
Tree-structured Gaussian process approximations
Supplementary material

Thang Bui
tdb40@cam.ac.uk

Richard Turner
ret26@cam.ac.uk

Computational and Biological Learning Lab, Department of Engineering
University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK

1 KL justification for different approximations

1.1 The Fully Independent Training Conditional (FITC) approximation

The FITC approximation assumes that all latent functions f are independent given inducing variables
u. The joint distribution of the inducing variables and the latent functions q(f ,u) is then chosen by
minimising the KL divergence between p(f ,u) and q(f ,u),

q(fi|u)← arg min
q(fi|u)

KL(p(f ,u)||q(f ,u)), (1)

subject to q(f |u) =
∏
i q(fi|u) and

∫
dfiq(fi|u) = 1. It is noted that KL(a||b) is the measurement

of information “lost” when using b to approximate a. It was argued in [1] that it is appropriate to use
this KL divergence as an approximation measure since we are trying to find a sparse representation
u and its relationship with f to approximate p by q.

The KL divergence above can be expanded as follows,
L1 = KL(p(f ,u)||q(f ,u)) (2)

= C −
∫

du dfp(f ,u) log q(f |u) (3)

= C −
∫

du dfp(f ,u)
∑
i

log q(fi|u) (4)

= C −
∑
i

∫
du dfp(f ,u) log q(fi|u), (5)

where C is a constant w.r.t q(f |u). Adding the Lagrange multipliers into the above expression and
taking the derivative w.r.t. q(fi|u) give us,

∂

∂q(fi|u)
L1 =

∫
df 6=ip(f ,u)

1

q(fi|u)
(6)

= −p(fi,u)

q(fi|u)
+ λi (7)

By setting the derivative in 7 to zero and applying the normalisation constraint for q(fi|u) we have,

q(fi|u) =
p(fi,u)

p(u)
= p(fi|u) . (8)

Extension to the Partially Independent Training Conditional (PITC) approximation

When the dependency assumption between latent functions given the inducing variables is relaxed,
or q(f |u) =

∏
i q(fi|u) where fi is a cluster of latent functions, by using the same derivation as

1

above, we obtain:

q(fi|u) =
p(fi,u)

p(u)
= p(fi|u) , (9)

which is exactly the same as in FITC but fi is now replaced by fi.

Extension to tree-structured inducing inputs

When the inducing inputs u is tree-structured, the forward KL divergence can be written as,

L2 = KL(p(f ,u)||q(f ,u)) (10)

= C −
∫

du dfp(f ,u) log[q(f |ui)q(u)] (11)

= C −
∫

du dfp(f ,u) log[
∏
i

q(fi|ui)
T∏
t=1

q(ut|upt)] (pt is the parent node of t) (12)

= C −
∑
i

∫
du dfp(f ,u) log q(fi|u)−

∑
t

∫
du dfp(f ,u) log q(ut|upt). (13)

By using the normalisation constraints for q(ut|upt) and q(fi|ui), the Lagrange multipliers can
be added to find the optimal conditionals that minimize the KL divergence. The derivative of the
Lagrangian w.r.t. q(fi|u) is,

∂

∂q(fi|ui)
L2 = −p(fi,ui)

q(fi|ui)
+ λi. (14)

As above, by equating this derivative to zero and applying the normalisation constraint, we have,

q(fi|u) =
p(fi,ui)

p(ui)
= p(fi|ui) . (15)

The derivative of the Lagrangian w.r.t. q(ut|upt) is,

∂

∂q(ut|upt)
L2 = −

∫
dfp(f ,ut,upt)

q(ut|upt)
+ λt (16)

=
p(ut,upt)

q(ut|upt)
+ λt (17)

Similarly, using the normalisation constraint gives us λt = p(upt) which leads to,

q(ut|upt) =
p(ut,upt)

p(upt)
= p(ut|upt) . (18)

1.2 The Deterministic Training Conditional (DTC) approximation

The likelihood approximation presented in [2, 3] can be justified by choosing a likelihood function
q(y|u) to minimize the KL divergence,

q(y|u)← arg min
q(y|u)

