
Supplementary Material to
Generalized Dantzig Selector:

Application to the k-support norm

1 Proof of Theorem 1

Statement of Theorem: Suppose that both design matrix X and noise w consists of i.i.d. Gaussian
entries with zero mean variance 1 and X has normalized columns, i.e. ∥X(j)∥2 = 1, j = 1, . . . , p.
If we solve the problem (1) with

λp ≥ cE
[
R∗(XTw)

]
, (A.1)

where c > 1 is a constant, then, with probability at least (1− η1 exp(−η2n)), we have

∥θ̂ − θ∗∥2 ≤
4
√
R(θ∗)λp

(ℓn − ω(TR(θ∗) ∩ Sp−1))
, (A.2)

where ω(TR(θ∗)∩Sp−1) is the Gaussian width of the intersection of the error cone TR(θ∗) and the
unit spherical shell Sp−1, and ℓn is the expected length of a length n i.i.d. standard Gaussian vector
with n√

n+1
< ℓn <

√
n, and η1, η2 > 0 are constants.

Proof: We use the following lemma for the proof.

Lemma 1 Suppose we solve the minimization problem (1) with λp ≥ R∗ (XTw
)
. Then the error

vector ∆̂ belongs to the set

TR(θ∗) := cone{∆ ∈ Rp : R(θ∗ +∆) ≤ R(θ∗)} , (A.3)

and the error ∆̂ = θ̂ − θ∗ satisfies the following bound

R∗
(
XTX∆̂

)
≤ 2λp (A.4)

Proof: By our choice of λp, both θ∗ and θ̂ lie in the feasible set of (1) , and by optimality of θ̂,

R
(
θ∗ + ∆̂

)
= R(θ̂) ≤ R(θ∗) . (A.5)

Also, by triangle inequality

R∗
(
XTX∆̂

)
= R∗

(
XTX(θ̂ − θ∗)

)
(A.6)

≤ R∗ (XT (y −Xθ∗)
)
+R∗

(
XT (y −Xθ̂)

)
≤ 2λp . (A.7)

Now, note that since R∗(·) is Lipschitz continuous, choosing λp ≥ cE
[
R∗(XTw)

]
ensures that

λp ≥ R∗(XTw) with high probability, by Gaussian concentration on Lipschitz functions [2]. Then,
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both θ∗ and θ̂ lie in the feasible set of (1), since R∗ (XT (y −Xθ∗)
)
= R∗ (XTw

)
≤ λp by the

choice of λp. Also, from Lemma 1, we have

R∗
(
XTX∆̂

)
≤ 2λp (A.8)

Now, note that

∥X∆̂∥22 = ⟨∆̂,XTX∆̂⟩ ≤ |⟨∆̂,XTX∆̂⟩| ≤ R(∆̂)R∗
(
XTX∆̂

)
≤ 2λpR(∆̂) , (A.9)

where we have used Holder’s inequality, and the bound R∗
(
XTX∆̂

)
≤ 2λp from above.

Next, we use the definition of the error set (A.3) and triangle inequality to obtain

R(∆̂)−R(θ∗) ≤ R(θ∗ + ∆̂) ≤ R (θ∗) , (A.10)

so that
R(∆̂) ≤ 2R(θ∗) , (A.11)

and we obtain the bound
∥X∆̂∥22 ≤ 4λpR(θ∗) . (A.12)

Lastly, we use Gordon’s theorem, which states that for X with i.i.d. Gaussian (0, 1) entries,

E

[
min

z∈TR(θ∗)∩Sp−1
∥Xz∥2

]
≥ ℓn − ω

(
TR(θ∗) ∩ Sp−1

)
, (A.13)

where ℓn is the expected length of an i.i.d. Gaussian random vector of length n, and
ω
(
TR(θ∗) ∩ Sp−1

)
is the Gaussian width of the set Ω =

(
TR(θ∗) ∩ Sp−1

)
. Now, since the function

X → minz∈Ω ∥Xz∥2 is Lipschitz continuous with constant 1 over the set Ω, we can use Gaussian
concentration of Lipschitz functions [2] to obtain

