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Lemma 1

Let ŵT
def
= wT /‖wT ‖, φ̂φφT

def
= φφφT /‖φφφT ‖. Let U(G) denote the uniform distribution on S(G). Then,

we have

F (w, x,y) = E
T∼U(G)

aT 〈ŵT , φ̂φφT (x,y)〉, where aT
def
=

√
`

2
‖wT ‖ .

Moreover, for any w such that ‖w‖ = 1, we have

E
T∼U(G)

a2
T = 1 ; E

T∼U(G)
aT ≤ 1 .

Proof.

F (w, x,y) = 〈w,φφφ(x,y)〉

=
∑

(i,j)∈G

〈wi,j ,φφφi,j(x, yi, yj)〉 =
1

``−2

`

2

∑
T∈S(G)

∑
(i,j)∈T

〈wi,j ,φφφi,j(x, yi, yj)〉

=
`

2
E

T∼U(G)
〈wT ,φφφT (x,y)〉 =

`

2
E

T∼U(G)
‖wT ‖‖φφφT (x,y)‖〈ŵT , φ̂φφT (x,y)〉

= E
T∼U(G)

√
`

2
‖wT ‖〈ŵT , φ̂φφT (x,y)〉 = E

T∼U(G)
aT 〈ŵT , φ̂φφT (x,y)〉 ,

where

aT
def
=

√
`

2
‖wT ‖ .

Now, for any w such that ‖w‖ = 1, we have

E
T∼U(G)

a2
T =

`

2
E

T∼U(G)
‖wT ‖2 =

`

2

1

``−2

∑
T∈S(G)

‖wT ‖2 =
`

2

1

``−2

∑
T∈S(G)

∑
(i,j)∈T

‖wi,j‖2

=
∑

(i,j)∈G

‖wi,j‖2 = ‖w‖2 = 1 .

Since the variance of aT must be positive, we have, for any w of unit L2 norm, that

E
T∼U(G)

aT ≤ 1 .

Lemma 2

Consider any unit L2 norm predictor w on the complete graph G that achieves a margin of
Γ(w, x,y) for each (x,y) ∈ X × Y , then we have

ΓT (w, x,y) ≥ Γ(w, x,y)− 2ε ∀(x,y) ∈ X × Y ,

whenever for all (x,y) ∈ X × Y , we have

|FT (w, x,y)− F (w, x,y)| ≤ ε .
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Proof. From the condition of the lemma, we have simultaneously for all (x,y) ∈ X × Y and
(x,y′) ∈ X × Y , that

FT (w, x,y) ≥ F (w, x,y)− ε AND FT (w, x,y′) ≤ F (w, x,y′) + ε .

Therefore,
FT (w, x,y)− FT (w, x,y′) ≥ F (w, x,y)− F (w, x,y′)− 2ε .

Hence, for all (x,y) ∈ X × Y , we have

ΓT (w, x,y) ≥ Γ(w, x,y)− 2ε .

Lemma 3

Consider any ε > 0 and any unit L2 norm predictor w for the complete graph G acting on a
normalized joint feature space. For any δ ∈ (0, 1), let

n ≥ `2

ε2

(
1

16
+

1

2
ln

8
√
n

δ

)2

. (2)

Then with probability of at least 1 − δ/2 over all samples T generated according to U(G)n, we
have, simultaneously for all (x,y) ∈ X × Y , that

|FT (w, x,y)− F (w, x,y)| ≤ ε .

Proof. Consider an isotropic Gaussian distribution of joint feature vectors of variance σ2, centred
on φφφ(x,y), with a density given by

Qφφφ(ζζζ)
def
=

(
1√
2πσ

)N
exp−‖ζ

ζζ −φφφ‖2

2σ2
,

where N is the dimension of the feature vectors. When the feature space is infinite-dimensional, we
can consider Q to be a Gaussian process. The end results will not depend on N .

Given the fixed w stated in the theorem, let us define the risk R(Qφφφ,wT ) of Qφφφ on the tree T by
E

ζζζ∼Qφφφ
〈wT , ζζζ〉. By the linearity of 〈·, ·〉, we have

R(Qφφφ,wT )
def
= E

ζζζ∼Qφφφ
〈wT , ζζζ〉 = 〈wT , E

ζζζ∼Qφφφ
ζζζ〉 = 〈wT ,φφφ〉 ,

which is independent of σ.

