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1 Demonstration of GMRF on Image Signals

An image of size 321 x 481 randomly selected from the Berkeley Segmentation Dataset is par-
titioned into a collection of fully-overlapped equal-sized local patches, each of size 8 x 8, which
are vectorized to constitute the image signals {x;} fVZIE] We use a standard GMM to fit the signal-
s {z;}X,. The parameters are estimated by the EM algorithm []], without any prior put on the

parameters {’/T(k), pk) Q(k)}. The number of the GMM components is set as eight. Since N is
fairly large (more than 450,000) relative to the number of the parameters of the GMM (around 528),
we mildly assume that this estimated GMM is a good approximation of the ground truth distribution
p(z) for the signals {z; } ;. Figureplots the precision matrices of the eight Gaussian components
of the estimated GMM.

It is evident from this figure that the precision matrices are sparse with many off-diagonal elements
close to zero and each precision matrix has the banding pattern. The bands constituted by the
significant nonzero elements are located in the main diagonal and a few lines below or above the
main diagonal. As illustrated in Figure[2} those significant nonzero elements in the bands correspond
to the pixel-pairs in which the two pixels are neighbors in a 2-D patch. Note that when one chooses
other images, uses other patch sizes (e.g., 6 x 6, 12 x 12) or sets a different K (K could be tuned by
Akaike information criterion or Bayesian information criterion, or inferred by a Dirichlet process),
the resultant plots are similar to those in Figure[T]and 2]

2 Updates of variational EM algorithm

The full update expressions of the variational EM are given below.

Update ¢(X, Z): From
q*(X,Z) o< exp (E[ln p(Y|X, k)p(X|Z, p, Q)p(Z|m)]) ,

we obtain

N
¢ (X.2) = [] o N (ailm ™), €)
i=1

"http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
These image signals can be taken as the groundtruth when one performs CS on the image signal {m,}f\il
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Figure 1: The plots of the eight precision matrices of the GMM estimated from {x;}~ ; by an
EM algorithm. The regions in the red dash-line boxes in the first and fourth plots are enlarged and
shown on the top of the plots of the eight precision matrices. In the title of each plot, the index of
the component as well as the corresponding weights of the mixture model are shown.
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Figure 2: The diagram of the relationship between the 16 pixels in a 4 x 4 2-D patch (right) and the
196 elements in a 16 x 16 precision matrix (left). The pairs of between a pixel (in yellow) and each
of its four immediate neighbors (in blue), left, right, up and down, in the right figure are considered
to have the conditional dependence relationship as highlighted in blue in the left figure. The region
in the red dash-line box in the left figure shows the case of Pixel 7 and its four immediate neighbors.
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Hence, E(x;) = Zfik pl(-k)ngk).
Update ¢(o): From
¢ () o exp (E[lnp(2a)p(e|v)]) ,

we obtain

2
where InvGau(z|g, h) = 4/ 275;3 exp(— Mz—9) ) denotes an inverse Gaussian distribution. Hence,

292z

(k) k)
E(ary) = /20657 and Eaq,!) = () Z358) 7 + B(i)

Update ¢(-): From

we obtain
K n (k)1
% k E(O{ s )
¢'(v) = [T T I Gaviao + 100 + ==5—2).
k=1s=1t<s
Hence, E(v;s) = g(of,}),l) )
bo+ —tg—
Update «:
k* = argmax {Ex[Inp(Y|X, x)p(k)]}
. 5t +eo
PORID pi’“[(yifém,ﬁ’“>'<2yifémi’”>+Lr<<1>;<1>i<ﬁ£“>fl>1 4 f

Update 7: Let n®) = ag + N®) with N®) = SN p{¥). then

K
7' = arg max {E I p(Zm)p()] + A7 ® 1)}

k=1

where )\ is a Lagrange multiplier. We obtain that

wr_ M -1
T = —% - .
D im1 n® — K

Update u®: Let 2% = 1 SN pWE(z;), then

p®” =arg max {Ex,z[lnp(u(’“) Imy, B, Q")p(X|Z, , Q)]} :

‘We obtain that
~ Bomg + N® gk

(k)*
H Bo + N )

Update Q®).

