A Proof of Theorem (1]

We will start with some preliminary lemmas. The first lemma is the well known Weyl’s inequality
in the matrix setting[Bha97].

Lemma 2. Suppose B = A+ E be an n X n matrix. Let \1,--+ A\, and 01, -+ ,0, be the
eigenvalues of B and A respectively such that \y > --- > A\, and o1 > - -+ > 0,. Then we have:

[Xi — il < ||E|ly Vi€ [n].
The following lemma is the Davis-Kahan theorem[Bha97], specialized for rank-1 matrices.

Lemma 3. Suppose B = A+ E. Let A = u* (u*)T be a rank-1 matrix with unit spectral norm.
Suppose further that || E||, < 3. Then, we have:

IA—1] < | El,, and
‘(u,u*>2 _ 1] < 4|E|,,

where A and u are the top eigenvalue eigenvector pair of B.

As outlined in Section (and formalized in the proof of Theorem I, it is sufficient to prove the
correctness of Algorithm [I|for the case of symmetric matrices. So, most of the lemmas we prove in
this section assume that the matrices are symmetric.

Lemma 4. Let S € R™*™ satisfy assumption (S1). Then,

<an|lS],

Proof of Lemma[d} Let x,y be unit vectors such that ||S||s = 27 Sy = Y, ; %iy;Sj. Then, using
a-b < (a®+b?)/2, we have:

—_

1
151, < 5 D (e +3))Si; < 5(an]| Sl + anllS ), 3)
ij
where the last inequality follows from the fact that .S has at most an non-zeros per row and per
column. O

Lemma 5. Let S € R"*™ satisfy assumption (S1). Also, let U € R"™" be a u-incoherent orthog-

ith

onal matrix, i.e., max; HeiTU H2 < f where e; stands for the i*" standard basis vector. Then,

Vp > 0, the following holds:

T ap :u‘\/>
rnzax”ez S U||2 T (a-n-||S])P-
Proof of Lemma[] We prove the lemma using mathematical induction.
Base Case (p = 0): This is just a restatement of the incoherence of U.
Induction step: We have:

e T ()" U], = e TS(SPU)E =Y (e TS (5P )e)? = S (Y Sije; T (SPU)er)?

¢ ¢ g

= Siji S, Z ej, | (S*U)er)(ed (SPU) ey,)

J1jz2

Z i1 Siga (€5, T (SPUN(SPU) "ej,) <3 S, Sigu ll€d (SPU) 2lles, T (SPU) 2

J1jz2 J1J2

CQ MzT
<l n 8],

where (; follows by 23:1 ere; = I, and (, follows from assumption (S1) on S and from the
inductive hypothesis on ||e¢TSp U||2. O

10



In what follows, we prove a number of lemmas concerning the structure of L(*) and E(*) := S§* —
S®). The following lemma shows that the threshold in () is close to that with M — S ) replaced
by L*.

Lemma 6. Let L*,S* be symmetric and satisfy the assumptions of Theorem |l| and let S*) be
the t™ iterate of the k™ stage of Algorithm|l} Let 0%, ... o} be the eigenvalues of L*, such that
lo¥| > --- > |oF| and M1, - -+ , A\, be the eigenvalues of M — S® such that |\1| > -+ > |\,l.
Recall that E®) := S* — S®)_ Suppose further that

1B < 35 (joipal + (3)' ol ). and

2. Supp (E®) C Supp (S*).

1\' 1\* 9 1\'
<|az+1|+<2) |ch|> < <|Ak+1|+<2) |Ak|> §8<|a;z+1|+<2) |a;:|>. @

Proof. Note that M — S® = L* 4 E(®)_ Now, using Lemmas [2] and[4] we have:

Then,

ol

|Art1 — ofpq| < HE(”H <an HE(t)
2

< 8u’ray,
o0

where 7 = (loiyl+ (3)' ' lofl). That is,

Ait1| = lofiil| < 8p*ravy,.  Similarly,

1\
< 8ulravy (1 + (2> )

164 rary,

1( . IR
=3 loksa| + 3 lokl ] s

[[Ak] — |o7]| < 8u?ray;. So we have:

‘(Am +(3) w) - (a;:m (3) |a:;|>

IN

A

where the last inequality follows from the bound o« < %

The following lemma shows that under the same assumptions as in Lemmal[6] we can obtain a bound
on the /., norm of L{**Y) — L*  This is the most crucial step in our analysis since we bound £,
norm of errors which are quite hard to obtain.