KL(q(f ,u|y)||p(f ,u|y)), (19)

where,

q(f ,u|y) =
q(y|u)p(f |u)p(u)

q(y)
, (20)

p(f ,u|y) =
p(y|f)p(f |u)p(u)

p(y)
, (21)

and, q(y) =

∫
dup(u)p(y|u). (22)

2

Consider the likelihood q(y|u) that is a valid distribution or
∫

dyq(y|u) = 1 [4], combining the
reversed KL divergence and the normalisation constraint gives us the Lagrangian:

L3 = KL(q(f ,u|y)||p(f ,u|y)) + λ

(∫
dyq(y|u)− 1

)
(23)

= log p(y)− log q(y) +

∫
df du

q(y|u)p(f |u)p(u)

q(y)
log

q(y|u)

p(y|f)
+ λ

(∫
dyq(y|u)− 1

)
.

(24)

The derivative L3 w.r.t q(y|u) is,

∂

∂q(y|u)
L3 =

1

q(y)
p(u) +

∫
df
p(f |u)p(u)

q(y)
log

q(y|u)

p(y|f)
+

∫
df
q(y|u)p(f |u)p(u)

q(y)

1

q(y|u)
+ λ

(25)

=
p(u)

q(y)

[
log q(y|u)−

∫
dfp(f |u) log p(y|f)

]
+ λ. (26)

Setting 26 to zero gives,

q(y|u) = exp

(
−λq(y)

p(u)

)
exp

(∫
dfp(f |u) log p(y|f)

)
. (27)

The integral inside the exponential above can be computed analytically as follows,

M =

∫
dfp(f |u) log p(y|f) (28)

=

∫
dfN (f ;KfuK

−1
uuu,Kff −KfuK

−1
uuKuf) log[N (y; f , σ2I)] (29)

=

∫
dfN (f ; A,B)

[
−n

2
log(2πσ2)− 1

2σ2
(y − f)ᵀI(y − f)

]
(30)

=

∫
dfN (f ; A,B)

[
−n

2
log(2πσ2)− 1

2σ2
Tr(yyᵀ − 2yfᵀ + ffᵀ)

]
(31)

= −n
2

log(2πσ2)− 1

2σ2
Tr(yyᵀ − 2yAᵀ + AAᵀ + B) (32)

= − 1

2σ2
Tr(B) + log[N (y; A, σ2I)], (33)

where A = KfuK
−1
uuu and B = Kff −KfuK

−1
uuKuf . Substitute 33 into 27 and use the normalisa-

tion constraint, the optimal form for the approximate likelihood is:

q(y|u) = N (y;KfuK
−1
uuu, σ2 I) (34)

As noted in [1], the same result can be obtained by optimising the KL divergence between the joint
models of y, f and u: KL(q(y|u)p(f |u)p(u)||p(y|f)p(f |u)p(u)).

Let’s remove the normalisation constraint of the likelihood term, this equivalently means that the
Lagrange multiplier in equation 27 is zero, or the optimal likelihood is:

q(y|u) = exp

(
− 1

2σ2
Tr(Kff −KfuK

−1
uuKuf)

)
N (y;KfuK

−1
uuu, σ2 I) (35)

Here it becomes clear that why the expression of the posterior of u in DTC is exactly the same
as in [5], only the approximate marginal likelihood is modified. Both are optimising the same KL
divergence under the approximate likelihood regime, but [5] allows a free form for the likelihood
(which turns out to be easily computed analytically) as opposed to a Gaussian likelihood in [4].

2 Relationship between our method and previous approximations

Table 1 shows the relationship between the tree-structured prior approximation scheme and previous
works.