Gibbs’ risk R(Qφφφ) and its empirical estimate RT (Qφφφ) are defined as

R(Qφφφ)
def
= E

T∼U(G)
R(Qφφφ,wT ) = E

T∼U(G)
〈wT ,φφφ〉

RT (Qφφφ)
def
=

1

n

n∑
i=1

R(Qφφφ,wTi) =
1

n

n∑
i=1

〈wTi ,φφφ〉 .

Consequently, from the definitions of F and FT , we have

F (w, x,y) =
`

2
R(Qφφφ(x,y))

FT (w, x,y) =
`

2
RT (Qφφφ(x,y)) .

Recall that φφφ is a normalized feature map that applies to all (x,y) ∈ X × Y . Therefore, if we have
with probability ≥ 1− δ/2 that, simultaneously for all φφφ of unit L2 norm,

`

2
|RT (Qφφφ)−R(Qφφφ)| ≤ ε , (7)
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then, with the same probability, we will have simultaneously ∀(x,y) ∈ X × Y , that

|FT (w, x,y)− F (w, x,y)| ≤ ε ,
and, consequently, the lemma will be proved.

To prove that we satisfy Equation (7) with probability ≥ 1 − δ/2 simultaneously for all φφφ of unit
L2 norm, let us adapt some elements of PAC-Bayes theory to our case. Note that we cannot use the
usual PAC-Bayes bounds, such as those proposed by [13] because, in our case, the loss 〈wT , ζζζ〉 of
each individual “predictor” ζζζ is unbounded.

The distribution Qφφφ defined above constitutes the posterior distribution. For the prior P , let us use
an isotropic Gaussian with variance σ2 centered at the origin. Hence P = Q0. In that case we have

KL(Qφφφ‖P ) =
‖φφφ‖2

2σ2
=

1

2σ2
.

Given a tree sample T of n spanning trees, let

∆w
def
=

1

n

n∑
k=1

wTk − E
T∼U(G)

wT ,

and consider the Gaussian quadrature

I def
= E

ζζζ∼P
e
√
n|〈∆w,ζζζ〉|

= e
1
2nσ

2‖∆w‖2
(

1 + Erf

[√
n

2
‖∆w‖σ

])
≤ 2e

1
2nσ

2‖∆w‖2 .

We can then use this result for I to upper bound the Laplace transform L in the following way.

L def
= E

T ∼U(G)n
E
ζζζ∼P

e
√
n|〈∆w,ζζζ〉|

≤ 2 E
T ∼U(G)n

e
1
2nσ

2‖∆w‖2

= 2 E
T ∼U(G)n

e
1
2nσ

2 ∑
(i,j)∈G ‖(∆w)i,j‖2 .

Since
E

T∼U(G)
wT =

2

`
w ,

we can write

‖(∆w)i,j‖2 =

∥∥∥∥∥ 1

n

n∑
k=1

(wTk)i,j −
2

`
wi,j

∥∥∥∥∥
2

.

Note that for each (i, j) ∈ G, any sample T , and each Tk ∈ T , we can write

(wTk)i,j = wi,jZ
k
i,j .

where Zki,j = 1 if (i, j) ∈ Tk and Zki,j = 0 if (i, j) /∈ Tk. Hence, we have

‖(∆w)i,j‖2 = ‖wi,j‖2
(

1

n

n∑
k=1

Zki,j −
2

`

)2

.

Hence, for σ2 ≤ 4 and p def
= 2/`, we have

L ≤ 2 E
T ∼U(G)n

e
1
2nσ

2 ∑
(i,j)∈G ‖wi,j‖

2( 1
n

∑n
k=1 Z

k
i,j− 2

` )
2

≤ 2 E
T ∼U(G)n

e2n
∑

(i,j)∈G ‖wi,j‖
2( 1
n

∑n
k=1 Z

k
i,j−p)

2

≤ 2
∑

(i,j)∈G

‖wi,j‖2 E
T ∼U(G)n

e2n( 1
n

∑n
k=1 Z

k
i,j−p)

2

,
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where the last inequality is obtained by using
∑

(i,j)∈G ‖wi,j‖2 = 1 and by using Jensen’s inequal-
ity on the convexity of the exponential.

Now, for any (q, p) ∈ [0, 1]2, let

kl(q‖p) def
= q ln

q

p
+ (1− q) ln

1− q
1− p

.