Lemma 7. Assume the notation of Lemma @ Also, let L) S®) be the t™ iterates of k" stage
of Algorithm |I| and LA+ St+1) be the (t 4 1)™ iterates of the same stage. Also, recall that
E® .= 8% — §®) apd B+ .= §* — St Suppose further that

1B, < 2 (ol + (3)' log

n

), and

2. Supp (E®) C Supp (S*).

Then, we have:

HL(t-H) I

2u°r N 1\’ "
< (ak+1|+(2) il
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Proof. Let Lt1) = P (M — S®) = UAUT be the eigenvalue decomposition of L1, Also,
recall that M — S) = L* 4+ E(®)_ Then, for every eigenvector u; of L(*+1), we have

(L* + E(t)) u; = A\,

E® 1
(I — > u; = fL*'U,Z‘,

X X
EON ! Ly
=(I—- ¢
W ( Az‘) Ai
E® O\ L*u,
— |1 .
<+Ai+<&)+ » (5)

-1
. (
Note that we used Lemmas andto guarantee the existence of (I — E)\t ) . Hence,

UAUT _ L* — (L*UA—IUTL* _ L*) 4 Z (E(t))pL*UA_(p+q+1)UTL* (E(t))q .
p+q=1
By triangle inequality, we have
lUAUT —L*|| < ||L*UA"'UT L — L7||
+ ¥ H (E(t))pL*UA*(pﬂ“)UTL* (E“))QH . (6)

pt+g>1

We now bound the two terms on the right hand side above.

‘We note that,
|L*UA'UT L — L¥|

o0

— maxe; T (U*E*(U*)TUA‘lUTU*E*(U*)T - U*E*(U*)T) e

ij
= maxe; U* (2*(U*)TUA_1UTU*Z* - 2*) U") e,
ij
< max|le; U - [le; "U*|| - [|U*S () TUATUT U (U) T - USH(U) |2
ij

2r

=

< |L*UAYUT LY — L), (7)

n

where we denote U*S*(U*) " to be the SVD of L*. Let L* + E®) = UAUT + UAUT be the
eigenvalue decomposition of L*+FE®). Note that U TU = 0. Recall that, UAU " = P, (M —S®) =
Py (L* + E®) = LE+D | Also note that,

L'UN'UTL* — L
= (VAUT + URTT — BO)UA~'UT (UAUT + UADT - B®) - I,

_ (UUT - (E(t)> UA*lUT) (UAUT +UADT — E(t)) — L

— _yUTE® — EOyyT — EOUuA-TUTE® T — GADT + E®. ®)
Hence, using Lemma@ we have:
E®)]2
L UAUTL - L < 3B+ e
< || +5 B - 9)

Combining (7) and (@), we have:

|LUA UL - | < T (Ioisa| +5 | EO
o = E+1

)
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Now, we will bound the (p, )™ term of > H (E(t))p L*UA~ ety T L* (E(t))q H

p+q=1 s

H (E(t))pL* UA—(pra+D T = (E(t))q H
o0

= maxe; ((E(t))pL* UA—era+D T * (E(t))q> e,

¥

< max HeiT(E(t))pU*
ij

2
e (om HEW )p (an HE(“ )q “L*UA‘(”+‘1+1)UTL* , a1
n o) [e%e) 2

where (; follows from Lemma and the incoherence of L*. Now, similar to (]z[), we have:

HL*UA*(“‘?“)UTL*

e

HL*UA*(”‘?“)UTL*
2

)
2

INDY

2
— HUA—(p-i-q—l)UT _EOuA-raygT _ppA-etdyT g E(t)UA_(p+q+1)UTE(t)“ ,
2

< JATEFD |y 4 2 EOfo AT EFD | 4 [ BO F|ATCHED ]y,

_ _ E® E®2 B B E® 2
< e <1+2| 2 i | ||2> — Ay P <1+|||2> ’

| Akl A7 | Akl
2
B B E®
< | Akl (p+q—1) <1+ ” |)\k|H2) 7
G —(ptq— 17p2rao;| ? (ptg—1
< |\ (p+q—1) 1 k <21\, (p+q-1) 12
> | k| + (1 — 17”2700[) ‘O—]ﬂ = | k| ’ ( )

where (; follows from Lemma 3]

Using (T1)), (12), we have:

H (EW)y L UA- Dy T Lx(B0)e

E(t) P+l]—1
< 2ayr HE(t)” (0‘”|||A||oo> . (13)
0o 0o k

Using the above bound, and the assumption on ||E(t) ||OO:

8ur . ! . 17p?r |,
o] <2 (ol + (3) i) < .

we have:
Z H (E(t))pL*UA—(qu)UTL* (E(t))qH
p+g>1 >
+q-1
an [|EO| "
<2u2ra||[E® =S
<2u > BW
p+qg=>1
) 2
§2,u2roz E(t) N (1_ 1712ar )
1-17p2ar
<ourrallE®|| (—L1 i
- oo \ 1 — 34p?ra
< 4lra||[ED| . (14)
Combining (6), (T0), (T4), we have:
IUAUT — L*|| (|a;;+1|+5HE<t> 2+4,u21"omHE(t) )

i
n
prr

=

<
<

1 t
Thpr| + (2) UZ|> ;
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where we used LemmaE|and the assumption on || E®||_ . O