3

number pseudo-datapoints parameters
model of blocks number (location) intra-block. inter-block

full Gaussian Process (GP) K = 1 M = N (at data inputs) full N/A
PITC K = 1 M < N blkdiag[Rk] N/A
FITC K = 1 M < N diag[Rk] N/A
local many M = N (at data inputs) full Ak = 0 and Qk = Kukuk

local PITC many M < N full Ak = 0 and Qk = Kukuk

local FITC many M < N diag[Rk] Ak = 0 and Qk = Kukuk

Table 1: Relationship between the tree-structured prior approximation scheme and other prior ap-
proximation methods. diag[A] and blkdiag[A] are shorthand for diagonal and block-diagonal ver-
sions of the matrix A

3 Spectral mixture kernel approximation

Consider a function that is drawn from a GP with the following covariance function,

k(t1, t2) =

M∑
m=1

σ2
m cos(ωm(t1 − t2)) exp

(
− 1

2l2m
(t1 − t2)2

)
, (36)

which is a sum of products of a periodic sinunoid and a squared exponential covariance functions
where σ2

m, lm and ωm are the signal variance, characteristic lengthscale and frequency of the spectral
component m respectively. The observations are the function values corrupted by i.i.d, Gaussian
noise of variance σ2

n. In this section, we only consider one dimensional, regularly spaced input. The
approximate model with chain-structured inducing inputs can be described graphically as follows,

f1 f2 f3 fj fK

u1 u2 u3 uj uK

y1 y2 y3 yj yK

Figure 1: Chain-structured inducing-input approximation

The generative model can be written as follows,

p(u|θ) =

K∏
j=1

p(uj |uj−1, θ) =

K∏
j=1

N (uj |Auj−1,Q), (37)

p(f |u) =

K∏
j=1

p(fj |uj) =

K∏
j=1

N (fj |Cjuj ,Rj), (38)

p(y|f) =

n∏
i=1

p(yi; fi, σ
2
n), (39)

where

A = diag(
[
A1 A1 A2 A2 · · · AM AM

]
),

Q = diag(
[
Q1 Q1 Q2 Q2 · · · QM QM

]
),

Cj =
[
W 1
j1C

1 W 1
j2C

1 W 2
j1C

2 W 2
j2C

2 · · · WM
j1 C

1 WM
j2 C

M
]
,

Rj =WRWᵀ,

4

R = diag(
[
R1 R1 R2 R2 · · · RM RM

]
),

W =
[
W 1
j1 W 1

j2 W 2
j1 W 2

j2 · · · WM
j1 WM

j2

]
,

Am = Km
uup

Km,−1
umum

,

Qm = Km
uu −Km

uup
Km,−1

upup
Km

upu,

Cm = Km
fuK

m,−1
uu ,

Rm = Km
ff −Km

fuK
m,−1
uu Km

uf ,

Wm
j1 = diag[cos(ωmtp+1), cos(ωmtp+2), · · · cos(ωmtp+τ1)]

Wm
j2 = diag[sin(ωmtp+1), sin(ωmtp+2), · · · sin(ωmtp+τ1)],

τ1 and τ2 are the number of observations and inducing inputs per clusters respectively,tp =
jτ1, A

m ∈ Rτ2 × Rτ2 , Qm ∈ Rτ2 × Rτ2 , Cm ∈ Rτ1 × Rτ2 , Rm ∈ Rτ1 × Rτ1 , {Wj1,Wj2} ∈
Rτ1 ×Rτ1 , Cj ∈ Rτ1 ×R2Mτ2 , Rj ∈ Rτ1 ×Rτ1 , Km is the covariance matrix of the exponentiated
quadratic component m with lengthscale lm and signal variance σ2

m, and diag is an operator that
takes the vector of numbers or matrices and forms the corresponding diagonal or block diagonal
matrix.

4 Gaussian belief propagation in tree/chain graphical models

Let x and y be the hidden variables and observations respectively, yt be the observations emitted
by hidden variables xt. It is noted that all variables in this section are in vector forms and we
have omitted the boldface notation as in the previous sections. Given the transition and emission
parameters, the Gaussian belief propagation algorithm can be used to infer the marginal distribution
of the latent variables given the observations. Furthermore, since the marginal likelihood of the
parameters given the observations can be found, it can be optimized to obtain the ML parameters for
our model. We describe here the message passing scheme to compute the marginal likelihood and
its derivative w.r.t the model parameters.

