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Recall that we want to analyze the kth iteration of APID. We consider the solution Q̂ to the following
optimization problem:

Q̂← argmin
Q∈F |A|,ξ∈Rm+

‖Q− TπQ‖2n + λJ2(Q) +
α

m

m∑
i=1

ξi (1)

s.t. Q(Xi, πE(Xi))− max
a∈A\πE(Xi)

Q(Xi, a) ≥ 1− ξi. for all (Xi, πE(Xi)) ∈ DE

This optimization is equivalent to the following unconstrained one:

Q̂← argmin
Q∈F|A|

‖Q− TπQ‖2n + λJ2(Q) +
α

m

m∑
i=1

[
1−

(
Q(Xi, πE(Xi))− max

a∈A\πE(Xi)
Q(Xi, a)

)]
+

(2)

where [1− z]+ = max{0, 1− z} is the hinge loss.

For the convenience of the reader, we quote the assumptions and the statement of the theorem again.

Assumption A1 (Sampling) DRL contains n independent and identically distributed (i.i.d.) samples
(Xi, Ai)

i.i.d.∼ νRL ∈ M(X × A) where νRL is a fixed distribution (possibly dependent on k) and
the states in DE = {(Xi, πE(Xi)}mi=1 are also drawn i.i.d. Xi

i.i.d.∼ νE ∈ M(X ) from an expert
distribution νE. DRL and DE are independent from each other. We denote N = n+m.

Assumption A2 (RKHS) The function space F |A| is an RKHS defined by a kernel function K :

(X × A) × (X × A) → R, i.e., F |A| =
{
z 7→

∑N
i=1 wiK(z, Zi) : w ∈ RN

}
with {Zi}Ni=1 =

DRL ∪ DE. We assume that supz∈X×A K (z, z) ≤ 1. Moreover, the function space F |A| is Qmax-
bounded.

Assumption A3 (Function Approximation Property) For any policy π, Qπ ∈ F |A|.

Assumption A4 (Expansion of Smoothness) For allQ ∈ F |A|, there exist constants 0 ≤ LR, LP <
∞, depending only on the MDP and F |A|, such that for any policy π, J(TπQ) ≤ LR + γLPJ(Q).

Assumption A5 (Regularizers) The regularizer functionals J : B(X )→ R and J : B(X ×A)→
R are pseudo-norms on F and F |A|, respectively,1 and for all Q ∈ F |A| and a ∈ A, we have
J(Q(·, a)) ≤ J(Q).

1 B(X ) and B(X ×A) denote the space of bounded measurable functions defined on X and X ×A. Here
we are slightly abusing notation as the same symbol is used for the regularizer over both spaces. However, this
should not cause any confusion since the identity of the regularizer should always be clear from the context.
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Theorem 1. For any fixed policy π, let Q̂ be the solution to the optimization problem (1) with the
choice of α > 0 and λ > 0. If Assumptions A1–A5 hold, for any n,m ∈ N and 0 < δ < 1, with
probability at least 1− δ we have

∥∥∥Q̂− TπQ̂∥∥∥2
νRL

≤ 64Qmax

√
n+m

n

(
(1 + γLP )

√
R2

max + α√
λ

+ LR

)
+

min

{
2αEX∼νE

[[
1−

(
Qπ(X,πE(X))− max

a∈A\πE(X)
Qπ(X, a))

)]
+

]
+ λJ2(Qπ),

2 ‖QπE − TπQπE‖2νRL
+ 2αEX∼νE

[[
1−

(
QπE (X,πE(X))− max

a∈A\πE(X)
QπE (X, a))

)]
+

]
+ λJ2(QπE )

}

+ 4Q2
max

(√
2 ln(4/δ)

n
+

6 ln(4/δ)

n

)
+ α

20(1 + 2Qmax) ln(8/δ)

3m
.

To prove this theorem, we first present a simple auxiliary result.

Lemma 2 (Noncentrail Tail Inequality). Let X1, . . . , Xn ∈ X be nonnegative i.i.d. random vari-
ables bounded by L > 0 almost surely. For any fixed δ > 0, with probability at least 1 − δ, we
have ∣∣∣∣∣ 1n

n∑
i=1

Xi − E [X]

∣∣∣∣∣ ≤ E [X] +
10L ln(2/δ)

3n
.