We used the following technical lemma in the proof of Lemmal(7}
Lemma 8. Assume the notation of Lemmal[]} Suppose further that

LB < 52 (ol + (1) logl), ana

2. Supp (E®) C Supp (S*).

Then we have:

H E®

S 1Tiraloil, Al 2 1okl (1= 17ra), and ] < o] + | B9
Proof. Using Lemmasd]and 2} we have:

A= o < IED)2 < an | B0
The result follows by using the bound on ||E(t) HOO O

The following lemma bounds the support of E(*t1) and ||E(t+1)||oo, using an assumption on
||L t+1) _ L* ||
Lemma 9. Assume the notation of Lemmal7] Suppose

202 N 1\’ "
- <Uk+1|+<2> logl ] -

Jresn -2

Then, we have:

1. Supp (EHD) C Supp (S*).
2. HE(HI)HOO 7u r (| k+1|+ (%)t

Proof. We first prove the first conclusion. Recall that,

o} ) and

S — Ho (M — LO)) = H (L — LY + §%),

where ¢ = 24T <|)\k+1| + (%)t \/\k|) is as defined in Algorithmand A1, -+, Ay are the eigen-

values of M — S® such that [A;| > --- > |A,].

If S, = 0 then Ei(;ﬂ) =1 L(”l)‘x} L’f‘j — LE;H)). The first part of the lemma

2 (¢1)
now follows by using the assumption that ||L{+1) — L*|| < 2LF (|a;§+1| + (%)t |a,’;|> <
4“ o (|)\ al+ ) |)\,§\) = ¢, where (¢;) follows from LemmaH
We now prove the second conclusion. We consider the following two cases:

1 1 * * 1 *
1. | My le(;Jr )‘ > (: Here, Si(;"r ) = S5+ Li; — LZ(-?' ). Hence, =S5l <

* t+1 2y * t) .
|L3; — Lz('j )| < Ln (‘Uk+1| +(3) |0—k‘)'

2. [M;; — LQH)‘ < ¢: In this case, 5§;+1) = (0 and ’Sf] +Lj; — LS'H)‘ < (. So we have,
EG| = sp] < ¢+ |1y, - 4] < 2 (Jo. |+ (3)"Jo7]). The last inequality

above follows from Lemmal[6l

This proves the lemma. O

We are now ready to prove LemmalT] In fact, we prove the following stronger version.
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Proof of Lemmall] Recall that in the k™ stage, the update L(+Y is given by: LU+ = P (M —
S®) and SEFY is given by: SUHY) = H(M — LU+D). Also, recall that E®) := §* — S and
E(t+1) = g* _ S(tJrl)-

We prove the lemma by induction on both k and ¢. For the base case (k = 1 and ¢t = —1), we first
note that the first inequality on ||L(0) —L* ||Oo is trivially satisfied. Due to the thresholding step
(step 3 in Algorithm[T)) and the incoherence assumption on L*, we have:

8ur

HE(O)H < (65 +207), and
Supp (E(O)) C Supp (5*).

So the base case of induction is satisfied.

We first do the inductive step over ¢ (for a fixed k). By inductive hypothesis we assume that: a)
||E(t)HOC < B (|UZ+1\ + (%)t_l |O’Z|>, b) Supp (E®) C Supp (S*). Then by Lemma we

n
202 1\
< — X - x .
w7 <0k+1| + (2> o]

L [BU| < 2 (ol + (3) o). and

have:

HL(t+1) _

Lemma[Qnow tells us that

2. Supp (E(*+1)) C Supp (5%).

This finishes the induction over t. Note that we show a stronger bound than necessary on
1
oo

We now do the induction over k. Suppose the hypothesis holds for stage k. Let T denote the number
of iterations in each stage. We first obtain a lower bound on 7'. Since

s =0, 2 121 = £, 2 loil —an ][] = Fioil
2 2 o]

we see that T > 101og (3pr |o7] /€). So, at the end of stage k, we have:

L ED) < T (|o—;;+1\ + (%)T\a;;o < rlrial | e gng
2. Supp (E(™)) C Supp (S*).

Lemmas@andtell us that |op 41 (M — ST)) —
will now consider two cases:

Tiall < NED], < a (T foi o] + ). e

1. Algorithmterminates: This means that Soj41 (M -5 (T)) < 5 which then implies

that |o;+1| < guzr- So we have:
<220 (i (B) o) <
g - g -—.
©  n k+1 2 KUl = 5n

This proves the statement about L. A similar argument proves the claim on H§ - 5"

HE—L*

|-

oo

The claim on Supp (§) follows since Supp (E (T)) C Supp (5*).
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2. Algorithm (1| continues to stage (k -+ 1): This means that S0 1 (L(T)) > = which
then implies that |a;; +1| > guz- S0 we have:

(T) il I
|ED|| <= il + (5) 1ol

IA
o0

8pr

<

- on ( Tkl + 10p2 rn)
8pr 8 ’Gk:+1’

<

=" (la’““ T " Ton

< L (ool + 2|0t

Similarly for | L") — L*||
This finishes the proof. O

Proof of Theorem[I] Using Lemmall] it suffices to show that the general case can be reduced to the
case of symmetric matrices. We will now outline this reduction.