4.1 Message passing

The joint posterior distribution of u is

p(u|y) ∝
∏
i∈V

exp

(
−1

2
uᵀ
i Jiui + uᵀ

i hi

) ∏
i,j∈E

exp (uᵀ
i Jijuj) (40)

where V and E denote vertex and edge sets accordingly, Ji = Jii + Cᵀ
i (Ri + σ2Ii)

−1Ci +∑
j∈nei(i) Aᵀ

jQ
−1
j Aj with Jii being the initial precision matrix P−1

o for the root node and Q−1
i

otherwise, hi = Cᵀ
i R
−1
i yi, and Jij = Q−1

i Ai.

4.2 Cross covariance

We give the details to compute an analytic form for the cross covariance which is need for the
derivative. Consider the following simple graphical model where y1 includes observations ‘emitted’
by x1 and ‘on the left’ of x1, y2 includes observations ‘emitted’ by x2 and ‘on the right’ of x2, A
and Q are the transition dynamics connecting x1 and x2 such that p(x2|x1) = N (x2;Ax1, Q).

x1

y1

x2

y2

A,Q

By using the Gaussian belief propagation algorithm as discussed above, one can obtain
p(x1|y1), p(x2|y2) and the marginal distributions p(x1|y1, y2) and p(x2|y1, y2). Assume that

5

p(x1|y1) = N−1(x1;h1, J1) and p(x2|y1, y2) = N−1(x2;h2, J2) (N−1 denotes a normal dis-
tribution in canonical form), we have,

p(x1, x2|y1) = p(x2|x1)p(x1|y1) (41)

∝ exp

(
1

2
(x2 −Ax1)ᵀQ−1(x2 −Ax1)

)
exp(−1

2
xᵀ1J1x1 + hᵀ1x1) (42)

∝ exp

(
−1

2

[
x2

x1

]ᵀ [
Q−1 −Q−1A

−AᵀQ−1 J1 +AᵀQ−1A

] [
x2

x1

]
+

[
0
h1

]ᵀ [
x2

x1

])
. (43)

Marginalising out x1 gives

p(x2|y1) ∝ exp

(
−1

2
xᵀ2(Q+AJ−1

1 Aᵀ)−1x2 + [Q−1A(J1 +AᵀQ−1A)h1]ᵀx2

)
. (44)

Therefore,

p(x1, x2|y1, y2) =p(x1|x2, y1)p(x2|y1, y2) (45)
=p(x1, x2|y1)p(x2|y1, y2)/p(x2|y1) (46)

∝ exp

(
1

2
(x2 −Ax1)ᵀQ−1(x2 −Ax1)

)
exp(−1

2
xᵀ1J1x1 + hᵀ1x1)

exp

(
1

2
xᵀ2(Q+AJ−1

1 Aᵀ)−1x2 − [Q−1A(J1 +AᵀQ−1A)h1]ᵀx2

)
exp(−1

2
xᵀ2J2x2 + hᵀ2x2) (47)

∝ exp

(
−1

2

[
x1

x2

]ᵀ [
J1 +AᵀQ−1A −AᵀQ−1

−Q−1A J2 +Q−1A(J1 +AᵀQ−1A)AᵀQ−1

] [
x1

x2

])
exp

([
h1

h2 +Q−1A(J1 +AᵀQ−1A)h1

]ᵀ [
x1

x2

])
. (48)

By inverting the precision matrix in the equation above, we get the cross covariance matrix between
x1 and x2,

V12 = (J1 +AᵀQ−1A)−1AᵀQ−1J−1
2 . (49)

4.3 Log marginal likelihood and its derivatives

4.3.1 Message passing to compute the log marginal likelihood

We will consider a small example and show how to use message passing in trees to compute the log
marginal likelihood. Consider a graph as in figure 2 where only observation nodes are shown for
clarity.

x1

x2 x3

x4 x5 x6
x7

x8

x9

Figure 2: Illustrative example for computing the log marginal likelihood using message passing