Proof. We use the Bernstein inequality (e.g., Lemma 2 of [1]) to derive this result. First note that
for any ε > 0, the boundedness and nonnegativity of X imply that σ2 ≤ E

[
X2
]
≤ LE [|X|] =

LE [X] ≤ L(E [X] + ε). Thus, for any ε > 0,

P

{∣∣∣∣∣ 1n
n∑
i=1

Xi − E [X]

∣∣∣∣∣ > E [X] + ε

}
≤ 2 exp

(
− n(E [X] + ε)2

2σ2 + 4L
3 (E [X] + ε)

)

≤ 2 exp

(
− n(E [X] + ε)2

(2L+ 4L
3 )(E [X] + ε)

)

= 2 exp

(
−3n(E [X] + ε)

10L

)
≤ 2 exp

(
− 3nε

10L

)
,

where we used E [X] > 0 in the last inequality. Rearrangement of this statement leads to the desired
result.

In the proof of Theorem 1, we use the concept of Rademacher complexity (or average), so we
briefly define it here [2, 3]. Let σ1, . . . , σn be independent random variables with P {σi = 1} =
P {σi = −1} = 1/2. For a function space G : X → R, define RnG = supg∈G

1
n

∑n
i=1 σig(Xi).

The Rademacher complexity of G is E [RnG], in which the expectation is w.r.t. both σ and Xi. One
might interpret the Rademacher complexity as a measure that quantifies the extent that a function in
G can fit to a noise sequence of length n [3].

Proof of Theorem 1. Fix δ1 > 0. Define the following empirical norms:

L1,n(Q) , ‖Q− TπQ‖2n =
1

n

n∑
i=1

|Q(Zi)− TπQ(Zi)|2 ,

L2,m(Q) ,
1

m

m∑
i=1

[
1− 1

∆i

(
Q(Xi, πE(Xi))− max

a 6=πE(Xi)
Q(Xi, a))

)]
+

with the understanding that in the definition of L1,n, the random variables Zi = (Xi, Ai) are ele-
ments of DRL and in the definition of L2,m, the random variables (Xi, πE(Xi)) belong to DE.
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We also define the true norms

L1(Q) ,
∫
|Q(z)− TπQ(z)|2 dνRL(z),

L2(Q) ,
∫ [

1− 1

∆(x)

(
Q(x, πE(x))− max

a6=πE(x)
Q(x, a))

)]
+

dνE(x).

Finally define

LN (Q) , L1,n(Q) + αL2,m(Q) + λJ2(Q).

Note that Q̂← argminQ∈F |A| LN (Q) is the solution of the optimization problem (2).2

Because of the optimizer property of Q̂, we have

LN (Q̂) ≤

‖Qπ − TπQπ‖2n +
α

m

m∑
i=1

[
1− 1

∆i

(
Qπ(Xi, πE(Xi))− max

a 6=πE(Xi)
Qπ(Xi, a))

)]
+

+ λJ2(Qπ) =

α

m

m∑
i=1

[
1− 1

∆i

(
Qπ(Xi, πE(Xi))− max

a 6=πE(Xi)
Qπ(Xi, a))

)]
+

+ λJ2(Qπ). (3)

We also have

LN (Q̂) ≤ ‖QπE − TπQπE‖2n +

α

m

m∑
i=1

[
1− 1

∆i

(
QπE (Xi, πE(Xi))− max

a 6=πE(Xi)
QπE (Xi, a))

)]
+

+ λJ2(QπE ).

(4)

Moreover, we have

λJ2(Q̂) ≤ LN (Q̂) ≤ LN (0) = ‖0− Tπ0‖2n +
α

m

m∑
i=1

[
1− 1

∆i
(0− 0)

]
+

+ λJ2(0)

≤ R2
max +

α

m
m+ 0.

Therefore,

J2(Q̂) ≤ R2
max + α

λ
. (5)

For B > 0, let us define the function space with B-bounded value of regularizer as F |A|(B) ,{
Q : Q ∈ F |A|, J(Q) ≤ B

}
, as well as F |A|λ = F |A|

(√
R2

max+α
λ

)
. From (5), it is clear that Q̂

belongs to F |A|λ . Now we have

L1(Q̂) = L1,n(Q̂)− L1,n(Q̂) + L1(Q̂) ≤ L1,n(Q̂) + sup
Q∈F |A|

λ

|L1,n(Q)− L1(Q)|

≤ LN (Q̂) + sup
Q∈F |A|

λ

|L1,n(Q)− L1(Q)| (6)

We use Rademacher complexity to control the supremum of the empirical process
sup

Q∈F |A|
λ

|L1,n(Q)− L1(Q)|. Since |Q−TπQ|2 is (2Qmax)2-bounded and Var
[
|Q− TπQ|2

]
≤

2In (2), we set ∆i = 1. The loss function analyzed in the proof uses the generalized version of the opti-
mization where ∆i > 0 might not be equal to one.
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E
[
|Q− TπQ|4

]
≤ (2Qmax)4, Theorem 2.1 of Bartlett et al. [2] indicates that with probability at

least 1− δ1, we have

sup
Q∈F |A|

λ

|L1,n(Q)− L1(Q)| ≤ 4E [RnGλ] +

√
2(2Qmax)4 ln(1/δ1)

n
+

8

3
(2Qmax)2

ln(1/δ1)

n
, (7)

where Gλ ,
{
|Q− TπQ|2 : Q ∈ F |A|λ

}
.