∥X∆̂∥2 ≥ 1

2

(
ℓn − ω(TR(θ∗) ∩ Sp−1)

)
∥∆̂∥2 (A.14)

with probability greater than 1 − exp
(
− 1

8

(
ℓn − ω(TR(θ∗) ∩ Sp−1)

)2) , where c1, c2 > 0 are
constants . Combining (A.14) and (A.12), we obtain

∥∆̂∥2 ≤
4
√
R(θ∗)λp

(ℓn − ω(TR(θ∗) ∩ Sp−1))
(A.15)

with probability greater than 1 − exp
(
− 1

8

(
ℓn − ω(TR(θ∗) ∩ Sp−1)

)2), and the statement of the
theorem follows.

2 Proof of Theorem 2

Given a vector x, we use the notation xi:j to denote its subvector (xi,xi+1, . . . ,xj).

Statement of Theorem: Given λ > 0 and x ∈ Rp, if ∥x∥sp
∗

k ≤ λ, then w∗ = prox Cλ
(x) = x. If

∥x∥sp
∗

k > λ, define Asr =
∑r

i=s+1 |x|
↓
i , Bs =

∑s
i=1(|x|

↓
i )

2, in which 0 ≤ s < k and k ≤ r ≤ p,
and construct the nonlinear equation of β,

(k − s)A2
sr

[
1 + β

r − s+ (k − s)β

]2
− λ2(1 + β)2 +Bs = 0 . (A.16)

Let βsr be given by

βsr =

{
nonnegative root of (A.16) if s > 0 and the root exists
0 otherwise . (A.17)
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Then the proximal operator w∗ = proxICλ
(x) is given by

|w∗|↓i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
1+βs∗r∗

|x|↓i if 1 ≤ i ≤ s∗√
λ2−Bs∗
k−s∗ if s∗ < i ≤ r∗ and βs∗r∗ = 0

As∗r∗
r∗−s∗+(k−s∗)βs∗r∗

if s∗ < i ≤ r∗ and βs∗r∗ > 0

|x|↓i if r∗ < i ≤ p

, (A.18)

where the indices s∗ and r∗ with computed |w∗|↓ make the following two inequalities hold,

|w∗|↓s∗ > |w∗|↓k , (A.19)

|x|↓r∗+1 ≤ |w∗|↓k < |x|↓r∗ . (A.20)
There might be multiple pairs of (s, r) satisfying the inequalities (A.19)-(A.20), and we choose the
pair with the smallest ∥|x|↓ − |w|↓∥2. Finally, w∗ is obtained by sign-changing and reordering
|w∗|↓ to conform to x.

Proof: Let w∗ = prox Cλ
(x) = argminw∈Cλ

1
2∥x −w∥22. For simplicity, we drop the constant

1
2 in later discussion. We consider the following two cases.

Case 1: if ∥x∥sp
∗

k ≤ λ, it is trivial that w∗ = x, which is also the global minimizer of ∥x − w∥22
without the constraint x ∈ Cλ.

Case 2: if ∥x∥sp
∗

k > λ, first we start by noting that, given x and w, ∥x−w∥22 = ∥x∥22 − 2⟨x,w⟩+
∥w∥22 ≥ ∥x∥22 − 2⟨|x|↓, |w|↓⟩ + ∥w∥22, which implies that w∗ should achieve this lower bound by
conforming with the signs and orders of elements in x. Without loss of generality, we are simply
focused on the case where x = |x|↓.