6

By using the rules of probability, we can write the likelihood of the parameter given the data:

p(y1:9) = p(y9|y1:8)p(y1:8) (50)
= p(y9|y1:8)p(y6|y1:5,7,8)p(y1:5,7,8) (51)
= p(y9|y1:8)p(y6|y1:5,7,8)p(y7|y1:5,8)p(y1:5,8) (52)
= p(y9|y1:8)p(y6|y1:5,7,8)p(y7|y1:5,8)p(y8|y1:5)p(y1:5) (53)
= p(y9|y1:8)p(y6|y1:5,7,8)p(y7|y1:5,8)p(y8|y1:5)p(y3|y1,2,4,5)p(y1,2,4,5) (54)
= p(y9|y1:8)p(y6|y1:5,7,8)p(y7|y1:5,8)p(y8|y1:5)p(y3|y1,2,4,5)p(y4|y1,2,5)p(y1,2,5) (55)
= p(y9|y1:8)p(y6|y1:5,7,8)p(y7|y1:5,8)p(y8|y1:5)p(y3|y1,2,4,5)p(y4|y1,2,5)p(y5|vy1,2)p(y1,2)

(56)
= p(y9|y1:8)p(y6|y1:5,7,8)p(y7|y1:5,8)p(y8|y1:5)p(y3|y1,2,4,5)p(y4|y1,2,5)p(y5|y1,2)p(y2|y1)p(y1)

(57)

By comparing the nodes that are children of a node (e.g.: nodes 6, 7, 8 are children of 3), the term
each contributes to the marginal likelihood looks slightly different in the variables they condition
on: the first child conditions on all other children, the second child conditions on all other children
except the first child and so on. We can make use of this pattern to derive a message passing scheme
to compute the marginal likelihood.

Data: Observations
Result: Log marginal likelihood
Initialize root message mparroot = ∅;
for all nodes at each layer in the tree do

compute local likelihood term using its observation yj and parent message mparj ;
if there is a child then

combine local observations and all children messages mi to form M ;
for all childrens do

subtract child message mi from M to form M\i;
M ←M\i;
pass M to the child i: mpari = M ;

end
end

end
Algorithm 1: Message passing algorithm to compute log marginal likelihood

4.3.2 The derivative of the log marginal likelihood

The log marginal likelihood of the parameters given the observations is L = log p(y|θ). Its deriva-
tive w.r.t the parameter θ is,

d

dθ
L =

1

p(y|θ)
d

dθ
p(y|θ) (58)

=
1

p(y|θ)
d

dθ

∫
dxp(y, x|θ) (59)

=

∫
dx

1

p(y|θ)
d

dθ
p(y, x|θ) (60)

=

∫
dx

1

p(y|θ)
p(y, x|θ) d

dθ
log p(y, x|θ) (61)

=

∫
dxp(x|y, θ) d

dθ
log

[
p(x1|θ)

T∏
t=2

p(xt|xt−1, θ)

T∏
t=1

p(yt|xt, θ)

]
(62)

=

∫
dx1p(x1|y, θ)

d

dθ
log p(x1|θ)︸ ︷︷ ︸

=L1

7

+

T∑
t=2

∫
dxt,t−1p(xt, xt−1|y, θ)

d

dθ
log p(xt|xt−1, θ)︸ ︷︷ ︸

=L2

+

T∑
t=1

∫
dxtp(xt|y, θ)

d

dθ
log p(yt|xt, θ)︸ ︷︷ ︸

=L3

(63)

We will find the explicit form for L1, L2 and L3 below.

• Since p(x1|θ) = N (x1; 0,K0) and p(x1|y, θ) = N(x1;µ1,Σ1) we have,

log p(x1|θ) = −D1 log(2π)

2
− 1

2
log |K0| −

1

2
xᵀ1K

−1
0 x1, (64)

hence,

d

dθ
log p(x1|θ) = −1

2

d

dθ
log |K0| −

1

2
xᵀ1

dK−1
0

dθ
x1, (65)

and therefore

L1 = −1

2

d

dθ
log |K0| −

1

2
Tr(

dK−1
0

dθ
Σ1)− 1

2
µᵀ

1

dK−1
0

dθ
µ1. (66)

• Since p(xt|xt−1, θ) = N (xt;Atxt−1, Qt) and p(xt, xt−1|y, θ) =

N
([xt
xt−1

]
;
[µ2
µ1

]
,
[

Σ22 Σ21

Σ12 Σ11

])
we have,

d

dθ
log p(xt|xt−1, θ) =

d

dθ

[
−1

2
log |Qt| −

1

2
xᵀtQ

−1
t xt + xᵀtQ

−1
t Atxt−1 −

1

2
xᵀt−1A

ᵀ
tQ
−1
t Atxt−1

]
.