Recall that we are given an m x n matrix M = L* 4+ S* where L* is the true low-rank matrix and
S* the sparse error matrix. Wlog, let m < n and suppose fm < n < (8 + 1)m, for some 5 > 1.
We then consider the symmetric matrices

0 0 M 0 0 L*
0 0 M 0 0 L*
MT ... MT 0 (L*)T...(L*)T 0
S —
B times B times

andS = M—L. A simple calculation shows that L is incoherent with parameter /3 and S satisﬁes
the sparsity condition (S1) with parameter - NoR Moreover the iterates of AltProj with input M have

similar expressions as in (15)) in terms of the corresponding iterates with input M. This means that
it suffices to obtain the same guarantees for Algorithm [I] for the symmetric case. Lemma [I] does
precisely this, proving the theorem. O

B Proof of Theorem [2]
In this section, we prove Theorem [2| The roadmap of the proofs in this section is essentially the
same as that in Appendix [A]

In what follows, we prove a number of lemmas concerning the structure of L(*) and E(*) := S§* —
S The first lemma is a generalization of Lemma@ and shows that the threshold in () is close to
that with M ®) replaced by L*.

Lemma 10. Let L*, S*, N* be symmetric and sansfy the assumptlons of Theorem Iand let S®) be
the t" iterate of the k’h stage of Algorithm|l{ Let o7,..., o0, be the eigenvalues of L*, such that

loi| > -+ > |of| and Ay, - -+, Ay, be the eigenvalues ofM — S such that |\1| > --- > |\
Recall that E(t) = S* — S®). Suppose further that

L EO| < 2 (lopal+ (3) ol + TIN I, + S N7, ). and

2. Supp (S®) C Supp (S*).
Then,

7 1\’ ! 9 1\’
: (a;:+1|+(2) |o;;> < <|Ak+1+( ) w) ’ (a;:+1|+(2) |a;;>. (16)
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Proof. Note that M — S®) = L* + N* + E®). Now, using Lemmasand@ we have:

| Akt — 01:+1| < HE(t)H <an HE(t)
2

< 8u’rans,
oo

* t—1 * * n * .
where ~; = <|0k+1|+(%) o+ TIN*[ly + 52 |V ||Oo). That is,

Xe| = |of|] < 8urary;. So we have:

M| = lofp || <

1\
< 8ulray <1 + (2> )

162 ray,

1( . IR
=3 o] + B logl ]

and the assumption on ||[N*|| . O

8u2rary,. Similarly,

(Akm +(3) w) - (o;:+1| (3) |a;;|>

IN

A

1

where the last inequality follows from the bound o < BTor

The following lemma shows that under the same assumptions as in Lemma[f] we can obtain a bound
on the /5, norm of L{**1) — L*  This is the most crucial step in our analysis since we bound £
norm of errors which are quite hard to obtain.

Lemma 11. Assume the notation of Lemma @ Also, let LD S®) pe the t™ iterates of k™ stage
of Algorithm |I| and LA+ St+1D) be the (t 4+ 1)™ iterates of the same stage. Also, recall that
E® .= 8% — §®) gnd B4+ .= §* — St Suppose further that

1EO <22 (ot + (3)' 7 o+ 7IN" [, + 32 V7], ), and

2. Supp (EW) C Supp (S*).
Then, we have:

2ur

* 1 ! * * 8n *
< <|ak+1|+<2) ol + TNl + 2 1 oo>-

Proof. Let L(*t1) = Py (M — S®)) = UAUT be the eigenvalue decomposition of L{*+1). Also,
recall that M — S) = L* 4 N* + E)_ Then, for every eigenvector u; of L(**1), we have

HL(tH) L

(L* + J\Fk + E(t)) u; = /\iui7

E® 1, .
<I— )\Z )’UIZZ)\Z(L —|—N)’U/1',

w; = (I_ E(t)>1 (L* + N*)u,

Ai Ai
B I+E(t) . E® 2+ (L* + N*) u;
= Y ;Y e W

-1
. ()
Note that we used Lemmas [2{and 4{to guarantee the existence of (I — E/\—) . Hence,

UANUT — L* = (L* + N )UA'UT (L* + N*) - L*)
+ > (SO (L + N UAPHDUT (L7 + N*) (80,
p+q=>1
By triangle inequality, we have
|[UAUT = L7|| < |[(L* + N )UAT'UT (L* + N*) = L*||
+ 30 (s (4 Ny UAEEEDYT (17 4 N7 (59)e
p+q=>1

a7

o0
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We now bound the two terms on the right hand side above.
For the first term, we again use triangle inequality to obtain
* * —177T * * * * —177T 7% * * —177T 7%
[(L*+ N UA'UT (L* + N*) = L*|| < || L*UAT'UTL* = L¥|| _ + |[N*UAT'U T LY

