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This supplementary material is composed of two sections. The first section includes numerical
results on the proposed algorithm. The second section includes proofs of the theorems.

1 Experiments
1.1 The dataset

The network intrusion dataset from UCI archive [1] consists of a series of TCP connection records,
labeled either as normal connections or as attacks. The data consists of 42 features, and we take 15
of them as types of contexts. Taken features are normalized to lie in [0, 1]. The prediction action
belongs to the set {attack, noattack}. Reward is 1 when the prediction is correct and 0 otherwise.

1.2 Learning methods that we compare against

Contextual zooming (CZ) [2]: This algorithm adaptively creates balls over the joint action and
context space, calculates an index for each ball based on the history of selections of that ball, and
at each time step selects an action according to the ball with the highest index that contains the
action-context pair.

Hybrid-ε [3]: This algorithm is the contextual version of ε-greedy, which forms context-dependent
sample mean rewards for the actions by considering the history of observations and decisions for
groups of contexts that are similar to each other.

Ensemble Learning Methods Average Majority (AM) [5], Adaboost [6], Online Adaboost [7] and
Blum’s Variant of Weighted Majority (Blum) [8]: The goal of ensemble learning is to create a strong
(high accuracy) classifier by combining predictions of base classifiers. Hence all these methods
require base classifiers (trained a priori) that produce predictions (or actions) based on the context
vector.

AM simply follows the prediction of the majority of the classifiers and does not perform active
learning. Adaboost is trained a priori with 1500 instances, whose labels are used to compute the
weight vector. Its weight vector is fixed during the test phase (it is not learning online); hence no
active learning is performed during the test phase. In contrast, Online Adaboost always receives the
true label at the end of each time slot. It uses a time window of 1000 past observations to retrain its
weight vector. Similar to Online Adaboost, Blum also learns its weight vector online.

1.3 Numerical Results

We compare the performance of ORL-CF with other learning methods described in the previous
subsection. For the ensemble learning methods, the base classifiers are logistic regression classifiers,
each trained with 5000 different instances from the dataset. Comparison of performances in terms
of the error rate is given in Table 1. We see that ORL-CF has the lowest error rate at 1.19%, which
is 27% less than the second best method (Blum). All the ensemble learning methods we compare
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against use classifiers to make predictions, and these classifiers require a priori training. In contrast,
ORL-CF do not require any a priori training and learns online.

Algorithm Reference error %
AM [5] 3.07

Adaboost [6] 3.1
Online Adaboost [7] 2.25

Blum [8] 1.64
CZ [2] 53

Hybrid-ε [3] 8.8
ORL-CF our work 1.19

Table 1: Comparison of the error rate of ORL-CF with ensemble learning methods and other online
learning methods for the network intrusion dataset.

2 Proofs

Let A := |A|. We first define a sequence of events which will be used in the analysis of the regret
of ORL-CF. For p ∈ PR(a),t, Let π(a, p) = µ(a, x∗R(a)(p)), where x∗R(a)(p) is the context at the
geometric center of p. For j ∈ D−R(a), let

INACCt(a, j) :=

{
|r̄R(a),j
t (pR(a),t, pj,t, a)− π(a, pR(a),t)| >

3

2
Ls(pR(a),t)

}
,

be the event that the pairwise sample mean corresponding to pair (R(a), j) of types is inaccurate
for action a. Let

ACCt(a) :=
⋂

j∈D−R(a)

INACCt(a, j)C ,

be the event that all pairwise sample means corresponding to pairs (R(a), j), j ∈ D−R(a) are
accurate. Consider t ∈ τ(T ). Let

WNGt(a) := {R(a) /∈ Relt(a)} ,
be the event that the type relevant to action a is not in the set of candidate relevant types, and

WNGt :=
⋃
a∈A

WNGt(a),

be the event that the type relevant to some action a is not in the set of candidate relevant types of
that action. Finally, let

CORRT :=
⋂

t∈τ(T )

WNGCt ,

be the event that the relevant types for all actions are in the set of candidate relevant types at all
exploitation steps.

2.1 Proof of Theorem 1

We first prove several lemmas related to Theorem 1. The next lemma gives a lower bound on the
probability of CORRT .
Lemma 1. For ORL-CF, for all a ∈ A, t ∈ τ(T ), we have

P(INACCt(a, j)) ≤
2δ

ADt4
.

for all j ∈ D−R(a), and P(CORRT ) ≥ 1− δ for any T .