For w∗ to be the optimal, w∗
k:p should be chosen such that w∗

k:r = (w∗
k,w

∗
k, . . . ,w

∗
k) and w∗

r+1:p =
x∗
r+1:p, where r satisfies xr > w∗

k ≥ xr+1, otherwise either the decreasing order of w∗ will be
violated or the ∥xk:p −wk:p∥2 is not minimized. As for w∗

1:k−1, we similarly assume w∗
s+1:k−1 =

(w∗
k,w

∗
k, . . . ,w

∗
k) for some 0 ≤ s ≤ k−1, then w∗

1:s should be chosen to minimize ∥x1:s−w1:s∥2
such that ∥w1:s∥22 = ∥w∗

1:k∥22 − ∥w∗
s+1:k∥22 ≤ λ2 − (k− s)(w∗

k)
2. By Cauchy-Schwarz Inequality,

we note that

∥x1:s −w1:s∥22 = ∥x1:s∥22 − 2⟨x1:s,w1:s⟩+ ∥w1:s∥22
≥ ∥x1:s∥22 − 2∥x1:s∥2∥w1:s∥2 + ∥w1:s∥22

where the equality holds when w∗
1:s follows the form of w∗

1:s = 1
1+βsr

x1:s, and βsr ≥ 0 satisfies
the constraint Bs

(1+βsr)2
= λ2 − (k − s)(wk)2.

So far we have figured out the structure of w∗ = (w∗
1:s,w

∗
s+1:r,w

∗
r+1:p), in which the three subvec-

tors, compared with x, are shrunk by a common factor 1 + βsr, constant w∗
k, or unchanged. Next

we need to determine the value of βsr and w∗
k. By optimality, ∥x−w∥22 = ∥x1:r −w1:r∥22 must be

minimized at w∗, so we have the following problem,

min
β,wk

∥x1:r −w1:r∥22 = ∥x1:s −w1:s∥22 + ∥xs+1:r −ws+1:r∥22

= (
β

1 + β
)2Bs +

r∑

i=s+1

(xi −wk)
2

(A.21)

s.t. (∥w∥sp
∗

k )2 =
Bs

(1 + β)2
+ (k − s)(wk)

2 = λ2 (A.22)

Replacing wk in (A.21) with wk =

√
λ2− Bs

(1+β)2

k−s obtained from (A.22), we express ∥x1:r −w1:r∥22
as a function of β,

Φsr(β) = (
β

1 + β
)2Bs +

r∑

i=s+1

(
xi −

√
λ2 − Bs

(1+β)2

k − s

)2 (A.23)
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Set derivative of Φsr(β) to be zero, we have

d

dβ
Φsr(β) =

d

dβ

[
(

β

1 + β
)2Bs +

r∑

i=s+1

(
xi −

√
λ2 − Bs

(1+β)2

k − s

)2] (A.24)

=
2β

(1 + β)3
Bs −

2AsrBs

(1 + β)3(k − s)

√
λ2− Bs

(1+β)2

k−s

+
2(r − s)Bs

(k − s)(1 + β)3
(A.25)

=
2Bs

(k − s)(1 + β)3

[
(k − s)β − Asr√

λ2− Bs
(1+β)2

k−s

+ (r − s)
]
= 0 (A.26)

If s > 0, then Bs > 0 and (A.26) is equivalent to (A.16). And we can see that the quantity inside
the bracket of (A.26) is monotonically increasing when β ≥ max(0,

√
Bs−λ
λ ), thus ensuring the

nonnegative root βsr is unique if existing. If the nonnegative root exists, the expression for w∗
s+1:r

can be obtained from (A.26), whose entries are all equal to w∗
k.

If s > 0 and a nonnegative root of (A.26) is nonexistent, the derivative is always positive when
β ≥ 0, which means that Φsr(β) is increasing. Hence the minimizer of Φsr(β) is βsr = 0. If s = 0,
we actually do not care about the value of βsr because the problem defined by (A.21) and (A.22) is
independent of β, and we set it to be 0 for simplicity. According to (A.22), both cases of βsr = 0
lead to the same expression for w∗

s+1:r in (A.18).

As we do not know beforehand which s and r to choose, we need to search for r∗ and s∗ that gives
the smallest ∥|x|↓ − |w|↓∥2, and also to check whether the w∗ obtained by (A.18) is in decreasing
order, which are the conditions (A.19) and (A.20) presented in Theorem 2.

