
Supporting Material:

Stochastic Multi-Armed-Bandit Problem
with Non-stationary Rewards

Omar Besbes
Columbia University

New York, NY
ob2105@columbia.edu

Yonatan Gur
Columbia University

New York, NY
ygur14@gsb.columbia.edu

Assaf Zeevi
Columbia University

New York, NY
assaf@gsb.columbia.edu

A Proof of Theorem 1

At a high level the proof adapts a general approach of identifying a worst-case nature “strategy”
(see proof of Theorem 5.1 in [1], which analyze the worst-case regret relative to a single best action
benchmark in a fully adversarial environment), extending these ideas appropriately to our setting.
Fix T ≥ 1, K ≥ 2, and VT ∈

[
K−1,K−1T

]
. In what follows we restrict nature to the class V ′ ⊆ V

that was described in §3, and show that when µ is drawn randomly from V ′, any policy in P must
incur regret of order (KVT )

1/3
T 2/3.

Step 1 (Preliminaries). Define a partition of the decision horizon T to m =
⌈
T

∆T

⌉
batches

T1, . . . , Tm batches of size ∆̃T each (except perhaps Tm) according to Equation (2) in the main text.
For some ε > 0 that will be specified shortly, define V ′ to be the set of reward vectors sequences µ
such that:

• µkt ∈ {1/2, 1/2 + ε} for all k ∈ K, t ∈ T
•
∑
k∈K µ

k
t = K/2 + ε for all t ∈ T

• µkt = µkt+1 for any (j− 1)∆̃T + 1 ≤ t ≤ min
{
j∆̃T , T

}
− 1, j = 1, . . . ,m, for all k ∈ K

For each sequence in V ′ in any epoch there is exactly one arm with expected reward 1/2 + ε where
the rest of the arms have expected reward 1/2, and expected rewards cannot change within a batch.

Let ε = min

{
1
4 ·
√
K/∆̃T , VT ∆̃T /T

}
. Then, for any µ ∈ V ′ one has:

T−1∑
t=1

sup
k∈K

∣∣µkt − µkt+1

∣∣ ≤ m−1∑
j=1

ε =

(⌈
T

∆̃T

⌉
− 1

)
· ε ≤ Tε

∆̃ T
≤ VT ,

where the first inequality follows from the structure of V ′. Therefore, V ′ ⊂ V .

Step 2 (Single batch analysis). Fix some policy π ∈ P , and fix a batch j ∈ {1, . . . ,m}. Let
kj denote the “good” arm of batch j. We denote by Pjkj the probability distribution conditioned
on arm kj being the “good” arm in batch j, and by P0 the probability distribution with respect to
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random rewards (i.e. expected reward 1/2) for each arm. We further denote by Ejkj [·] and E0[·] the
respective expectations. Assuming binary rewards, we let X denote a vector of |Tj | rewards, i.e.
X ∈ {0, 1}|Tj |. We denote by N j

k the number of times arm k was selected in batch j. In the proof
we use Lemma A.1 from [1] that characterizes the difference between the two different expectations
of some function of the observed rewards vector:

Lemma 1 Let f : {0, 1}|Tj | → [0,M ] be a bounded real function. Then, for any k ∈ K:

Ejk [f(X)]− E0 [f(X)] ≤ M

2

√
−E0

[
N j
k

]
log (1− 4ε2).

Recalling that kj denotes the “good” arm of batch j, one has

Ejkj [µπt ] =

(
1

2
+ ε

)
Pjkj {πt = kj}+

1

2
Pjkj {πt 6= kj} =

1

2
+ εPjkj {πt = kj} ,

and therefore,

Ejkj

∑
t∈Tj

µπt

 =
|Tj |
2

+
∑
t∈Tj

εPjkj {πt = kj} =
|Tj |
2

+ εEjkj
[
N j
kj

]
. (1)

In addition, applying Lemma 1 with f(X) = N j
kj

(clearly N j
kj
∈ {0, . . . , |Tj |}) we have:

Ejkj
[
N j
kj

]
≤ E0

[
N j
kj

]
+
|Tj |
2

√
−E0

[
N j
kj

]
log (1− 4ε2).