Q®” = arg max {Ea,zyx[lnp(ﬂ(k) la)p(X|Z, Q)]}
Qk)



For convenience, we let

Using identity:
—1 —1 / —1
N (20,20 7) = N(zs| — (@) 10Wz,, 0 N (@0, (@F — ol ol o)1

To make @; have the 0 mean, we let ; = x; — [L(k)*

SS ? 88

-1
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(k) SSs

x N (&40, <n§’z> fnif? o a®) 1z A(QP)0, diag ! (a)) x 1(Q® € 5,)]]

We can obtain
af)" - <N<k>2<’“><n€’f>*>-1 * diag(B < SONRCOED

where
k k
( ) N(k } : (k)* )(”( ) — (k)* ) Cg )].

The optimal Q®” computed by the above procedure is guaranteed to satisfied to the positive definite
constraint, as proved in [2].

3 Proof of Theorem 1

Proof of Theorem 1: A Taylor expansion of the inverse matrix gives

(Qo + A+ ‘I’;R_I‘I’i)il

_ [1 + (R + @R 'D,) A} o (R + ¥ R'®;) ",
(o]

- S {(Qo—s-@,’iR*l{)i)_lA} (R + @R ‘D). (1)
n=0

Based on (TJ), we obtain the signal reconstruction error
(o)
F-% = > [— (R + @R '®,) " A} (R +R'®,) R (v, — D).
n=1
Applying some norm, e.g., > norm on vectors and F' norm on matrix, on both sides and using the
properties of norms, we obtain
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where the last equation arises from the assumption that || (@ + ®;R™"®;) - Allr <1

Because H(QO + CI-QR*MI)Z.)—l AHF < H(QO + <I>QR*1¢-1.)—1HF | Al 5, one has
1= |(R0 + @iR72) A 1|0+ @iRT@) | Al
When H (2 + <I>;R’1'I>i)_1HF A 5 < 1, it follows from n that
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This completes the proof.

4 Proof of Theorem 2

Proof of Theorem 2: The main idea of proof is inspired by [3[4]. Recall that 2* = Qg + A is the
estimate of €2 that minimizes

F(Q) = u(Q8em) —log |+ > nijlwi;] (5)
(i,7)€SUSe

where 7;; = ¥ T]\;“ Let Q= Qg + 3, and consider the set

o~ o~ -~/ -~
on(M) = {A: A=A Al = MRy}

where
+ )l
Ry = % +vVn + so4e.-
Note that F(£2) is a convex function and F (o + A) < F(g). Therefore, if we prove that the
following probability tends to
p(inf{F(Qo + A)|A € On (M)} > F(Q)). (6)

then A corresponding to the minimizer 2* are inside the sphere defined by © 5 (M) and ||A||F <

M R with high probability, equivalently, ||Q2* — Q0||% = O,{\/(n + s)logn/N + /n + s54.}.
In the following, we give the proof of expression (6).

According to (5), we obtain that
F(Q)—F(Qo) =11 + I + I,
where

I = () — 1(Q o) — 1(AZg) = (A (e, — o))
1
I, = —log |Q] + log || + tr(AXg) = vec(A)’ [/ (1—v)(Q+vA)'® (R +vA) 'dy| vec(A)
0

=Y mi(jwil — |wf)

(i,5)ESUSe

*More exactly, the claim hold with probability greater than 1 — c1 exp(—cz logn), where ¢1,c2 > 0 are
independent of other parameters.



where I is obtained by using Taylor’s expansion, and vec(ﬁ) denotes the vectorized A and ®
represents the Kronecker product.