3 Proof of Theorem 3

Statement of Theorem: In search of (s∗, r∗) defined in Theorem 2, there can be only one r̃ for a
given candidate s̃ of s∗, such that the inequality (A.20) is satisfied. Moreover if such r̃ exists, then
for any r < r̃, the associated |w̃|↓k violates the first part of (A.20), and for r > r̃, |w̃|↓k violates the
second part of (A.20). On the other hand, based on the r̃, we have following assertion of s∗,

s∗

⎧
⎨

⎩

> s̃ if r̃ does not exist
≥ s̃ if r̃ exists and corresponding |w̃|↓k satisfies (A.19)
< s̃ if r̃ exists but corresponding |w̃|↓k violates (A.19)

. (A.27)

To prove Theorem 3, we first need the following corollary from Theorem 2.

Corollary 1 When β ≥ max(0,
√
Bs−λ
λ ), Φsr(β) defined in (A.23) is decreasing when β < βsr,

and increasing when β > βsr. Equivalently, Φsr(β) = ∥x1:r −w1:r∥22, when treated as function of
wk, is decreasing when wk < w∗

k and increasing when wk > w∗
k.

Proof: The first part simply follows the monotonicity of d
dβΦsr(β) mentioned in the proof of

Theorem 2, which implies that d
dβΦsr(β) is negative when β < βsr, and positive when β > βsr .

The constraint (A.22) implies that wk increases as β increases. So ∥x1:r −w1:r∥22, as a function of
wk, has the same monotonicity w.r.t. wk.

Now we present the proof of Theorem 3.

Proof: First we show by contradiction that for a given s, the r̃ that satisfies (A.20) can be at most
one. Suppose there are two indices, say r1 and r2, which satisfy that condition with a certain s.
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Without loss of generality, let r1 < r2, we know that their corresponding w(1) and w(2) should
minimize ∥x1:r1−w1:r1∥22 and ∥x1:r2−w1:r2∥22, respectively. As r1 < r2, then w(1)

k ≥ xr2 > w(2)
k

according to (A.20). Construct

w′ = (
x1

1 + β′ , . . . ,
xs

1 + β′
︸ ︷︷ ︸

s

,xr2 , . . . ,xr2︸ ︷︷ ︸
r2−s

,xr2+1, . . . ,xp)

where β′ is chosen to satisfy the constraint (A.22) with w′
k = xr2 , and ∥x1:r2 − w(2)

1:r2∥
2
2 can be

decomposed as

∥x1:r2 −w(2)
1:r2∥

2
2 = ∥x1:r1 −w(2)

1:r1∥
2
2 + ∥xr1+1:r2 −w(2)

r1+1:r2∥
2
2

> ∥x1:r1 −w′
1:r1∥

2
2 + ∥xr1+1:r2 −w′

r1+1:r2∥
2
2

= ∥x1:r2 −w′
1:r2∥

2
2

which contradicts that w(2)
1:r2 minimize ∥x1:r2 − w1:r2∥22. Note that ∥x1:r1 − w(2)

1:r1∥
2
2 > ∥x1:r1 −

w′
1:r1∥

2
2 simply follows Corollary 1 as w(1)

k ≥ xr2 = w′
k > w(2)

k , and ∥xr1+1:r2 −w(2)
r1+1:r2∥

2
2 >

∥xr1+1:r2 −w′
r1+1:r2∥

2
2 is due to the fact that xr1+1 ≥ . . . ≥ xr2 = w′

k > w(2)
k .

Next we show by contradiction that if r̃ exists for given s, then any r < r̃ violates the first part of
(A.20), and any r > r̃ violates second part. Let w̃ denote the minimizer of ∥x1:r̃−w1:r̃∥22. Suppose
r < r̃ and the first part of (A.20) is not violated, then its second part must be violated due to the
uniqueness of r̃. Then we can construct new

w′ = (
x1

1 + β′ , . . . ,
xs

1 + β′
︸ ︷︷ ︸

s

,xr̃ , . . . ,xr̃︸ ︷︷ ︸
r̃−s

,xr̃+1, . . . ,xp) ,

where β′ is again chosen to satisfy the constraint (A.22) with w′
k = xr̃. This by the same argument

for proving the uniqueness of r̃ make the following inequality hold,

∥x1:r̃ − w̃1:r̃∥22 = ∥x1:r − w̃1:r∥22 + ∥xr+1:r̃ − w̃r+1:r̃∥22
> ∥x1:r −w′

1:r∥22 + ∥xr+1:r̃ −w′
r+1:r̃∥22

= ∥x1:r̃ −w′
1:r̃∥22 .