+ |[LUATTUTN|  + [N UATTUTN|

(18)
‘We note that,
|L*UAT'UT LY - L
= maxe; | (U*E*(l’J*)TUzrlUTU*E*(U*)T - U*E*(U*)T) €;
ij
= maxe; "U* (E*(U*)TUA‘lUTU*E* - E*) (U") e,
3
< max|le;"U*[| - |e; TU*|| - [USH(U) T UATUTUTEH(UF) T = U (U)o
ij
2
< %HL*UA*UTL* — L2, (19)

where we denote U*X*(U*) " to be the SVD of L*. Let L* + N* + E®) = UAUT + UAU " be
the eigenvalue decomposition of L* + N* + E®). Note that U'U = 0. Recall that, UAUT =
P (M®) = L®_ Also note that,

L'UN'UTL —L*

= (UANUT +UAUT = N* = EOUA'UT(UAUT +UAU " — N* — E®) —

—wUT - (N* + B ) UA'UT)UAUT + UADT — N* — EW) — L*

)

—UAUT —UUT (N* n E(t)) - (N* n E(t)) vuT

— (v +EO)uATUT (N + E“))T —UAUT —UAUT + N* + B, (20)
Hence, using Lemma 2] we have:
N* + E®
|LUATUTL - 17|, < 3HN* +E® W st
< |+4HN* cpol o VR
= Pk+1 2 (1-17p2ra)|og]
Using (19), 1), and Lemma|[T2}
2
|L oA UTL - 1| < B (Joi ] + TINl, +5 | B9 @)
Coming to the second term of (I8), we have:
|N*UAT UL
=maxe; N*UA'U' L*e;
z’-]
< max||e,TNU, [ATUTO |, [0 e |,
< VAN L A U0, B — Ve oA T e
Using an expansion along the lines of (20), we see that
N*+E®|| IN*|l, + [|E®|
UAflUTU*Z* U TH <14 || 2 < 2 2
H (") 2~ [ Ak - (1—-17p%r - ) |of]
(t)
e L,

- (1—17p’ra)|og|

18



Plugging this in (23) gives us
|[N*UAT'UTLH|| < 3uv/T|IN*|| - (24)

A similar argument as in (23)) gives us the following bound on the last term in (T8):
[

INUATTUTN| < nIM LA™ (25)
k
Plugging (22), (24) and (23), we obtain:
|(L* + N*YUA'UT (L* + N*) = L*||
2T y
< “n( H2+7HE“ [,+ =1 ) 26)

Next, we analyze > . -, |(E®)yP(L* + N ) UA-PHatDy T (L + N*)(E(t))qHOO. This can
again be bounded by four quantities:

H(E(t) P(L* _|_N*)UA*(P+¢I+1)UT(L* + N*) E(t) QH

< H E® YL*UA™ (p+q+1)UTL*(E(t)

+ H E® pN*UA (p+q+1)UTL*(E(t))

@
+ H(E(t))pL*UA*(erqul)UTN*(E( ) q + H E® PN*UA™ (p+q+1)UTN*(E(t))
(28)
We bound the first term above:
H (E(t))pL* UA—(p+q+1)UTL*(E(t))q H
= maxe; ((E(t))pL*UAf(p“]“)UTL* (E(t))q> e
ij
< max HeiT(E(t))pU* HejT(E(t))qU* HL*UA*@’H“)UTL* ,
(%) 2 2 2
(¢1) MQT ‘ P ‘ q _ DT
2 (0] ) (on] ) [,
n oo oo 2
where ((;) follows from Lemmaand the incoherence of L*. Now, similar to (20), we have:
|Lrua-@renyT L
2
= HUA—(p-Irq—l)UT — (N* + E(t)) UA—@tOT _ gpA—e+ayT (N* + E(t))
+ (N* + E(t)) UA~- ety T (N* + E(t))’ ,
< JATEHED ]y 4+ 2N+ BO | ATFFO [y 4 [N EO[FATEHD],
~(pta- N*+EO|;  |IN*+EV|3
< )\ (:D+q 1) 1 2” 2
_| k| + |Ak| + )\% )
_ |)\k|—(:ﬂ+q—1) < |N*+E(t)||2)
|Ak] ’
< |)\k|f(p+q*1) 1+ [Vl + HE t)||2
- | Ak ’
D\ ~he IN*lly + 17ralof |\ _y b
< Ia (p+q-1) 1 2 k <921\ (p+a—1) 30

where (¢;) follows from Lemma|[12)and the bound on || N*||
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Using (29), (30), we have:

