %(ixn — ") > t| X" = x") pxn(2")dz"
t2

<K 1-—-
= ﬁ/( Kol & G — 6m) 2

n—2

2 1
) +P (n|X"||2 > b +o? +K3> .

n—2

> pxn(x™)dx"

2

SK1\/E<1—K,
2

for positive constants K1, K5 and K3. This implies that (X ™, —=(FX"—0")) = Op(4/ k’%)
and thus A3 = Op(4/ 1"%)

Combining the above analyses for A, As and A3 together gives us the theorem. O

3

Lemma 3. Suppose that X; £ N(0;,02), fori=1,...,n and that % S 6% = b Then

1=1"1
P 1 iXQ B2 2l > ¢) <96 nt? n 8ab . nt?
— S —b" — xp | — Xp | ——=——5 | -
n i TN =) AP T390 ) T e P\ T 300202

Specifically, if we write b* = | X|1?/n — o2, we have b2 —b? = Op(

)
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Proof. Writing X; = 0; + ¢€;, we have

1
]P’( 2>1t>
n:
2

anxffzﬁ
=1

<9 nt? + 8ab nt?
exp | — exp | ————5
= 2P\ 5200 ) T oz OP U 320202
where the last inequality follows from the previously mentioned large deviation inequality and the
upper tail inequality for the normal distribution. O

Lemma 4 (Lemma 4.1 from [2]). Suppose thatY is uniformly distributed on the n-dimensional unit
sphere S"™1. For x € R™ such that ||z||2 = 1, the inner product p = (x,Y) between x and Y has
density function

1 T(%) n-3
flp) = o (1= %) I(lpl < 1).
VAT(25h)
Lemma 5. Suppose thatp = ™ and Y1, . .., Y, are independent and identically distributed with

a uniform distribution on the n-dimensional sphere S"~'. For a fixed unit vector x € R", let p; =
(:r Y;) and L,, = maxi<;<p p; . Then L,, — /1 — e=28 in probability as n — oo. Furthermore,
—V1—e25 = 0p(len),

Proof. Let k,, = ——. For any fixed u € R
o)<
=P Ln<k£+\/1fe 28 >

p
u
P (Pl kn 1- 6—25>
(i 1T
u/k +4/1—e—28 fr(n

n
2

)
T(n—1\
n—1\ P

_ vn (™ o2 )
T e Vo) (1 (v ﬁ))

\/ﬁ u — 2 2
e _p.\/ﬂ(n—?))(ﬁ—i—\/l—e—%) (1_(kn+ b-e ﬂ))
£ exp(—M).

Taking the logarithm of the exponent M, we get

log M = logp + n-

1lo 1 (u +V1 25)2 +lo vn

- — —e
& o ® Var(n—3) (= + VI—c %)
71 —28 U2 2U — 1 1 —283 1

log e — — — /1 -2 —ilogn—ilog(l—e )—ilog(27r)

n
~nf+




—1u? 1 1 1
Nnﬁ—(n—l),é’—nQ Z—z—(n—1)%\/1—@‘25—ilogn—§log(1—e_26)—§log(27r)

1 1 1
~fB— <u 1—e 26 + 2) logn — §1og (1—e2) - 3 log(27).

Ifu>O,thenasn—>oo,M—>O,andthusP(kn(Ln 1—e— ) ) Ifu <
1

Y ey — e 28
3 1_272‘3,then asn — 0o, M — oo, and hence P (kn (Ln 1—e— ) < ) —s 1. We can
then conclude that |L,, — /1 — e—28| = ()P(lo%). 0
Lemma 6. Let U have a uniform distribution on the unit sphere S~ and let x € R"™ be a fixed
vector. Then .

P((U2)] > €) < Ky/n(1 — &),

foralln > 2and e € (0,1), where K is a universal constant. Therefore,

(U,2) = Op ( 105") .

Proof. This is a direct result from Proposition 1 in [1]. O