For I;:
Let Ay, of™, o, of¢, o) are the elements at the i-th row and j-th column of
A X, 22m, 34e, X, respectively. We obtain the following inequality for I; as

n
L>—|L] > =) (0" — o)Al =Y (o5 — o9) Auil
i£] i=1

151) I§2)
Based on the Lemma 1 of [4] and Lemma 2 of [3]], we obtain that, with probability tending to 1,
0 0 0 d
I?ﬁj?doiegm - Uij| < I?%x{|o-’?]m - Uij| + |U¢je|}

logn
- N

logn
<Cl< ng +ode>.

where C; > 1. Let AJF be a diagonal matrix with the diagonal same as A and A

‘We obtain
[logn ~—
Ifl) <Cy ( % JrC_Tde) A [y

where |X| is the ¢; norm of the vectorized matrix X.

+ Ode

~A-A".

Similarly, according to Cauchy-Schwartz inequality, we obtain the expression

n 1/2
~+
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holds with also probability tending to 1, where Cy > 1.
For I,
Let ||X]| be the operator norm defined by ||X|| = \/¥max(XX’). We obtain that
1
I 2/ (1= v) min dmin[(Qo +vA) 7 ® (Qo +vA) dv||A|R
0

0<rv<

Y

NI 2 X
A||F Olgnulgl wmax(ﬂo + VA)

A0l + 1A])~

Y

vV
N RN~ N

>
ST

(i +o(1)



with probability tending to 1, since ||3|| < ||3|| r = o(1), where the symbols 1, (X) and
Ymax(X) denote the smallest and largest eigenvalues of matrix X respectively.

For I3

Since

lwij| — %] = Nwil =121 if (4,7) € S¢
2 - . .. 5
! Y |wij + Al — lwii| > —[Ay] if (5,5) € S

we obtain that
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We obtain that
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for sufficiently large M. The third inequality is hold, since the term —C} < logn 5de> (1-

i) |3;L |1 is always positive as similarly set in [4] and also

1Agli < Vs|Agllr < VS|A ||r < Vs +nl|A | p.

This completes the proof.



5 Proof of Theorem 3

Proof: According to Theorem 1 and Theorem 2, we can find an appropriate constant M/ make the
inequality |A| < MC + M+/n + s64. hold with high probability, and further obtain that

1 & 1
N ; H5i||2 = N; ||90i —Zi|2

|(@0+@ir2)| Al

1 N
=5 12 — ull

i-1 | 1— H(Qo + ‘P;Rfl'pi)_IHF Az
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< — NZH%*Mb

1— max; || (20 + @R 8) | Al VS
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< T — K
e -

f(MC—F MD Zz 1(2mmax||(s ||2 + ||(S H2 —|—tI‘ C )
<
. _— > 1 -l

§ MD
Sm (MC+ —_— Z 2% max ||0ill2 + 16|13 + tr(C ) Z 12 — w2

N
£

[ M -

“N(1=0) ( C+ 2:, 2% max||9il2 + Omax]|di[|2 + tr(C > E lZ; — pello-

where C = /(n + s)logn/N , D = /n + s. The fourth inequality holds because

Ode :szenmax < tr(zde)

2 o N
SN;H%HQII&IIﬁtr (Ng T )

2

2 XL ) (8)
:NZ 1Zi]l2110:]12 + — Z(||5i”2 +tr(Cy))
1=1

=1
N

1 ~
<% > & maxl|8ill2 + [16:]3 + t2(Cy))

i=1
where the second inequality holds based on Cauchy—Schwarz inequality.
Letting € = + vazl |62, we write from H that

1-¢
£EOM

€ — C < D((dmax + 2Tmax)€ + V).

When

€o MD > f(émax + 2£max), one has
C/D+wv

B fet;V[CD - (5max + 2§max)
(logn)/N + v

1—¢ =
oMV (Omax + 2T max)
1 N
(1 - C)/V n+s— MEO((Smax + 2wmax)€

This completes the proof.
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