H(E(t) PL*UA~ et Dy T e (p0)e

g \"!
< 2a4%r HE“)H (Om”M”OO) EI
0o oo k

Coming to the second term of (28), we have

H (E(t))PN*UA*(PHHl)UTL*(E(t))CIH

= max eiT ((E(t) )pN*UA_(p+q+1)UTL*(E(t))q) e

]

<maXH T(EW)PN* UH H T(EW)y* HA ()T >

Y 2

9 8 o (5] (o] ) oo
- \/ﬁ o0 00 00 2

p+q
< /PN (an |[BO| )7 oAyt (32)
o)

where ((7) follows from Lemma and incoherence of U*. Proceeding along the lines of (30), we

obtain:
N*||, + ||[E®
S |>\k|7(p+q) <1 + || ||2 H H2 §2 ‘)\klf(ZH’Q) .
2

HUAf(pJﬂHl)UTL*

| Akl
Plugging the above in (32)) gives us

ptq
an
H(E(t))PN*UA*(P+q+1)UTL*(E(t)) H < Q'u\/’ <H|kHoo> ||N*||oo ' (33)

A similar argument as in (32)) gives us

oo

* (t)
k k

Plugging the above inequality along with (3T)) and (33) into (28) gives us:
H(E(t))p(L* + N UA~ etV T (L 4 N*)(E®)

% E(t) p+q—1
< o2 (aHE<t>HO®+ NJEOO) (anH|/\k| Hoo> .

Using the above bound, and the assumption on ||E(t) ||OO

8u’r . N . . 8no o, 170,
HE(” <— <|0k+1|+<2) loel + 7N ||2+WHN lo | < — = lokl,
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Combining (T7), (26), (33), we have:

(¢1) 2
oA - 2] € LT (Joga |+ 71N, + 1m0

11n
N N*
SR

. AN o 8
<|ok+1| +(3) il + Tl + S ||m>7

where (¢;) follows from Lemma@ and (¢z) follows from the assumption on HE(” HOO O

(CSQ) 2/1,27“

We used the following technical lemma in the proof of Lemma TT]
Lemma 12. Assume the notation of Lemmal[Il| Suppose further that

n

1B < 22 (g + ()7 opl + TIN", + 52 V7)), and

2. Supp (E®) C Supp (S*).

Then we have:

|EO|, < 17raloil, 1Akl = 1okl (1 = 17uPra), and ] < o] + | B

Proof. Using Lemmasd]and 2] we have:

[Ai — ]| < HE(t) §anHE(t)
2 e}
Using the bound on HE(” Hoo and recalling the assumption that
. |o7]
[Nl < T
100
finishes the proof. O

The following lemma bounds the support of E(*+1) and HE(HDHOO, using an assumption on
e — |
Lemma 13. Assume the notation of Lemmal[Il} Suppose

HL(t+1) _

< (|ak+1| +(3) il + Tl + S oo) .

Then, we have:

1. Supp (EH1)) C Supp (S*).

n

2| BV < 2 (Il + (3)' ol + TNl + S [N ). and

Proof. We first prove the first conclusion. Recall that,

S — Ho(M — LYY = Ho(L* — LD 4 N* 4 5%,

n

where ( = Ay (|)\k+1| + (%)t \/\k|) is as defined in Algorithmand AL, -+, Ay are the eigen-
values of M — S® such that [A\;| > -+ > |\,|.

If S;; = O then EU ™) =1 { Loy (L= LY 4+ Nz). The first part of the lemma

(¢1)
now follows by using the assumption that [|L(*+1) — L. < 2‘:? (|0;§+1| + (%)t |UZ|) <

o (D) e
Li—Li; NG

gff—z" (|/\Z+1| + (%)t |)\;;\) = (, where ((7) follows from LemmaEl, and the bound on || N*|| .

We now prove the second conclusion. We consider the following two cases:
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1. ‘Mij — L%H)‘ > (: Here, SZ.(;.H) =55+ L — LZ(»;H) + N;. Hence,
* t+1 * 2y * t) & *
1L = L1+ VG| < 22 (Il + (3)lot]) + IV

n

(t+1) *
Sy~ Sij| <

2. ‘Mij - Lg*”‘ < ¢: In this case, S = 0and [s7; + Ly — LU 4+ N5 | < ¢ So

EG| = [85] < ¢+ |25 - LY+ [Ng| < 2= (jopal + () o) +
IN*|| - The last inequality above follows from Lemmal6}

we have,

This proves the lemma. O

The following lemma is a generalization of LemmalT]
Lemma 14. Let L*, S*, N* be symmetric and satisfy the assumptions of Theorem @and let M)

and L) be the t™ iterates of the k™ stage of Algorithm|I| Let 0%,...,0, be the eigenvalues of L*,
s.t, |of| > -+ > |ok|. Then, the following holds:

2M2r
[e%} n

S* S(t-i—l) 8/1,27" * 1 = * N* 8n N* d
7= 50| < FE okl + (5) R+ TN + IVl | an

HL(t+1) _ L*

IN

oh] + (2> okl + TIN5 + 7 (Y ||oo> ,

IN

2 W

Supp (E(t“)) C Supp (S7).