This contradicts that w̃ is the minimizer of ∥x1:r̃ − w1:r̃∥22. Similar argument applies to the case
when r > r̃. We construct another

w′′ = (
x1

1 + β′′ , . . . ,
xs

1 + β′′
︸ ︷︷ ︸

s

,xr+1, . . . ,xr+1︸ ︷︷ ︸
r−s

,xr+1, . . . ,xp) ,

which gives smaller ∥x1:r−w1:r∥22 than anyw with wk < xr+1 according to Corollary 1. Therefore
it is impossible for r > r̃ to violate the first inequality. Note that β′′ together with w′′

k = xr+1

satisfies (A.22).

Finally we show the assertion (A.27) for s∗. We note that when s̃ is fixed, finding solution to the
proximal operator can be regarded as finding the minimizer of (A.21) under the constraint wk =
wk−1 = . . . = ws̃+1. So for s < s̃, the minimization problem is equivalent to the one for s̃ under
additional constraint ws̃+1 = ws̃ = . . . = ws+1. Therefore if r̃ does not exist or |w̃|↓k already
satisfies (A.19), then s∗ ≥ s̃ because s < s̃ considers a more restricted problem and is unable to get
a better result.

For the situation in which r̃ exists for s̃ but associated |w̃|↓k violates (A.19), we show by contradiction
that for any s′ > s̃, (A.19) is also violated. Assume that there is a solution w′ satisfying both (A.19)
and (A.20) for s′ = s̃ + 1 and the corresponding r̃′. It is not difficult to see that |w′|↓k < |w̃|↓k and
r̃′ ≥ r̃. By the violation we have shown, we know that the minimizer of (A.21) for (s′, r̃), denoted
by w′′, satisfies |w′′|↓k ≤ |w′|↓k (Note that w′ is the minimizer of (A.21) for (s′, r̃′)). Combined
with |w′|↓k < |w̃|↓k, this indicates by Corollary 1 that Φs′r̃(·) increases on the interval [|w′′|↓k, |w̃|↓k].
Then we consider two sequential modifications on w̃,

5



1. Replacing the |w̃|↓1:s′ in |w̃|↓ with ∥|w̃|↓
1:s′∥2

∥|x|↓
1:s′∥2

|x|↓1:s′ ,

2. Shrink |w̃|↓s′+1:r̃ and amplify the new |w̃|↓1:s′ by some factor such that (A.22) still holds for
s′ and |w̃|↓s′+1 = |w̃|↓s′ .

Note that the two modifications both decrease ∥x1:r̃ − w̃1:r̃∥2. Decrease in Modification 1 is the
result of Cauchy Schwarz Inequality, and decrease in Modification 2 is due to the monotonicity
of Φs′ r̃(·) we mentioned afront. The modified w̃ satisfies |w̃|↓s̃+1 = |w̃|↓s̃+2 = . . . = |w̃|↓k, thus
contradicting that the old w̃ is the minimizer of (A.21) for (s̃, r̃). Hence, by induction, we conclude
that for any s′ > s̃, its solution also violates (A.19).

Assembling the conclusions above, we have (A.27) for s∗.

4 Proof of Theorem 4

Statement of Theorem: For the k-support norm Generalized Dantzig Selection problem (20), we
obtain

E
[
R∗(XTw)

]
≤ k

(√
2 log

(ep
k

)
+ 1

)2

(A.28)

ω(TA(θ∗) ∩ Sp−1)2 ≤
(√

2k log
(
(p− k −

⌈ s
k

⌉
+ 2)

)
+
√
k

)2

·
⌈ s
k

⌉
+ s . (A.29)

Proof: We first illustrate that the k-support norm is an atomic norm, and then prove Theorem 4.