Then, by using 2(q − p)2 ≤ kl(q‖p) (Pinsker’s inequality), we have for n ≥ 8,

L ≤ 2
∑

(i,j)∈G

‖wi,j‖2 E
T ∼U(G)n

enkl( 1
n

∑n
k=1 Z

k
i,j‖p) ≤ 4

√
n ,

where the last inequality follows from Maurer’s lemma [14] applied, for any fixed (i, j) ∈ G, to the
collection of n independent Bernoulli variables Zki,j of probability p.

The rest of the proof follows directly from standard PAC-Bayes theory [15, 13], which, for com-
pleteness, we briefly outline here.

Since
E
ζζζ∼P

e
√
n|〈∆w,ζζζ〉|

is a non negative random variable, Markov’s inequality implies that with probability > 1− δ/2 over
the random draws of T , we have

ln E
ζζζ∼P

e
√
n|〈∆w,ζζζ〉| ≤ ln

8
√
n

δ
.

By the change of measure inequality, we have with probability > 1− δ/2 over the random draws of
T , simultaneously for all φφφ,

√
n E
ζζζ∼Qφφφ

|〈∆w, ζζζ〉| ≤ KL (Qφφφ‖P ) + ln
8
√
n

δ
.

Hence, by using Jensen’s inequality on the convex absolute value function, we have with probability
> 1− δ/2 over the random draws of T , simultaneously for all φφφ,

|〈∆w,φφφ〉| ≤ 1√
n

[
KL (Qφφφ‖P ) + ln

8
√
n

δ

]
.

Note that we have KL(Qφφφ‖P ) = 1/8 for σ2 = 4 (which is the value we shall use). Also note that the
left hand side of this equation equals to |RT (Qφφφ)−R(Qφφφ)|. In that case, we satisfy Equation (7)
with probability 1− δ/2 simultaneously for all φφφ of unit L2 norm whenever we satisfy

`

2
√
n

[
1

8
+ ln

8
√
n

δ

]
≤ ε ,

which is the condition on n given by the theorem.

Theorem 4

Consider any unit L2 norm predictor w for the complete graph G, acting on a normalized joint
feature space, achieving a margin of Γ(w, x,y) for each (x,y) ∈ X × Y . Then for any ε > 0, and
any n satisfying Lemma 3, for any δ ∈ (0, 1], with probability of at least 1 − δ over all samples T
generated according to U(G)n, there exists a unit L2 norm conical combination (W,q) on T such
that, simultaneously ∀(x,y) ∈ X × Y , we have

ΓT (W,q, x,y) ≥ 1√
1 + ε

[Γ(w, x,y)− 2ε] .
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Proof. For any T , consider a conical combination (W,q) where each ŵTi ∈ W is obtained by
projecting w on Ti and normalizing to unit L2 norm and where

qi =
aTi√∑n
i=1 a

2
Ti

.

Then, from equations (3) and (4), and from the definition of ΓT (w, x,y), we find that for all (x,y) ∈
X × Y , we have

ΓT (W,q, x,y) =

√
n∑n

i=1 a
2
Ti

ΓT (w, x,y) .

Now, by using Hoeffding’s inequality, it is straightforward to show that for any δ ∈ (0, 1], we have

Pr
T ∼U(G)n

(
1

n

n∑
i=1

a2
Ti ≤ 1 + ε

)
≥ 1− δ/2 .

whenever n ≥ `2

8ε ln
(

2
δ

)
. Since n satisfies the condition of Lemma 3, we see that it also satisfies this

condition whenever ε ≤ 1/2. Hence, with probability of at least 1− δ/2, we have
n∑
i=1

a2
Ti ≤ n(1 + ε) .

Moreover Lemma 2 and Lemma 3 imply that, with probability of at least 1− δ/2, we have simulta-
neously for all (x,y) ∈ X × Y ,

ΓT (w, x,y) ≥ Γ(w, x,y)− 2ε .

Hence, from the union bound, with probability of at least 1 − δ, simultaneously ∀(x,y) ∈ X × Y ,
we have

ΓT (W,q, x,y) ≥ 1√
1 + ε

[Γ(w, x,y)− 2ε] .