We upper bound E [RnGλ]. We use the contraction property of the Rademacher complex-
ity as well as the simple inequality Rn(G1 + G2) ≤ Rn(G1) + Rn(G2) (cf. Theo-
rem 12 of Bartlett and Mendelson [3] for both). As

∣∣|Q1 − TπQ1|2 − |Q2 − TπQ2|2
∣∣ ≤

(4Qmax) |(Q1 − TπQ1)− (Q2 − TπQ2)|, the Lipschitz constant needed in the contraction property
is 4Qmax. Thus,

E [RnGλ] ≤ 2(4Qmax)E
[
Rn

{
Q− TπQ : Q ∈ F |A|λ

}]
≤ 8Qmax

(
E
[
RnF |A|λ

]
+ E

[
Rn

{
TπQ : Q ∈ F |A|λ

}])
≤ 8Qmax

(
E
[
RnF |A|λ

]
+ E

[
Rn

{
Q : Q ∈ F |A|, J(Q) ≤ LR + γLP

√
R2

max + α

λ

}])

= 8Qmax

(
E

[
RnF |A|

(√
R2

max + α

λ

)]
+ E

[
RnF |A|

(
LR + γLP

√
R2

max + α

λ

)])

The behaviour of these Rademacher complexities depend on the choice of the function space and the
effect ofB inF |A|(B) on its complexity. In the case of RKHS with data points {Zi}ni=1 = DRL∪DE,

we have F |A|(B) =
{
z 7→

∑N
i=1 wiK(z, Zi) :

∑
i,j wiwjK(Zi, Zj) ≤ B2

}
. In this case, it is

known (cf. Lemma 22 of Bartlett and Mendelson [3]) that RnF |A|(B) ≤ 2B
n

√∑N
i=1 K(Zi, Zi) ≤

2B
√
N

n . Thus,

E [RnGλ] ≤ 16Qmax

√
N

n

[
(1 + γLP )

√
R2

max + α√
λ

+ LR

]
. (8)

By collecting (3), (4), (6), (7), and (8), we get that with probability at least 1− δ1,

L1(Q̂) =
∥∥∥Q̂− TπQ̂∥∥∥2

νRL

≤

min

{
α

m

m∑
i=1

[
1− 1

∆i

(
Qπ(Xi, πE(Xi))− max

a6=πE(Xi)
Qπ(Xi, a))

)]
+

+ λJ2(Qπ),

‖QπE − TπQπE‖2n +
α

m

m∑
i=1

[
1− 1

∆i

(
QπE (Xi, πE(Xi))− max

a 6=πE(Xi)
QπE (Xi, a))

)]
+

+

λJ2(QπE )

}
+ 64Qmax

√
N

n

(
(1 + γLP )

√
R2

max + α√
λ

+ LR

)
+

(2Qmax)2

[√
2 ln(1/δ1)

n
+

8

3

ln(1/δ1)

n

]
.

We evoke Lemma 2 to upper bound each of three empirical terms in the right-hand side by their
expectation. When we use that lemma, we set the parameter of the probability of failure equal to
δ/4. We also set δ1 = δ/4. To simplify the expression, we only consider the case that ∆i = 1. After
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some simplifications, we get∥∥∥Q̂− TπQ̂∥∥∥2
νRL

≤ min

{
2αEX∼νE

[[
1−

(
Qπ(X,πE(X))− max

a6=πE(X)
Qπ(X, a))

)]
+

]
+ λJ2(Qπ),

2 ‖QπE − TπQπE‖2νRL
+ 2αEX∼νE

[[
1−

(
QπE (X,πE(X))− max

a6=πE(X)
QπE (X, a))

)]
+

]
+

λJ2(QπE )

}
+

64Qmax

√
N

n

(
(1 + γLP )

√
R2

max + α√
λ

+ LR

)
+ 4Q2

max

(√
2 ln(4/δ)

n
+

6 ln(4/δ)

n

)
+

α
20(1 + 2Qmax) ln(8/δ)

3m
,

with probability at least 1− δ.
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