4.1 k-Support norm as an Atomic Norm

Here we show that k-support norm satisfies the definition of atomic norms [1]. Consider Gj to be
the set of all subsets of {1, 2, . . . , p} of size j, so that

G(k) = {Gj}kj=1 . (A.30)

For every j, consider the set

Aj = {w : ∥(wGj )∥2 = 1, Gj ∈ Gj , wi =
1√
j
, ∀i ∈ Gj , wi = 0, ∀i /∈ Gj} , (A.31)

corresponding to Gj , and the union of such sets

A = {Aj}j∈{1,...,k} . (A.32)

Note that since every non-zero element in a vector in Aj is 1√
j
, such an element cannot be repre-

sented as a convex combination of elements of the set Al, l < j, whose non-zero elements are 1√
l
.

Therefore none of the elements w in the set A lies in the convex hull of the other elements A\{w}.
Further, note that

conv(A) = Ck , (A.33)
and the k-support norm defines the gauge function of the A. Thus the k-support norm is an atomic
norm.

4.2 The Error set and its Gaussian width

Note that the cardinality of the set G(k) is

M =

(
p

k

)
+

(
p

k − 1

)
+

(
p

k − 2

)
+ · · ·+

(
p

1

)
(A.34)
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The the error set is given by
TA(θ∗) = cone{∆ ∈ Rp : ∥∆+ θ∗∥spk ≤ ∥θ∗∥spk } . (A.35)

Note that this set is a cone, and we can define the normal cone of this set as
NA(θ

∗) = {u : ⟨u,∆⟩ ≤ 0, ∀∆ ∈ TA(θ∗)} (A.36)
(A.37)

The following proposition, shown in [3], shows that the normal cone can be written in terms of the
dual norm of the k-support norm.

Proposition 1 The normal cone to the tangent cone defined in (A.35) can written as

NA(θ
∗) = {u : ∃t > 0 s.t. ⟨u, θ∗⟩ = t∥θ∗∥spk , ∥u∥sp

∗

k ≤ t} . (A.38)

Proof: We re-write the definition of the normal cone in terms of the estimated parameter θ̂ as
NA(θ

∗) = {u ∈ Rp : ⟨u, θ − θ∗⟩ ≤ 0, ∀θ − θ∗ ∈ TA(θ∗)} . (A.39)
Note that this means that u ∈ NA(θ∗) if and only if

⟨u, θ − θ∗⟩ ≤ 0, ∀∥θ∥spk ≤ ∥θ∗∥spk (A.40)
⇒⟨u, θ⟩ ≤ ⟨u, θ∗⟩ ∀∥θ∥spk ≤ ∥θ∗∥spk . (A.41)

Now, we claim that ⟨u, θ∗⟩ ≥ 0 for all such u. This can be shown as follows. Assume the contrary,
i.e. there exists a û ∈ NA(θ∗) such that ⟨û, θ∗⟩ < 0. Now, noting that (−θ∗) ∈ TA(θ∗), we have

⟨û,−θ∗⟩ = −⟨û, θ∗⟩ > 0 , (A.42)
so that û /∈ NA(θ∗), which is a contradiction, and the claim follows.

Therefore, we can write
⟨u, θ∗⟩ = t∥θ∗∥spk (A.43)

for some t ≥ 0. Then, u ∈ NA(θ∗) if and only if
∃t ≥ 0 , ⟨u, θ∗⟩ = t∥θ∗∥spk , ⟨u, θ⟩ ≤ t∥θ∗∥spk ∀∥θ∥spk ≤ ∥θ∗∥spk . (A.44)

Since
⟨u, θ⟩ ≤ t∥θ∗∥spk , ∀∥θ∥spk ≤ ∥θ∗∥spk ⇒ ∥u∥sp

∗

k ≤ t , (A.45)
the statement follows.

