Adaptive Multi-Column Deep Neural Networks with Application to Robust Image Denoising

Part of Advances in Neural Information Processing Systems 26 (NIPS 2013)

Bibtex Metadata Paper Reviews


Forest Agostinelli, Michael R. Anderson, Honglak Lee


Stacked sparse denoising auto-encoders (SSDAs) have recently been shown to be successful at removing noise from corrupted images. However, like most denoising techniques, the SSDA is not robust to variation in noise types beyond what it has seen during training. We present the multi-column stacked sparse denoising autoencoder, a novel technique of combining multiple SSDAs into a multi-column SSDA (MC-SSDA) by combining the outputs of each SSDA. We eliminate the need to determine the type of noise, let alone its statistics, at test time. We show that good denoising performance can be achieved with a single system on a variety of different noise types, including ones not seen in the training set. Additionally, we experimentally demonstrate the efficacy of MC-SSDA denoising by achieving MNIST digit error rates on denoised images at close to that of the uncorrupted images.