Proof. For t ∈ τ(T ), we have Ut = ∅, hence

S
ind(q)
t (q, a) ≥ 2 log(tAD/δ)

(Ls(pR(a),t))2
,
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for all a ∈ A, q ∈ Qi(t) and i ∈ D. Due to Assumption 1, since rewards in r̄R(a),j
t (pR(a),t, pj,t, a)

are sampled from distributions with mean between [π(a, pR(a),t) − L
2 s(pR(a),t), π(a, pR(a),t) +

L
2 s(pR(a),t)], using a Chernoff bound we get

P(INACCt(a, j)) ≤ 2 exp

(
−2(Ls(pR(a),t))

2 2 log(tAD/δ)

(Ls(pR(a),t))2

)
= 2 exp (−4(log t+ log(AD/δ)))

≤ 2 exp (−4(log t)) exp (− log(AD/δ))

≤ 2δ

ADt4
.

We have WNGt(a) ⊂
⋃
j∈D−R(a)

INACCt(a, j). Thus

P(WNGt(a)) ≤ 2δ

At4
, and P(WNGt) ≤

2δ

t4
.

This implies that

P(CORRCT ) ≤
∑
t∈τ(T )

P(WNGt) (1)

≤
∑
t∈τ(T )

2δ

t4
≤
∞∑
t=3

2δ

t4
≤ δ.

Lemma 2. When CORRT happens we have for all t ∈ τ(T )

|r̄ĉt(a)t (pĉt(a),t, a)− µ(a, xR(a),t)| ≤ 8Ls(pR(a),t).

Proof. From Lemma 1, CORRT happens when

|r̄R(a),j
t (pR(a),t, pj,t, a)− π(a, pR(a),t)| ≤

3L

2
s(pR(a),t),

for all a ∈ A, j ∈ D−R(a), t ∈ τ(T ). Since |µ(a, xR(a),t) − π(a, pR(a),t)| ≤ Ls(pR(a),t)/2, we
have

|r̄R(a),j
t (pR(a),t, pj,t, a)− µ(a, xR(a),t)| ≤ 2Ls(pR(a),t), (2)

for all a ∈ A, j ∈ D−R(a), t ∈ τ(T ). Consider ĉt(a). Since it is chosen from Relt(a) as the type
with the minimum variation, we have on the event CORRT

|r̄ĉt(a),kt (pĉt(a),t, pk,t, a)− r̄ĉt(a),jt (pĉt(a),t, pj,t, a)| ≤ 3Ls(pR(a),t),

for all j, k ∈ D−ĉt(a). Hence we have

|r̄R(a)
t (pR(a),t, a)− r̄ĉt(a)t (pĉt(a),t, a)|

≤ max
k,j
|r̄R(a),k
t (pR(a),t, pk,t, a)− r̄ĉt(a),jt (pĉt(a),t, pj,t, a)|

≤ max
k,j

(
|r̄R(a),k
t (pR(a),t, pk,t, a)− r̄R(a),ĉt(a)

t (pR(a),t, pĉt(a),t, a)|

+|r̄ĉt(a),R(a)
t (pĉt(a),t, pR(a),t, a)− r̄ĉt(a),jt (pĉt(a),t, pj,t, a)|

)
≤ 6Ls(pR(a),t). (3)

Combining 2 and 3, we get

|r̄ĉt(a)t (pĉt(a),t, a)− µ(a, xR(a),t)| ≤ 8Ls(pR(a),t).
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Since for t ∈ τ(T ), αt = arg maxa∈A r̄
ĉt(a)
t (pĉt(a),t, a), using the result of Lemma 2, we conclude

that

µt(αt) ≥ µt(a∗(xt))− 8L(s(pR(αt),t) + s(pR(a∗(xt)),t)), (4)

Thus, the regret in exploitation steps is

8L
∑
t∈τ(T )

(
s(pR(αt),t) + s(pR(a∗(xt)),t)

)
≤ 16L

∑
t∈τ(T )

max
a∈A

s(pR(a),t)

≤ 16L
∑
t∈τ(T )

max
i∈D

s(pi,t)

≤ 16L
∑
t∈τ(T )

∑
i∈D

s(pi,t)

≤ 16L
∑
i∈D

max
i∈D

 ∑
t∈τ(T )

s(pi,t)


= 16LDmax

i∈D

 ∑
t∈τ(T )

s(pi,t)

 .