The k-support norm can be thought of as a group sparse norm with overlaps, such as been dealt with
in [3]. Therefore, we can utilize some of the analysis techniques developed in [3], specialized to
the structure of the k-support norm. We begin by stating a theorem which enables us to bound the
Gaussian width of the error set.

First, we define sets that involve the support set of θ∗. Let us define the set G∗ ⊆ G(k) to be the set
of all groups in G(k) which overlap with the support of θ∗, i.e.

G∗ = {G ∈ G(k) : G ∩ supp(θ∗) ̸= ∅} . (A.46)
Let S be the union of all groups in G∗, i.e. S =

⋃
G∈G∗ G, and the size of S be |S| = s. We are

going to use three lemmas in order to prove the above bound. The first lemma, proved in [1], upper
bounds the Gaussian width by an expected distance to the normal cone as follows.

Lemma 2 ([1] Proposition 3.6) Let C be any nonempty convex in Rp, and g ∼ N (0, Ip) be a
random gaussian vector. Then

ω(C ∩ Sp−1) ≤ Eg[dist(g,C∗)] , (A.47)
where C∗ is the polar cone of C.

Note that NA is the polar cone of TA by definition. Therefore, using Jensen’s inequality, we obtain
ω(TA ∩ Sp−1)2 ≤ E2

g[dist(g,NA)] ≤ Eg[dist(g,NA)
2] ≤ Eg[∥g− z(g)∥22] , (A.48)

where z(g) ∈ NA is a (random) vector constructed to lie always in the normal cone. The construc-
tion proceeds as follows.
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Constructing z(g):

Note that θ∗
Sc = 0. Let us choose a vector v ∈ NA such that

∥v∥sp
∗

k = 1 and vSc = 0 . (A.49)

We can choose an appropriately scaled v so that

⟨v, θ∗⟩ = ∥θ∗∥spk , (A.50)

and let us write without loss of generality v = [vS vSc ].

Next, let g ∼ N (0, Ip), and write g = [gS gSc ]. We define the quantity

t(g) = max
{
∥gG∥2 : G ∈ G(k), G ⊆ Sc

}
= max

⎧
⎨

⎩

(
∑

i∈G

g2
i

) 1
2

: G ∈ G(k), G ⊆ Sc

⎫
⎬

⎭ ,

(A.51)
and let z = z(g) = [zS zSc ] such that

zS = t(g)vS , zSc = gSc . (A.52)

Note that
⟨z, θ∗⟩ = t(g)⟨vS , θ

∗
S⟩ = t(g)∥θ∗∥spk , (A.53)

and

∥z∥sp
∗

k = max
{
∥zG∥2 : G ∈ G(k)

}
(A.54)

= max
{
max{∥zG∥2 : G ∈ G(k), G ⊆ S} , max{∥zG∥2 : G ∈ G(k), G ⊆ Sc}

}

(A.55)
(a)
= max

{
t(g)∥v∥sp

∗

k , t(g)
}

(A.56)

= t(g) (A.57)

where (a) follows from the definition of t(g) and the fact that

max{∥zG∥2 : G ∈ G(k), G ⊆ S} = t(g)max{∥vG∥2 : G ∈ G(k), G ⊆ S} = t(g)∥v∥sp
∗

k ,
(A.58)

and since ∥v∥sp
∗

k = 1. Therefore, z(g) ∈ NA(θ∗) by definition in (A.38) .

In order to upper bound the expectation of t(g), we use the following comparison inequality
from [3].

Lemma 3 ([3] Lemma 3.2) Let q1, q2, . . . , qL be L, χ-squared random variables with d degrees of
freedom. Then

E

[
max
1≤i≤L

qi

]
≤
(√

2 logL+
√
d
)2

. (A.59)

Last, we prove an upper bound on the expected value of t(g), as shown in the following lemma.