Summing over arms, one has:
K∑

kj=1

Ejkj
[
N j
kj

]
≤

K∑
kj=1

E0

[
N j
kj

]
+

K∑
kj=1

|Tj |
2

√
−E0

[
N j
kj

]
log (1− 4ε2)

≤ |Tj |+
|Tj |
2

√
− log (1− 4ε2) |Tj |K, (2)

for any j ∈ {1, . . . ,m}, where the last inequality holds since
∑K
kj=1 E0

[
N j
kj

]
= |Tj |, and thus by

Cauchy-Schwarz inequality
∑K
kj=1

√
E0

[
N j
kj

]
≤
√
|Tj |K.

Step 3 (Regret along the horizon). Let µ̃ be a random sequence of expected rewards vectors, in
which in every batch the “good” arm is drawn according to an independent uniform distribution over
the set K. Clearly, every realization of µ̃ is in V ′. In particular, taking expectation over µ̃, one has:

Rπ(V ′, T ) = sup
µ∈V′

{
T∑
t=1

µ∗t − Eπ
[
T∑
t=1

µπt

]}
≥ Eµ̃

[
T∑
t=1

µ̃∗t − Eπ
[
T∑
t=1

µ̃πt

]]

≥
m∑
j=1

∑
t∈Tj

(
1

2
+ ε

)
− 1

K

K∑
kj=1

EπEjkj

∑
t∈Tj

µ̃πt


(a)

≥
m∑
j=1

∑
t∈Tj

(
1

2
+ ε

)
− 1

K

K∑
kj=1

(
|Tj |
2

+ εEπEjkj
[
N j
kj

])
≥

m∑
j=1

∑
t∈Tj

(
1

2
+ ε

)
− |Tj |

2
− ε

K
Eπ

K∑
kj=1

Ejkj
[
N j
kj

]
(b)

≥ Tε− Tε

K
− Tε

2K

√
− log (1− 4ε2) ∆̃TK

(c)

≥ Tε

2
− Tε2

K

√
log (4/3) ∆̃TK,
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where: (a) holds by (1); (b) holds by (2), since
∑m
j=1 |Tj | = T , since m ≥ T/∆̃T , and since

|Tj | ≤ ∆̃T for all j ∈ {1, . . . ,m}; and (c) holds by 4ε2 ≤ 1/4, and − log(1 − x) ≤ 4 log(4/3)x

for all x ∈ [0, 1/4], and since K ≥ 2. Set ∆̃T =

⌈
K1/3

(
T
VT

)2/3
⌉

. Recall that ε =

min

{
1
4 ·
√
K/∆̃T , VT ∆̃T /T

}
. Then, one has:

Rπ(V ′, T ) ≥ Tε

1

2
− ε

√
∆̃T log(4/3)

K

 ≥ Tε

(
1

2
−
√

log(4/3)

4

)

≥ 1

4
·min

{
T

4
·

√
K

∆̃T

, VT ∆̃T

}

≥ 1

4
·min

{
T

4
·

√
K

2K1/3(T/VT )2/3
, (KVT )

1/3
T 2/3

}

≥ 1

4
√

2
· (KVT )1/3T 2/3.

This concludes the proof.

B Continuous updating

In this section we show that near optimality in the non-stationary stochastic setting can be obtained
by re-tuning the Exp3.S policy, introduced in [1]:

Exp3.S. Inputs: a positive numbers γ, and α.
1. Initialization: for any k ∈ K set wkt = 1

2. For each t = 1, 2, . . .:
• For each k ∈ K, set

pkt = (1− γ)
wkt∑K

k′=1 w
k′
t

+
γ

K

• Draw an arm k′ from K according to the distribution
{
pkt
}K
k=1

• Receive a reward Xk′

t

• For k′ set X̂k′

t = Xk′

t /p
k′

t , and for any k 6= k′ set X̂k
t = 0. For all k ∈ K update:

wkt+1 = wkt exp

{
γX̂k

t

K

}
+
eα

K

K∑
k′=1

wk′(t)