Derivation of the Primal L2-norm Random Tree Approximation

If we introduce the usual slack variables ξi
def
= γ ·Lγ(ΓT (W,q, xi,yi)), Theorem 5 suggests that we

should minimize 1
γ

∑m
k=1 ξk for some fixed margin value γ > 0. Rather than performing this task

for several values of γ, we can, equivalently, solve the following optimization problem for several
values of C > 0.

min
ξξξ,γ,q,W

1

2γ2
+
C

γ

m∑
k=1

ξk (8)

s.t. : ΓT (W,q, xk,yk) ≥ γ − ξk, ξk ≥ 0, ∀ k ∈ {1, . . . ,m} ,
n∑
i=1

q2
i = 1, qi ≥ 0, ‖wTi‖2 = 1, ∀ i ∈ {1, . . . , n} .

If we now use instead ζk
def
= ξk/γ, and vTi

def
= qiwTi/γ, we then have

∑n
i=1 ‖vTi‖2 = 1/γ2 (under

the constraints of problem (8)). If V def
= {vT1 , . . . ,vTn}, optimization problem (8) is then equivalent

to

min
ζζζ,V

1

2

n∑
i=1

‖vTi‖2 + C

m∑
k=1

ζk (9)

s.t. : ΓT (V,1, xk,yk) ≥ 1− ζk, ζk ≥ 0, ∀ k ∈ {1, . . . ,m} .
Note that, following our definitions, we now have

ΓT (V,1, x,y) =
1√
n

n∑
i=1

〈vTi , φ̂φφTi(x,y)〉 −max
y′ 6=y

1√
n

n∑
i=1

〈vTi , φ̂φφTi(x,y
′)〉 .

We then obtain the optimization problem of Property 6 with the change of variables wTi ← vTi/
√
n,

ξk ← ζk, and C ← C/
√
n.
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Lemma 7

Let y?K = argmax
y∈YT ,K

FT (x,y) be the highest scoring multilabel in YT ,K . Suppose that

FT (x,y?K) ≥ 1

n

n∑
i=1

FwTi
(x,yTi,K)

def
= θx(K)

It follows that FT (x,y?K) = maxy∈Y FT (x,y).

Proof. Consider a multilabel y† 6∈ YT ,K . It follows that for all Ti we have

FwTi
(x,y†) ≤ FwTi

(x,yTi,K).

Hence,

FT (x,y†) =
1

n

n∑
i=1

FwTi
(x,y†) ≤ 1

n

n∑
i=1

FwTi
(x,yTi,K) ≤ FT (x,y?K),

as required.

Lemma 8

Let the scoring function FT of each spanning tree of G be a σT -sub-Gaussian random variable
under the uniform distribution of labels; i.e., for each T on G, there exists σT > 0 such that for any
λ > 0 we have

E
y∼U(Y)

eλ(FT (y)−µT ) ≤ e
λ2

2 σ
2
T .

Let σ2 def
= E
T∼U(G)

σ2
T , and let

α
def
= Pr
T∼U(G)

(
µT ≤ µ ∧ FT (ŷ) ≥ F (ŷ) ∧ σ2

T ≤ σ2
)
.

Then

Pr
T ∼U(G)n

(
∃T ∈ T : ρT (ŷ) ≤ e−

1
2

(F (ŷ)−µ)2

σ2

)
≥ 1− (1− α)n .

Proof. From the definition of ρ(ŷ) and for any λ > 0, we have

ρT (y∗) = Pr
y∼U(Y)

(FT (y) ≥ FT (ŷ))

= Pr
y∼U(Y)

(FT (y)− µT ≥ FT (ŷ)− µT )

= Pr
y∼U(Y)

(
eλ(FT (y)−µT ) ≥ eλ(FT (ŷ)−µT )

)
≤ e−λ(FT (ŷ)−µT ) E

y∼U(Y)
eλ(FT (y)−µT ) (10)

≤ e−λ(FT (ŷ)−µT )e
λ2

2 σ
2
T , (11)

where we have used Markov’s inequality for line (10) and the fact that FT is a σT -sub-Gaussian
variable for line (11). Hence, from this equation and from the definition of α, we have that

Pr
T∼U(G)

(
ρT (ŷ) ≤ e−λ(FT (ŷ)−µT )e

λ2

2 σ
2
T ≤ e−λ(F (ŷ)−µ)e

λ2

2 σ
2
)
≥ α .