Lemma 4 Consider G∗ ⊆ G(k) to be the set of groups intersecting with the support of θ∗, and let S
be the union of groups in G∗, such that s = |S|. Then,

Eg[t(g)
2] ≤

(√
2k log

(
p− k −

⌈ s
k

⌉
+ 2
)
+
√
k

)2

. (A.60)

Proof: Note that

Eg[t(g)
2] = Eg

[(
max

{
∥gG∥2 : G ∈ G(k), G ⊆ Sc

})2]
(A.61)

≤ Eg

[
max

{
∥gG∥22 : G ∈ G(k), G ⊆ Sc

}]
(A.62)
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Each term ∥gG∥22 is a χ-squared variable with at most k degrees of freedom. Since the set S has
size s, the set G∗ has to contain at least sk =

⌈
s
k

⌉
groups of size k. Therefore,

s = |S| ≥ k + (sk − 1) , (A.63)

and therefore the size of its complement is upper bounded by

|Sc| ≤ p− k − sk + 1 . (A.64)

Therefore the following inequality provides an upper bound on the number of groups involved in
computing the maximum in (A.62)
∣∣∣
{
G ∈ G(k), G ⊆ Sc

}∣∣∣ ≤
(
p− k − sk + 1

k

)
+

(
p− k − sk + 1

k − 1

)
+ · · ·+

(
p− k − sk + 1

1

)

(A.65)

≤ (p− k − sk + 2)k (A.66)

where we have used the following inequality
(
n

h

)
≤ nh

h!
, ∀n ≥ h ≥ 0 , (A.67)

which also provides
k∑

h=1

(
n

h

)
≤ (n+ 1)k . (A.68)

Therefore, we can upper bound (A.62) using Lemma 3 as

Eg[t(g)
2] ≤ Eg

[
max

{
∥gG∥22 : G ∈ G(k), G ⊆ Sc

}]
(A.69)

≤
(√

2 log
(
(p− k −

⌈ s
k

⌉
+ 2)k

)
+
√
k

)2

(A.70)

and the statement follows.

Now we are ready to prove the upper bound on the Gaussian width. First, note that

ω(TA(θ∗) ∩ Sp−1)2 ≤ Eg[dist(g,NA(θ
∗))2] (A.71)

(a)
≤ Eg[∥g− z(g)∥22] (A.72)

= Ew[∥zS − gS∥22] (A.73)
(b)
= E[∥zS∥22] +E[∥gS∥22] (A.74)
(c)
= E[t(g)2] · ∥vS∥22 + |S| (A.75)

(d)
≤

(√
2k log

(
(p− k −

⌈ s
k

⌉
+ 2)

)
+
√
k

)2

·
⌈ s
k

⌉
+ s , (A.76)

where (a) follows from the definition of distance to a set, (b) follows from the independence of gS

and gSc , (c) follows from the fact that the expected length of an |S| length random i.i.d. Gaussian

vector is
√
|S|, and (d) follows since |S| = ks

k , and that ∥vS∥2 ≤
√⌈

s
k

⌉
∥vS∥sp

∗

k =
√⌈

s
k

⌉
. Thus

inequality (28) follows.

Next, we prove inequality (27). Let us denote t = XTw, and note that t ∼ N (0, Ip)

∥XT (y −Xθ∗)∥sp
∗

k = ∥XTw∥sp
∗

k = ∥t∥sp
∗

k = max{∥tG∥2 : G ∈ G(k)} . (A.77)
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Therefore, we can use Lemma 3 in order to bound the expectation E[∥t∥sp
∗

k ] as

E[∥t∥sp
∗

k ] = E[max{∥tG∥2 : G ∈ G(k)}] (A.78)

= E[max{∥tG∥2 : G ∈ G(k), |G| = k} (A.79)

≤
(√

2 log

(
p

k

)
+
√
k

)2

(A.80)

≤
(√

2k log
(ep
k

)
+
√
k

)2

(A.81)

where we have used the inequality (
p

k

)
≤
(ep
k

)k
(A.82)

Therefore, inequality (27) follows, and by our choice of λp, with high probability, θ∗ lies in the
feasible set.
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