Learning to Prune in Metric and Non-Metric Spaces

Part of Advances in Neural Information Processing Systems 26 (NIPS 2013)

Bibtex Metadata Paper Reviews Supplemental


Leonid Boytsov, Bilegsaikhan Naidan


Our focus is on approximate nearest neighbor retrieval in metric and non-metric spaces. We employ a VP-tree and explore two simple yet effective learning-to prune approaches: density estimation through sampling and “stretching” of the triangle inequality. Both methods are evaluated using data sets with metric (Euclidean) and non-metric (KL-divergence and Itakura-Saito) distance functions. Conditions on spaces where the VP-tree is applicable are discussed. The VP-tree with a learned pruner is compared against the recently proposed state-of-the-art approaches: the bbtree, the multi-probe locality sensitive hashing (LSH), and permutation methods. Our method was competitive against state-of-the-art methods and, in most cases, was more efficient for the same rank approximation quality.