Hence,
Pr

T ∼U(G)n

(
∀T ∈ T : ρT (ŷ) > e−λ(F (ŷ)−µ)e

λ2

2 σ
2
)
≤ (1− α)n ,

which is equivalent to the statement of the lemma when we choose λ = [F (ŷ)− µ]/σ2.
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The K-best Inference Algorithm

Algorithm 1 depicts the K-best inference algorithm for the ensemble of rooted spanning trees. The
algorithm takes as input the collection of spanning trees Ti ∈ T , the edge labeling scores

FET = {FTi,v,v′(yv, yv′)}(v,v′)∈Ei,yv∈Yv,yv′∈Yv′ ,Ti∈T

for fixed xk and w, the length of K-best list, and optionally (for training) also the true multilabel yk
for xk.

As a rooted tree implicitly orients the edges, for convenience we denote the edges as directed v →
pa(v), where pa(v) denotes the parent (i.e. the adjacent node on the path towards the root) of v. By
ch(v) we denote the set of children of v. Moreover, we denote the subtree of Ti rooted at a node v
as Tv and by Tv′→v the subtree consisting of Tv′ plus the edge v′ → v and the node v.

The algorithm performs a dynamic programming over each tree in turn, extracting the K-best list
of multilabels and their scores, and aggregates the results of the trees, retrieving the highest scoring
multilabel of the ensemble, the worst violating multilabel and the threshold score of theK-best lists.

The dynamic programming is based on traversing the tree in post-order, so that children of the node
are always processed before the parent. The algorithm maintains sorted K best lists of candidate
labelings of the subtrees Tv and Tv′→v , using the following data structures:

• Score matrix Pv , where element Pv(y, r) records the score of the r’th best multilabel of
the subtree Tv when node v is labeled as y.

• Pointer matrix Cv , where element Cv(y, r) keeps track of the ranks of the child nodes
v′ ∈ ch(v) in the message matrix Mv′→v that contributes to the score Pv(y, r).

• Message matrix Mv→pa(v), where element Mv→pa(v)(y
′, r) records the score of r’th best

multilabel of the subtree Tv→pa(v) when the label of pa(v) is y′.

• Configuration matrix Cv→pa(v), where element Cv→pa(v)(y
′, r) traces the label and rank

(y, r) of child v that achieves Mv→pa(v)(y
′, r).

The processing of a node v entails the following steps. First, the K-best lists of the children of
the node stored in Mv′→v are merged in amortized Θ(K) time per child node. This is achieved by
processing two child lists in tandem starting from the top of the lists and in each step picking the
best pair of items to merge. This process results in the score matrix Pv and the pointer matrix Cv .

Second, the K-best lists of Tv→pa(v) corresponding to all possible labels y′ of pa(v) are formed.
This is achieved by keeping the label of the head of the edge v → pa(v) fixed, and picking the
best combination of labeling the tail of the edge and selecting a multilabel of Tv consistent with that
label. This process results in the matrices Mv→pa(v) and Cv→pa(v). Also this step can be performed
in Θ(K) time.

The iteration ends when the root vroot has updated its score Pvroot . Finally, the multilabels in form
YTi,K are traced using the pointers stored in Cv and Cv→pa(v). The time complexity for a single
tree is Θ(K`), and repeating the process for n trees gives total time complexity of Θ(nK`).

Master algorithm for training the model

The master algorithm (Algorithm 2) iterates over each training example until convergence. The
processing of each training example proceeds by identifying the K worst violators of each tree
together with the threhold score θi = θxi (line 5), determining the worst ensemble violator from
among them (line 6) and updating each tree by the worst ensemble violator (line 8). During the
early stages of the algorithm, it is not essential to identify the worst violator. We therefore propose
that initially K = 2 , and the iterations continue until no violators are identified (line 7). We then
increment K and continue until the condition (line 10-12) given by Lemma 7 is satisfied so that we
are assured of having converged to the global optimum.
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Algorithm 1 Algorithm to obtain top K multilabels on a collection of spanning trees.
FindKBest(T , FET ,K,yi)
Input: Collection of rooted spanning trees Ti = (Ei, Vi),

edge labeling scores FET = {FT,v,v′(yv, yv′)}
Output: The best scoring multilabel y∗, worst violator ȳ, threshold θi

1: for Ti ∈ T do
2: Initialize Pv, Cv,Mv→pa(v), Cv→pa(v),∀v ∈ Vi
3: I = nodes indices in post-order of the tree Ti
4: for j = 1 : |I| do
5: v = vI(j)
6: % Collect and merge K-best lists of children
7: if ch(v) 6= ∅ then
8: Pv(y) = Pv(y) + kmax

rv,v′∈ch(v)