(67)

Therefore L2 = L21 + L22 + L23 + L24, where

L21 =

∫
dxt,t−1p(xt, xt−1|y, θ)

d

dθ

(
−1

2
log |Qt|

)
(68)

= −1

2

d

dθ
log |Qt|, (69)

L22 =

∫
dxt,t−1p(xt, xt−1|y, θ)

d

dθ

(
−1

2
xᵀtQ

−1
t xt

)
(70)

= −1

2
Tr(

dQ−1
t

dθ
Σ22)− 1

2
µᵀ

2

dQ−1
t

dθ
µ2, (71)

L23 =

∫
dxt,t−1p(xt, xt−1|y, θ)

d

dθ

(
−1

2
xᵀt−1A

ᵀ
tQ
−1
t Atxt−1

)
(72)

= −1

2
Tr(

d

dθ
(Aᵀ

tQ
−1
t At)Σ11)− 1

2
µᵀ

1

d

dθ
(Aᵀ

tQ
−1
t At)µ1, (73)

L24 =

∫
dxt,t−1p(xt, xt−1|y, θ)

d

dθ

(
xᵀtQ

−1
t Atxt−1

)
(74)

=

∫
dxt−1p(xt−1|y, θ)

[∫
dxtp(xt|xt−1, y, θ)

(
xᵀt

d

dθ
(Q−1

t At)xt−1

)]
(75)

=

∫
dxt−1p(xt−1|y, θ)

[
[µ2 + Σ21Σ−1

11 (x1 − µ1)]ᵀ
d

dθ
(Q−1

t At)xt−1

]
(76)

=[µ2 − Σ21Σ−1
11 µ1]ᵀ

d

dθ
(Q−1

t At)µ1

+ Tr

[
Σ−1

11 Σ12
d

dθ
(Q−1

t At)Σ11

]
+ µᵀ

1Σ−1
11 Σ12

d

dθ
(Q−1

t At)µ1. (77)

8

• Since p(yt|xt, θ) = N (yt;Ctxt, Rt) and p(xt|y, θ) = N(xt;µ1,Σ1), similarly as above,
we obtain,

L3 =− 1

2

d

dθ
log |Rt| −

1

2
yᵀt

dR−1
t

dθ
yt + yᵀt

d

dθ
(R−1

t Ct)µ1

− 1

2
Tr

(
d

dθ
(Cᵀ

t R
−1
t Ct)Σ1

)
− 1

2
µᵀ

1

d

dθ
(Cᵀ

t R
−1
t Ct)µ1. (78)

5 Experimental results

5.1 Synthetic data regression experiment

We generated a synthetic dataset that has 40k datapoints (2 dimensional inputs) using a GP with
relatively short lengthscales and Gaussian noise. Blocks of datapoints are chosen at random to be
our regression targets. We used an exponentiated quadratic kernel with ARD lengthscales. Our
method achieved a better predictive performance, as measured by the standardized mean squared
error (SMSE) and mean standardized log loss (MSLL), in a smaller training time and test time as
shown in figures 3 and 4. For the tree-structured and local approximations, the data point labels are
the number of clusters and the total number of inducing inputs respectively. For other approxima-
tions, the labels are the number of inducing inputs used for the experiment. We do not include the
result for the DTC approximation to keep the graph clear. The result for the SSGP approximation is
outside of the result regions being shown.

Training time/s

S
M

S
E

1024

256
512

200,40k
200,10k

200,5k

200,1k

400,30k

400,5k

400,1k

200,40k200,5k

430k400,10k

400,1k

512

100 300 1000

0.3

0.5

VFE

FITC

SSGP

Tree

Local

Test time/ms

S
M

S
E

128

256
512

1024

16 64 128

256
512

1024

0.001 0.01 10

0.3

0.5

1

400,5k

400,5k

400,30k

400,10k

200,10k

Figure 3: Synthetic dataset regression result: SMSE as a function of training time and test time per
datapoint for different approximations.