We next prove that by selecting the tuning parameters to be α = 1
T and γ =

min

{
1,
(

2VTK log(KT )
(e−1)2T

)1/3
}

, Exp3.S achieve near optimal performance is the non-stationary

stochastic setting. The structure of the proof is follows: First, we follow the proof of Theorem 2
(see main text), breaking the decision horizon to a sequence of decision batches and analyzing the
difference in performance between the sequence of single best actions and the performance of the
dynamic oracle. Then, we analyze the regret of the Exp3.S policy when compared to the sequence
composed of the single best actions of each batch (this part of the proof roughly follows the proof
lines of Theorem 8.1 of [1], while considering a possibly infinite number of changes in the identity
of the best arm). Finally, we select tuning parameters that minimize the overall regret.

Step 1 (Preliminaries). Fix T ≥ 1, K ≥ 2, and TK−1 ≥ VT ≥ K−1. Let π be the Exp3.S policy
(the tuning parameters with be set later). We break the decision horizon T to batches T1, . . . , Tm of
size ∆T each (except perhaps Tm) according to step 1 in the proof of Theorem 2 (see main text).

Step 2. Let µ ∈ V . We follow the proof of Theorem 2 (see the beginning of step 3) to obtain:
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Eπ
∑
t∈Tj

(µ∗t − µπt )

 =
∑
t∈Tj

µ∗t −max
k∈K

∑
t∈Tj

µkt

+ max
k∈K

∑
t∈Tj

µkt

− Eπ
∑
t∈Tj

µπt


≤ 2Vj∆T + max

k∈K

∑
t∈Tj

µkt

− Eπ
∑
t∈Tj

µπt

 , (3)

for each j ∈ {1, . . . ,m} and for any µ ∈ V . Fix j ∈ {1, . . . ,m}. We next bound the difference
between the performance of the single best action in Tj and that of the policy, throughout Tj . Let tj
denote the first decision index of batch j, that is, tj = (j − 1)∆T + 1. We Wt denote the sum of all
weights at decision t: Wt =

∑K
k=1 w

k
t . Following the proof of Theorem 8.1 in [1], one has:

Wt+1

Wt
≤ 1 +

γ/K

1− γ
Xπ
t +

(e− 2)(γ/K)2

1− γ

K∑
k=1

X̂k
t + eα. (4)

Taking logarithms on both sides of (4) and summing over all t ∈ Tj , we get:

log

(
Wtj+1

Wtj

)
≤ γ/K

1− γ
∑
t∈Tj

Xπ
t +

(e− 2)(γ/K)2

1− γ
∑
t∈Tj

K∑
k=1

X̂k
t + eα |Tj | , (5)

where for Tm set Wtm+1
= WT . Let kj be the best single action in Tj : kj ∈

arg maxk∈K

{∑
t∈Tj X

k
t

}
. Then,

w
kj
tj+1

≥ w
kj
tj+1 exp

 γ

K

tj+1−1∑
tj+1

X̂
kj
t


≥ eα

K
Wtj exp

 γ

K

tj+1−1∑
tj+1

X̂
kj
t


≥ α

K
Wtj exp

 γ

K

∑
t∈Tj

X̂
kj
t

 ,

where the last inequality holds since γX̂kj
t /K ≤ 1. Therefore,

log

(
Wtj+1

Wtj

)
≥ log

(
w
kj
tj+1

Wtj

)
≥ log

( α
K

)
+
γ

K

∑
t∈Tj

Xπ
t . (6)

Taking (5) and (6) together, one has∑
t∈Tj

Xπ
t ≥ (1− γ)

∑
t∈Tj

X̂
kj
t −

K log (K/α)

γ
− (e− 2)

γ

K

∑
t∈Tj

K∑
k=1

X̂k
t −

eαK |Tj |
γ

.