(∑
v′∈ch(v) (Mv′→v(y, rv))

)
9: Cv(y) = Pv(y) + argkmax

rv,v′∈ch(v)

(∑
v′∈ch(v) (Mv′→v(y, rv))

)
10: end if
11: % Form the K-best list of Tv→pa(v)

12: Mv→pa(v)(ypa(v)) = kmax
y,r

(
Pv(y, r) + FT,v→pa(v)(yv, ypa(v))

)
13: Cv→pa(v)(ypa(v)) = argkmax

uv,r

(
Pv(uv, r) + FT,v→pa(v)(uv, ypa(v))

)
14: end for
15: Trace back with Cv and Cv→pa(v) to get YTi,K .
16: end for
17: YT ,K =

⋃
Ti∈T

YTi,K

18: y∗ = argmax
y∈YT ,K

n∑
i=1

∑
(v,v′)=
e∈Ei

FTi,v,v′(yv, yv′)

19: ȳ = argmax
y∈YT ,K\yi

n∑
i=1

∑
(v,v′)=
e∈Ei

FTi,v,v′(yv, yv′)

20: θi =

n∑
i=1

∑
(v,v′)=
e∈Ei

FTi,v,v′(yTi,K,v, yTi,k,v′)
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Algorithm 2 Master algorithm.
Input: Training sample {(xk,yk)}mk=1, collection of spanning trees T , minimum violation γ0

Output: Scoring function FT
1: Kk = 2,∀k ∈ {1, · · · ,m}; wTi = 0,∀ Ti ∈ T ; converged = false
2: while not(converged) do
3: converged = true
4: for k = {1, . . . ,m} do
5: ST = {STi,e(k,ue)|STi,e(k,ue) = 〈wTi,e, φTi,e(xk,ue)〉 ,∀(e ∈ Ei, Ti ∈ T ,ue ∈

Yv × Yv′)}
6: [y∗, ȳ, θi] = FindKBest(T , ST ,Ki,yi)
7: if FT (xi, ȳ)− FT (xi,yi) ≥ γ0 then
8: {wTi}Ti∈T = updateTrees({wTi}Ti∈T , xi, ȳ)
9: converged = false

10: else
11: if θi > FT (xi, ȳ) then
12: Ki = min(2Ki, |Y|)
13: converged = false
14: end if
15: end if
16: end for
17: end while

Derivation of the Marginal Dual

Definition 6. Primal L2-norm Random Tree Approximation

min
wTi ,ξk

1

2

n∑
i=1

||wTi ||
2
2 + C

m∑
k=1

ξk

s.t.
n∑
i=1

〈wTi , φ̂φφTi(xk,yk)〉 −max
y 6=yk

n∑
i=1

〈wTi , φ̂φφTi(xk,y)〉 ≥ 1− ξk

ξk ≥ 0,∀ k ∈ {1, . . . ,m},
where {wTi |Ti ∈ T } are the feature weights to be learned on each tree, ξk is the margin slack allo-
cated for each example xk, and C is the slack parameter that controls the amount of regularization in
the model. This primal form has the interpretation of maximizing the joint margins from individual
trees between (correct) training examples and all the other (incorrect) examples.

The Lagrangian of the primal form (Definition 6) is

L(wTi , ξ,ααα,βββ) =
1

2

n∑
i=1

||wTi ||
2
2 + C

m∑
k=1

ξk −
m∑
k=1

βkξk

−
m∑
k=1

∑
y 6=yk

αk,y

(
n∑
i=1

〈wTi ,∆φ̂φφTi(xk,yk)〉 − 1 + ξk

)
,

where αk and βk are Lagrangian multipliers that correspond to the constraints of the primal form,
and ∆φ̂φφTi(xk,yk) = φ̂φφTi(xk,yk) − φ̂φφTi(xk,y). Note that given a training example-label pair
(xk,yk) there are exponential number of αk,y one for each constraint defined by incorrect example-
label pair (xk,y).