9

Training time/s

M
S

L
L

200,40k200,30k200,20k
400,20k400,10k

200,40k200,20k200,5k

200,1k

400,5k

400,1k

100 300 1000

−1.5

−1

−0.5

0

0.5

1

VFE

FITC

SSGP

Tree

Local

Test time/ms

M
S

L
L

200,20k

400,5k

200,10k

200,1k

400,5k

400,1k

1024
512

256

128

64

32

1024

512

128

0.001 0.01 10

−1.5

−1

−0.5

0

0.5

1

256
256

128

128

Figure 4: Synthetic dataset regression result: MSLL as a function of training time and test time per
datapoint for different approximations.

5.2 Audio data experiment

We performed imputatation tasks using a filtered signal and a real noisy signal. Typical results are
shown in figures 5, 7 and ??. Figure ?? shows the linearity of inference time as a function of dataset
size using the tree-structured inducing-input approximation.

y
t

7240 7250 7260 7270 7280 7290

−4

−2

0

2

4

y
t

7240 7250 7260 7270 7280 7290

−4

−2

0

2

4

E
n
v
el

o
p
e

Time/ms

7240 7250 7260 7270 7280 7290

2

2.5

3

3.5

y
t

9490 9500 9510 9520 9530 9540

−2

0

2

y
t

9490 9500 9510 9520 9530 9540

−2

0

2

E
n
v
el

o
p
e

Time/ms

9490 9500 9510 9520 9530 9540

0

1

2

3

True

Chain

Local

Figure 5: Filling missing data results using one component

10

y
t

572 574 576 578 580 582 584 586

−3

−2

−1

0

1

2

3

E
n
v
el

o
p
e

Time/ms

572 574 576 578 580 582 584 586

0

0.5

1

1.5

2

2.5

3

True

Chain

y
t

1085 1090 1095 1100

−3

−2

−1

0

1

2

3

E
n
v
el

o
p
e

Time/ms

1085 1090 1095 1100

0

1

2

3

4

True

Chain

Figure 6: Filling missing data results: we used five components in the spectral mixture and per-
formed denoising and filling missing data for a filtered audio signal.

y
t

700 705 710 715

−3

−2

−1

0

1

2

3

E
n

v
el

o
p

e

Time/ms

700 705 710 715

0

1

2

3

4

5

True

Chain

y
t

875 880 885 890

−6

−4

−2

0

2

4

6

E
n

v
el

o
p

e

Time/ms

875 880 885 890

0

2

4

6

8

True

Chain

Figure 7: Filling missing data results: we used nine components in the spectral mixture and a real
noisy audio signal with missing samples.

11

Number of datapoints
T

im
e/

s

0.5 1 1.5 2 2.5 3

x 10
5

20

40

60

80
m=1

m=3

m=5

m=7

m=9

Figure 8: Spectral mixture experimental result: Inference time as a function of dataset size for
different numbers of spectral mixture components

References
[1] E. Snelson, Flexible and efficient Gaussian process models for machine learning. PhD thesis, Gatsby

Computational Neuroscience Unit, University College London, 2007.

[2] L. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural computation, vol. 14, no. 3, pp. 641–
668, 2002.

[3] M. Seeger, C. K. I. Williams, and N. D. Lawrence, “Fast forward selection to speed up sparse Gaussian
process regression,” in International Conference on Artificial Intelligence and Statistics, 2003.

[4] M. Seeger, Bayesian Gaussian process models: PAC-Bayesian generalisation error bounds and sparse
approximations. PhD thesis, University of Edinburgh, 2003.

[5] M. K. Titsias, “Variational learning of inducing variables in sparse Gaussian processes,” in International
Conference on Artificial Intelligence and Statistics, pp. 567–574, 2009.

12

	KL justification for different approximations
	The fitc approximation
	The dtc approximation

	Relationship between our method and previous approximations
	Spectral mixture kernel approximation
	Gaussian belief propagation in tree/chain graphical models
	Message passing
	Cross covariance
	Log marginal likelihood and its derivatives
	Message passing to compute the log marginal likelihood
	The derivative of the log marginal likelihood

	Experimental results
	Synthetic data regression experiment
	Audio data experiment