Moreover, the outputs Land S of Algorithmsatisﬁz:

~ 8n

L—L*| <e+2ur(T7|N* — |N*

2= o], < v (118l + 21w ).

~ e Su’r 8n

S—5" < - TIN* — ||V* d

Supp (§) C Supp (S™).

Proof. Recall that in the k™ stage, the update L(**1 is given by: L+ = P (M — S®) and
S(+1) s given by: S¢H+Y = Hy (M — LU+D). Also, recall that E®) := §* — §) and E(t+Y) .=
5 — S+,

We prove the lemma by induction on both & and ¢. For the base case (k = 1 and ¢t = —1), we first
note that the first inequality on ||L(0) —L* ||OO is trivially satisfied. Due to the thresholding step
(step 3 in Algorithm [T) and the incoherence assumption on L*, we have:

8 2
HE(O)H <L (53 +207), and
o] n

Supp (E(O)) C Supp (5.
So the base case of induction is satisfied.

We first do the inductive step over ¢ (for a fixed k). By inductive hypothesis we assume that: a)

Lz * t—1 * * n * *
1B, < 2 (Jogpal+ (3)' o7l + TNl + 5 V7., ). b Supp (E®) < Supp (5°).
Then by Lemmalf|l I} we have:

HL(tH) s

2u’r 1\’ 8n
< * - * * o * )
- <|ak+1|+(2) 1l TINl + 2 I

Lemma [I3]now tells us that

LB < 25l + (3) logl + 7 UMl + 52 187, ), and

n
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2. Supp (E(*+1)) C Supp (5%).

This finishes the induction over ¢. Note that we show a stronger bound than necessary on
[
o0

We now do the induction over k. Suppose the hypothesis holds for stage k. Let T' denote the number
of iterations in each stage. We first obtain a lower bound on 7'. Since

- 9], 2 00, 59, 2115221
2 2 o 4

we see that 7 > 101log (3% || /€). So, at the end of stage k, we have:

LED, <
and

712 T . Tulr|or :
2 (o g |+ (3) Iogl + TN, + S N7l ) < 2okl g e

2. Supp (E(™)) C Supp (5*).

LemmasEIandtell us that ’cfk“ (M — S(T)) — |0,’;+1|| < ||E(T)||2 <a«a (7u2T |0;+1| + e). We
will now consider two cases:

1. Algorithmterminates: This means that Soj41 (M -5 (T)) < 5 which then implies
that |o;+1| < Guzr- So we have:

2u%r N " N N 8n "
| e u <|ak+1| +(5) torl+TIv I+ S
€ 2u?

wer " 8n .
TN — ||N .
< £+ BT (7wl + S e

This proves the statement about L. A similar argument proves the claim on H§ - 5"

-Jun -

oo

The claim on Supp (g) follows since Supp (E(T)) C Supp (5%).

2. Algorithm (1| continues to stage (k + 1): This means that o1 (L(T)) > & which

then implies that |ak +1| > guz- So we have:

(1) il IR . .
o] < B (il + (5) ol + 718 7 IV

12

n

IN

~J
<

IN
\]
=
n
<
N NN
5)
%
A
+

IA

* * n *
il + g + 71Nl + ﬁnN )

8 |: Z+1|

0tual +2[00a| + TN [lp + fuv*n)

3

0]
=
o
<

IA

n
Similarly for || L") — L*|| _

This finishes the proof. O

Proof of Theorem 2] Using Lemma it suffices to show that the general case can be reduced to
the case of symmetric matrices. We will now outline this reduction.

Recall that we are given an m X n matrix M = L* + N* 4+ S* where L* is the true low-rank
matrix, N* dense corruption matrix and S* the sparse error matrix. Wlog, let m < n and suppose
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Figure 5: (a): Variation of the maximum rank of the intermediate low-rank solutions of IALM with
rank. (b): Variation of the maximum rank of the intermediate low-rank solutions of IALM with
incoherence. (c): Rank of the intermediate iterates of IALM for a particular run with n = 2000, r =
10, = 100/n, u = 3. Note that while the rank of the final output is 10, intermediate iterates have
rank as high as 800.