Setting the gradient of Lagrangian with respect to primal variables to zero, we obtain the following
equalities:

∂L
∂wTi

= wTi −
m∑
k=1

∑
y 6=yk

αk,y∆φ̂φφTi(xk,yk) = 0,

∂L
∂ξk

= C −
∑
y 6=yk

αk,y − βk = 0,
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which give the following dual optimization problem.
Definition 10. Dual L2-norm Random Tree Approximation

max
ααα≥0

αααᵀ1− 1

2
αααᵀ

(
n∑
i=1

KTi

)
ααα

s.t.
∑
y 6=yk

αk,y ≤ C, ∀ k ∈ {1, . . . ,m},

where ααα = (αk,y)k,y is the vector of dual variables. The joint kernel

KTi(xk,y;xk′ ,y
′) = 〈φ̂φφTi(xk,yk)− φ̂φφTi(xk,y), φ̂φφTi(xk′ ,yk′)− φ̂φφTi(xk′ ,y

′)〉
= 〈ϕ(xk), ϕ(xk′)〉ϕ · 〈ψTi(yk)− ψTi(y), ψTi(yk′)− ψTi(y′)〉ψ

= Kϕ(xk, xk′) ·
(
Kψ
Ti

(yk,yk′)−Kψ
Ti

(yk,y
′)−Kψ

Ti
(y,yk′) +Kψ

Ti
(y,y′)

)
= Kϕ(xk, xk′) ·K∆ψ

Ti
(yk,y;yk′ ,y

′)

is composed by input kernel Kϕ and output kernel Kψ
Ti

defined by
Kϕ(xk, xk′) = 〈ϕ(xk), ϕ(xk′)〉ϕ

K∆ψ
Ti

(yk,y;yk′ ,y
′) = Kψ

Ti
(yk,yk′)−Kψ

Ti
(yk,y

′)−Kψ
Ti

(yk′ ,y) +Kψ
Ti

(y,y′).

To take advantage of the spanning tree structure in solving the problem, we further factorize the dual
(Definition 10) according to the output structure [9, 16]. by defining a marginal dual variable µ as

µ(k, e,ue) =
∑
y 6=yk

1{ψ(y)=ue}αααk,y,

where e = (j, j′) ∈ E is an edge in the output graph and ue ∈ Y × Y ′ is a possible label of edge e.
As each marginal dual variable µ(k, e,ue) is the sum of a collection of dual variables αk,y that has
consistent label (uj , uj′) = ue, we have the following∑

ue

µ(k, e,ue) =
∑
y 6=yk

αααk,y (12)

for an arbitrary edge e, independently of the structure of the trees.

The linear part of the objective (Definition 10) can be stated in term of µµµ for an arbitrary collection
of trees as

αααᵀ1 =

m∑
k=1

∑
y 6=yk

αk,y =
1

|ET |

m∑
k=1

∑
e∈ET

∑
ue

µ(k, e,ue) =
1

|ET |
∑
e,k,ue

µ(k, e,ue) ,

where edge e = (j, j′) ∈ ET appearing in the collection of trees T .

We observe that the label kernel of tree Ti, K
ψ
Ti

, decomposes on the edges of the tree as

Kψ
Ti

(y,y′) = 〈y,y′〉ψ =
∑
e∈Ei

〈ye, y′e〉ψ =
∑
e∈Ei

Kψ,e(ye, y
′
e).

Thus, the output kernel K∆ψ
Ti

and the joint kernel KTi also decompose

K∆ψ
Ti

(yk,y;yk′ ,y
′) =

(
Kψ
Ti

(yk,yk′)−Kψ
Ti

(yk,y
′)−Kψ

Ti
(yk′ ,y) +Kψ

Ti
(y,y′)

)
=
∑
e∈Ei

(
Kψ,e
Ti

(yke, yk′e)−Kψ,e
Ti

(yke, y
′
e)−K

ψ,e
Ti

(ye, yk′e) +Kψ,e
Ti

(ye, y
′
e)
)

=
∑
e∈Ei

K∆ψ,e
Ti

(yke, ye; yk′e, y
′
e),

KTi(xk,y;xk′ ,y
′) = Kψ(xk, xk′) ·K∆ψ

Ti
(yk,y;yk′ ,y

′)

= Kψ(xk, xk′) ·
∑
e∈Ei

K∆ψ,e(yke, ye; yk′e, y
′
e)

=
∑
e∈Ei

Ke(xk, ye;xk′ , y
′
e).
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The sum of joint kernels of the trees can be expressed as
n∑
i=1

KTi(xk,y;xk′ ,y
′) =

n∑
i=1

∑
e∈Ei

Ke(xk, ye;xk′ , y
′
e)

=
∑
e∈ET

∑
Ti∈T :
e∈Ei

Ke(xk, ye;xk′ , y
′
e)

=
∑
e∈ET

NT (e)Ke(xk, ye;xk′ , y
′
e)

where NT (e) denotes the number of occurrences of edge e in the collection of trees T .