We know that as time goes on ORL-CF uses partitions with smaller and smaller intervals, which
reduces the regret in exploitations. In order to bound the regret in exploitations for any sequence
of context arrivals, we assume a worst case scenario, where context vectors arrive such that at each
t, the active interval that contains the context of each type has the maximum possible length. This
happens when for each type i contexts arrive in a way that all level l intervals are split to level l + 1
intervals, before any arrivals to these level l + 1 intervals happen, for all l = 0, 1, 2, . . .. This way it
is guaranteed that the length of the interval that contains the context for each t ∈ τ(T ) is maximized.
Let lmax be the level of the maximum level interval in Pi(T ). For the worst case context arrivals we
must have

lmax−1∑
l=0

2l2ρl < T

⇒ lmax < 1 + log2 T/(1 + ρ),

since otherwise maximum level hypercube will have level larger than lmax. Hence we have

16LDmax
i∈D

 ∑
t∈τ(T )

s(pi,t)

 ≤ 16L

1+log2 T/(1+ρ)∑
l=0

2l2ρl2−l

= 16L

1+log2 T/(1+ρ)∑
l=0

2ρl

≤ 16L22ρT ρ/(1+ρ). (5)

2.2 Proof of Theorem 2

Recall that time t is an exploitation step only if Ut = ∅. In order for this to happen we need
Si,jt (pi,t, pj,t, a) ≥ Di,t for all q ∈ Qi(t). Since for any pi ∈ Pi,t, pj ∈ Pj,t we have
Si,jt (pi, pj , a) = Sj,it (pj , pi, a), the number of explorations of pair (pi, pj) at time t will be at
most

2 log(tAD/δ)

L2 min(s(pi), s(pj))2
+ 1 (6)

There are D(D− 1) type pairs. Whenever action a is explored, all the counters for these D(D− 1)
type pairs are updated for the pairs of intervals that contain types of contexts present at time t, i.e.
q ∈ Qt. Now consider a hypothetical scenario in which instead of updating the counters of all
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q ∈ Qt, the counter of only one of the randomly selected interval pair is updated. Clearly, the
exploration regret of this hypothetical scenario upper bounds the exploration regret of the original
scenario. We can go one step further and consider a second hypothetical scenario where there is
only two types i and j, for which the actual regret at every exploration step is magnified (multiplied)
by D(D − 1). The maximum possible exploration regret of the second scenario (for the worst case
of type i and j context arrivals) upper bounds the exploration regret of the first scenario. Hence,
we bound the regret of the second scenario. Let lmax be the maximum possible level for an active
interval for type i by time T . We must have

lmax−1∑
l=0

2ρl < T,

which implies that lmax < 1 + log2 T/ρ. Next, we consider all pairs of intervals for which the
minimum interval has level l. For each type j interval pj that has level l, there exists no more than∑lmax

k=l 2k type i intervals that have lengths greater than or equal to l. Consider a level k type i
interval pi such that l ≤ k < 1 + log2 T/ρ. Then for the pair of intervals (pi, pj) the exploration
regret is bounded by (cO + 1)

(
2 log(tAD/δ)/(2−2kL2) + 1

)
. Hence, the worst case exploration

regret is bounded by

RO(T ) ≤ (cO + 1)D2

2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

2k
(

2 log(tAD/δ)

2−2kL2
+ 1

)
= (cO + 1)D2

4 log(tAD/δ)

L2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

23k + 2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

2k


≤ 4D2(cO + 1) log(tAD/δ)

L2
× 240

7
T 4/ρ +

64D2(cO + 1)

3
T 2/ρ.

2.3 Proof of Theorem 4

To achieve ε-optimality in every exploitation step it is sufficient to have

INACCt(a, j)C =

{
|r̄R(a),j
t (pR(a),t, pj,t, a)− π(a, pR(a),t)| <

3

2
Ls(pR(a),t)

}
,

⊂
{
|r̄R(a),j
t (pR(a),t, pj,t, a)− π(a, pR(a),t)| < ε

}
,

for t ∈ τ(T ). This is satisfied when lmin ≥ log2(3L/(2ε)). Starting with level lmin intervals instead
of level 0 intervals decreases the exploitation regret of ORL-CF. Hence the regret bound in Theorem
1 is an upper bound on the exploitation regret.

For any sequence of context arrivals, we have the following bound on the level of the interval with
the maximum level,

lmax < 1 + lmin + log2 T/ρ.

Continuing similarly with the proof of Theorem 2, we have

RO(T ) ≤ (cO + 1)D2

2

1+log2 T/ρ∑
l=0

2lmin2l
1+log2 T/ρ∑

k=l

2lmin2k
(

24lmin
2 log(tAD/δ)

2−2lmin2−2kL2
+ 1

)
= (cO + 1)D2

4 log(tAD/δ)

L2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

23k + 22lmin2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

2k


≤ 24lmin

(
4D2(cO + 1) log(tAD/δ)

L2
× 240

7
T 4/ρ +

64D2(cO + 1)

3
T 2/ρ

)
.
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