Taking expectation with respect to the noisy rewards and the actions of Exp3.S we have:

max
k∈K

∑
t∈Tj

µkt

− E

∑
t∈Tj

µπt

 ≤
∑
t∈Tj

µ
kj
t +

K log (K/α)

γ
+ (e− 2)

γ

K

∑
t∈Tj

K∑
k=1

µkt

+
eαK |Tj |

γ
− (1− γ)

∑
t∈Tj

µ
kj
t

= γ
∑
t∈Tj

µ
kj
t +

K log (K/α)

γ
+ (e− 2)

γ

K

∑
t∈Tj

K∑
k=1

µkt +
eαK |Tj |

γ

(a)

≤ (e− 1) γ |Tj |+
K log (K/α)

γ
+
eαK |Tj |

γ
, (7)
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for every batch 1 ≤ j ≤ m, where (a) holds since
∑
t∈Tj µ

kj
t ≤ |Tj | and∑

t∈Tj
∑K
k=1 µ

k
t ≤ K |Tj |.

Step 3. Taking (3) together with (7), and summing over m = dT/∆T e batches we have:

Rπ(V, T ) ≤
m∑
j=1

(
(e− 1) γ |Tj |+

K log (K/α)

γ
+
eαK |Tj |

γ
+ 2Vj∆T

)

≤ (e− 1) γT +
eαKT

γ
+

(
T

∆T
+ 1

)
K log (K/α)

γ
+ 2VT∆T . (8)

Setting the tuning parameters to be α = 1
T and γ = min

{
1,
(

2VTK log(KT )
(e−1)2T

)1/3
}

, and selecting a

batch size ∆T =

⌈
(log (KT )K)

1/3 ·
(

T
2VT

)2/3
⌉

one has:

Rπ(V, T ) ≤ 8(e− 1) (KVT log (KT ))
1/3 · T 2/3.

Finally, whenever T is unknown, we can use Exp3.S as a subroutine over exponentially increas-
ing pulls epochs T` = 2`, ` = 0, 1, 2, . . ., in a manner which is similar to the one described
in Corollary 8.4 in [1] to show that since for any ` the regret incurred during T` is at most
C (KVT log (KT`))

1/3 · T 2/3
` (by tuning α and γ according to T` in each epoch `), and for some

absolute constant C̃, we get that Rπ(V, T ) ≤ C̃ (log (KT ))
1/3

(KVT )
1/3

T 2/3. This concludes
the proof.

C Numerical Results

Setup. We illustrate the upper bound on the regret by a numerical experiment that measures the
average regret that is incurred by Rexp3, in the presence of changing environments. We consider
instances where two arms are available: K = {1, 2}. The reward Xk

t associated with arm k at epoch
t has a Bernoulli distribution with a changing expectation µkt :

Xk
t =

{
1 w.p. µkt
0 w.p. 1− µkt

for all t = 1, . . . , T , and for any pulled arm k ∈ K. The evolution patterns of µkt , k ∈ K will be
specified below. At each epoch t ∈ T the policy selects an arm k ∈ K. Then, the binary rewards are
generated, and Xk

t is observed. The pointwise regret that is incurred at epoch t is Xk
t −X

k∗t
t , where

k∗t = arg maxk∈K µ
k
t . We note that while the pointwise regret at epoch t is not necessarily positive,

its expectation is. Summing over the whole horizon and replicating 20,000 times for each instance
of variation, the average regret approximates the expected regret compared to the dynamic oracle.