Taking advantage of the above decomposition and of the Equation (12) the quadratic part of the
objective (Definition 10) can be stated in term of µµµ as

− 1

2
αααᵀ

(
n∑
i=1

KTi

)
ααα

= − 1

2
αααᵀ

(∑
e∈ET

NT (e)Ke(xk,y;xk′ ,y
′)

)
ααα

= − 1

2

m∑
k,k′=1

∑
e∈ET

NT (e)
∑
y 6=yk
y′ 6=yk′

α(k,y)Ke(xk, ye;xk′ , y
′
e)α(k′,y′)

= − 1

2

m∑
k,k′=1

∑
e∈ET

NT (e)
∑
ue,u′e

∑
y 6=yk:ye=ue
y′ 6=yk′ :y

′
e=u′e

α(k,y)Ke(xk,ue;xk′ ,u
′
e)α(k′,y′)

= − 1

2

m∑
k,k′=1

∑
e∈ET

NT (e)

|ET |2
∑
ue,u′e

µ(k, e,ue)K
e(xk,ue;xk′ ,u

′
e)µ(k′, e,u′e)

= − 1

2

∑
e,k,ue,
k′,u′e

µ(k, e,ue)K
e
T (xk,ue;xk′ ,u

′
e)µ(k′, e,u′e),

where ET is the union of the sets of edges appearing in T .

We then arrive at the following definition.

Definition 9. Marginalized Dual L2-norm Random Tree Approximation

max
µµµ∈Mm

1

|ET |
∑
e,k,ue

µ(k, e,ue)−
1

2

∑
e,k,ue,
k′,u′e

µ(k, e,ue)K
e
T (xk,ue;x

′
k,u
′
e)µ(k′, e,u′e) ,

whereMm is marginal dual feasible set defined as (c.f., [9])

Mm =

µµµ |µ(k, e,ue) =
∑
y 6=yk

1{yke=ue}ααα(k,y) , ∀(k, e,ue)

 .

The feasible set is composed of a Cartesian product ofm identical polytopesMm =M×· · ·×M,
one for each training example. Furthermore, each µµµ ∈ M corresponds to some dual variable ααα in
the original dual feasible set A = {ααα|α(k,y) ≥ 0,

∑
y 6=yi

α(k,y) ≤ C, ∀k}.
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Experimental Results

Table 2 provides the standard deviation results of the prediction performance results of Table 1 for
each algorithm in terms of the microlabel and 0/1 error rates. Values are obtained by five fold
cross-validation.

DATASET
MICROLABEL LOSS (%) 0/1 LOSS (%)

SVM MTL MMCRF MAM RTA SVM MTL MMCRF MAM RTA
EMOTIONS 1.9 1.8 0.9 1.4 0.6 3.4 3.5 3.1 4.2 1.5

YEAST 0.7 0.5 0.6 0.5 0.6 2.8 1.0 1.5 0.4 1.2
SCENE 0.3 0.5 0.3 0.1 0.3 1.4 3.6 1.2 0.9 0.6
ENRON 0.2 0.2 0.2 0.2 0.2 0.3 0.4 2.8 2.3 0.9
CAL500 0.3 0.3 0.3 0.2 0.4 0.0 0.0 0.0 0.0 0.0

FINGERPRINT 0.3 0.6 0.6 0.3 0.6 0.7 0.0 0.5 0.6 1.3
NCI60 0.7 0.6 1.3 0.9 1.6 1.3 2.0 1.4 1.2 2.2

MEDICAL 0.0 0.1 0.1 0.1 0.2 2.1 2.3 3.3 2.5 3.6
CIRCLE10 0.9 0.7 0.3 0.4 0.3 3.8 3.4 2.1 3.5 1.7
CIRCLE50 0.5 0.5 0.3 0.3 0.6 2.0 3.3 4.5 5.5 2.2

Table 2: Standard deviation of prediction performance for each algorithm in terms of microlabel
loss and 0/1 loss.
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