Bm < mn < (8 + 1)m, for some 5 > 1. We then consider the symmetric matrices

0 0 M 0 0 L*
7 . . : ,E: . . |
0 0 M 0 0 L*
MT .. M7 0 (L*)T...(L*)T 0
S —
B times B times
0 0 L*
[\7‘: : “e. E E 7 36
0 0 L* 50

(V) vt 0

B times

and S = M — L. A simple calculation shows that L is incoherent with parameter /3, N sat-
isfies the assumption of Theorem [2{and .S satisfies the sparsity condition (S1) with parameter %

Moreover the iterates of AltProj with input M have similar expressions as in in terms of the
corresponding iterates with input M. This means that it suffices to obtain the same guarantees for
Algorithm [I|for the symmetric case. Lemma|[T4]does precisely this, proving the theorem. O

C Additional experimental results

Synthetic datasets: Extending Figure 2] the plots in Figure|5|illustrate the point that soft thresh-
olding, i.e., the convex relaxation approach, leads to intermediate solutions with high ranks. Fig-
ures [3] (a)-(b) show the variation of the maximum rank of the intermediate low-rank solutions of
TALM with rank and incoherence respectively; the results are averaged over 5 runs of the algorithm;
we note that as the problem becomes harder, the maximum intermediate rank via soft thresholding
(convex approach) increases, and this leads to higher running times. As an example of this phe-
nomenon, Figure[5|(c) shows the rank of the intermediate iterates of IALM for a particular run with
n = 2000,r = 10, = 100/n, u = 3; here, while the rank of the final output is 10, intermediate
iterates have a rank as high as 800. We run our synthetic simulations on a machine with Intel Dual
8-core Xeon (E5-2650) 2.0GHz CPU with 192GB RAM.

Real-world datasets: = We provide some additional results concerning foreground-background
separation in videos E} We compare NcRPCA with IALM, and also with the low-rank solution

SThe datasets are available at http://perception.i2r.a-star.edu.sqg/bk_model/bk_
index.html
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Figure 6: Foreground-background separation in the Shopping Mall video. (a): Original frame in
the video given as a part of the input to NcRPCA and TALM. (b): Corresponding frame from the
best rank-20 approximation obtained using vanilla PCA; time taken for computing the low-rank
approximation is 8.8s. (c): Corresponding frame from the low-rank part obtained using NcRPCA;
time taken by NcRPCA to compute the low-rank and sparse solutions is 292.1s. (d): Corresponding
frame from the sparse part obtained using NcRPCA. (e): Corresponding frame from the low-rank
part obtained using IALM; time taken by IALM to compute the low-rank and sparse solutions is
783.4s. (f): Corresponding frame from the sparse part obtained using IALM.

obtained using vanilla PCA; we report the solutions obtained by NcRPCA and IALM methods for
decomposing M into L + S up to a relative error (||[M — L — S||r/||M||r) of 10~3. We report the
rank and the sparsity of the solutions obtained by the two methods along with the computational
time. As mentioned before, the observed matrix M is formed by vectorizing each frame and
stacking them column-wise. For illustration purposes, we arbitrarily select one of the original
frames in the sequence of image frames obtained from the video, i.e., one of the columns of M, and
the corresponding columns in L and S obtained using NcRPCA and IALM. We run our real data
experiments on a machine with Intel Dual 8-core Xeon (E5-2650) 2.0GHz CPU with 192GB RAM.

Shopping Mall dataset: Figure [6] shows the comparison of NcRPCA and IALM on the “Shopping
Mall” dataset which has 1286 frames at a resolution of 256 x 320. NcRPCA achieves a solution
of better visual quality (for example, unlike NcRPCA, notice the artifact of the low-rank solution
from IALM in the top right corner of the image where the person is walking over the reflection of
a light source; also notice the shadows of people in the low-rank part obtained by IALM which are
not present in the low-rank solution obtained by NcRPCA), in 292.1s, compared to IALM, which
takes 783.4s until convergence. NcRPCA obtains a rank 20 solution for L with ||S|lo = 95411896
whereas IALM obtains a rank 286 solution for L with ||S|o = 86253965.

Curtain dataset: We illustrate our recovery on one of the frames (frame 2773) wherein a person
enters a room with a curtain on the background. Figure [7]shows the comparison of NcRPCA and
IALM on the “Curtain” dataset which has 2964 frames at a resolution of 160 x 128. NcRPCA
achieves a solution, in 39.5s, which is of similar visual quality to that of IALM, which takes 989.0s
until convergence. NcRPCA obtains a rank 1 solution for L with ||S|log = 53897769 whereas TALM
obtains a rank 701 solution for L with ||S||o = 42310582.
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Figure 7: Foreground-background separation in the Curtain video. (a): Original image frame in
the video given as a part of the input to NcRPCA and IALM. (b): Corresponding frame from the
best rank-10 approximation obtained using vanilla PCA; time taken for computing the low-rank
approximation is 2.8s. (c): Corresponding frame from the low-rank part obtained using NcRPCA;
time taken by NcRPCA to compute the low-rank and sparse solutions is 39.5s. (d): Corresponding
frame from the sparse part obtained using NcRPCA. (e): Corresponding frame from the low-rank
part obtained using IALM; time taken by IALM to compute the low-rank and sparse solutions is
989.0s. (f): Corresponding frame from the sparse part obtained using IALM.
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