
A Proof of Corollary 1

The second part follows from the fact that log(1 − η)/η is an decreasing function on η ∈ (0, 1/2).
For the first part, we study two cases. In the first case, we assume that �LT (B) ≤ �LT (A) holds,
which proves the statement for this case. For the second case, we assume the contrary and notice
that
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where (z)+ and (z)− are the positive and negative parts of z ∈ R, respectively. Now observe that
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Plugging this result into the first bound of Thm. 1 and substituting the choice of η gives the result.

B Anytime (A,B)-PROD

Algorithm 1 Anytime (A,B)-PROD
Initialization: η1 = 1/2, w1,A = w1,B = 1/2
For all t = 1, 2, . . . , T , repeat
1. Let

ηt =

�
1

1 +
�t−1

s=1(fs(bs)− fs(as))2

and
st =

ηtwt,A
ηtwt,A + w1,B/2

.

2. Observe at and bt and predict

xt =

�
at with probability st,
bt with probability 1− st.

3. Observe ft and suffer loss ft(xt).
4. Feed ft to A and B.
5. Compute δt = ft(bt)− ft(at) and set

wt+1,A = wt,A · (1 + ηt−1δt)
ηt/ηt−1 .

Algorithm 1 presents the adaptation of the adaptive-learning-rate PROD variant recently proposed by
Gaillard et al. [11] to our setting. Following their analysis, we can prove the following performance
guarantee concerning the adaptive version of (A,B)-PROD.
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Theorem 6. Let C be an upper bound on the total benchmark loss �LT (B). Then anytime (A,B)-
PROD simultaneously guarantees

RT ((A,B)-PROD, x) ≤ RT (A, x) +KT

√
C + 1 + 2KT

for any x ∈ S and
RT ((A,B)-PROD,B) ≤ 2 log 2 + 2KT

against any assignment of the loss sequence, whereKT = O(log log T ).

There are some notable differences between the guarantees given by the above theorem and Thm. 1.
The most important difference is that the current statement guarantees an improved regret of
O(

√
T log log T ) instead of

√
T log T in the worst case – however, this comes at the price of an

O(log log T ) regret against the benchmark strategy.

C Proof of Proposition 1

We start by stating the proposition more formally.
Proposition 2. Assume that there exist a partition of [1, T ] into K intervals I1, . . . , IK such that
the i-th component of the loss vectors within each interval Ik are drawn independently from a fixed
probability distribution Dk,i dependent on the index k of the interval and the identity of expert i.
Furthermore, assume that at any time t, there exists a unique expert i∗t and gap parameter δ > 0
such that E

�
�t,i∗t

�
≤ E [�t,i] − δ holds for all i �= i∗t . Then, the regret FTL(w) with parameter

w > 0 is bounded as

E [RT (FTL(w), y1:T )] ≤ wK +NT exp

�
−wδ2

4

�
,

where the expectation is taken with respect to the distribution of the losses. Setting w =�
4 log(NT/K)/δ2

�
, the bound becomes

E [RT (FTL(w), y1:T )] ≤
4K log(NT/K)

δ2
+ 2K.

Proof. The proof is based on upper bounding the probabilities qt = P [bt �= it∗] for all t. First,
observe that the contribution of a round when bt = i∗t to the expected regret is zero, thus the
expected regret is upper bounded by

�T
t=1 qt. We say that t is in the w-interior of the partition if

t ∈ Ik and t > min {Ik}+w hold for some k, so that bt is computed solely based on samples from
Dk. Let �̂t =

�t−1
s=t−w−1 �s and �̄t = E [�t]. By Hoeffding’s inequality, we have that

qt = P [bt �= i∗t ] ≤ P
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holds for any t in the w-interior of the partition. The proof is concluded by observing that there are
at most wK rounds ouside the w-interval of the partition and using the trivial upper bound on qt on
such rounds.
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