First stage (fixed variation, different time horizons). The objective of the first part of the simula-
tion is to measure the growth rate of the average regret incurred by the policy, as a function of the
horizon length, under a fixed variation budget. We use two complementary instances. In the first
instance the expected rewards are sinusoidal:

µ1
t =

1

2
+

1

2
sin

(
VTπt

T

)
, µ2

t =
1

2
+

1

2
sin

(
VTπt

T
+ π

)
for all t = 1, . . . , T . In the second instance similar sinusoidal rewards evolution is “compressed”
into the first third of the horizon, where in the rest of the horizon the expected rewards remain fixed:

µ1
t =

{
1
2 + 1

2 sin
(

3VTπt
T + π

2

)
if t < T

3
0 otherwise µ2

t =

{
1
2 + 1

2 sin
(

3VTπt
T − π

2

)
if t < T

3
1 otherwise

for all t = 1, . . . , T . Both instances describe different changing environments under the same
(fixed) variation budget VT = 3. While in the first instance the variation budget is spent throughout
the whole horizon, in the second one the same variation budget is spent only over the first third of
the horizon. For different values of T (between 3000 and 40000) and for both variation instances

5



Figure 1: Numerical simulation of the performance of Rexp3. (Upper left) The average performance
trajectory in the presence of sinusoidal expected rewards, with a fixed variation budget VT = 3. (Upper right)
The average performance trajectory under an instance in which the same variation budget is “spent” only over
the first third of the horizon. In both instances the average performance trajectory of the policy is generated
along T = 5, 000 epochs. (Bottom) Log-log plots of the averaged regret as a function of the horizon length T .

we estimated the regret through 20,000 replications (the average performance trajectory of Rexp3
for T = 5000 is depicted in the upper-left and upper-right plots of Figure 1).

This stage of the simulation illustrates the decision process of the policy, as well as the order T 2/3

growth rate of the regret. The upper parts of Figure 1 describe the performance trajectory of the
policy. One may observe that the policy identifies the arm with the higher expected rewards, and
selects it with higher probability, by updating the probabilities of selecting each arm according to
the received rewards. While the policy adapts quickly to the changes in the expected rewards (and
in the identity of the “better” arm), it keeps experimenting with the sub-optimal arm (the policy’s
trajectory doesn’t reach the one of the dynamic oracle). While Exp3 explores at an order of

√
∆T

epochs in each batch, restarting it every ∆T (recall that VT is fixed, therefore the number of batches
is of order T 1/3, each batch has an order of T 2/3 epochs) yields an exploration rate of order T 2/3.
The lower parts of Figure 1 show plots of the natural logarithm of the averaged regret as a function
of the natural logarithm of the the horizon length. All the standard errors of the data points in these
log-log plots are lower than 0.004. These plots detail the linear dependence between the natural
logarithm of the averaged regret, and the natural logarithm of T . In both cases the slope of the linear
fit for increasing values of T supports the T 2/3 dependence of the minimax regret.

Second stage (increasing the variation). The second stage of the simulation aims to measure how
the growth rate of the averaged regret (as a function of T ) established in the first part changes when
the variation increases. For this purpose we used a variation budget of the form VT = 3T

β

. Using
first instance of sinusoidal variation, we repeated the first step for different values of β between 0
(implying a constant variation, that was simulated at the first stage) and 1 (implying linear variation).
The upper plots of Figure 2 depicts the average performance trajectories of the Rexp3 policy under
different variation budgets. The different slopes, representing different growth rate of the regret for
different values of β appear in the table and the plot, at the bottom of Figure 2.

This part of the simulation demonstrates the impact of the allowed variation on the policy’s deci-
sions. In particular, as ∆T is of order (T/VT )

2/3, holding T fixed and increasing VT impacts the
batch size. This is illustrated at the top plots of Figure 2. The slope of the linear log-log fit is
shown at the bottom of Figure 2, demonstrating the growth rate of the regret when the variation in-
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Figure 2: Variation and performance. (Upper left) The averaged performance trajectory for VT = 1, and
T = 5000. (Upper right) The averaged performance trajectory for VT = 10, and T = 5000. (Bottom) The
slope of the linear fit imply growth rate V

1/3
T .

creases, supporting the V 1/3
T dependence of the minimax regret, and emphasizing the full spectrum

of minimax regret rates (of order V 1/3
T T 2/3) obtained under different variation levels.
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