
Two-Target Algorithms for Infinite-Armed Bandits
with Bernoulli Rewards – Appendix

Thomas Bonald∗
Department of Networking and Computer Science

Telecom ParisTech
Paris, France

thomas.bonald@telecom-paristech.fr

Alexandre Proutière∗†
Automatic Control Department

KTH
Stockholm, Sweden
alepro@kth.se

In this appendix, we extend the results to any mean-reward distribution whose support contains 1.
We denote by F the complementary cumulative distribution function, i.e., F (u) = P (θ1 > u) for
all u ∈ [0, 1]. We assume that F (1) = 0 and F (u) ∼ α(1− u)β when u → 1− for some constants
α, β > 0.

A Preliminary results

We need the following two technical lemmas, where Γ refers to the gamma function:

Lemma 1 For all β > 0 and j = 0, 1, . . .,
j∑
i=0

(
j

i

)
(−1)i

(1− (j − i)x)β
∼x→0

Γ(β + j)

Γ(β)
xj .

Proof. Let:

fj(x) =

j∑
i=0

(
j

i

)
(−1)i

(1− (j − i)x)β
.

For all k = 1, 2, . . . , the k-th derivative of fj in x = 0 is given by:

f
(k)
j (0) =

Γ(β + k)

Γ(β)

j−1∑
i=0

(
j

i

)
(−1)i(j − i)k.

We need to prove that f (k)
j (0) = 0 for all k < j and:

f
(j)
j (0) =

Γ(β + j)

Γ(β)
j!,

with the convention that f (0)
j ≡ fj . We prove the result by induction on j. The property holds for

j = 0. Assume that the property is satisfied for j − 1, for some j ≥ 1. Note that fj(0) = 0. Now
for all k = 1, 2, . . . ,

f
(k)
j (0)

Γ(β)

Γ(β + k)
=

j−1∑
i=0

(
j

i

)
(−1)i(j − i)k,

= j

j−1∑
i=0

(
j − 1

i− 1

)
(−1)i(j − i)k−1,

which, by the induction assumption, is equal to 0 if k < j and to j! if k = j. �
∗The authors are members of the LINCS, Paris, France. See www.lincs.fr.
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Lemma 2 For all β > 0,

lim
m→+∞

1

mβ

m−1∑
j=0

Γ(β + j)

j!
=

1

β
.

Proof. Since
Γ(β + j)

j!
∼ jβ−1 when j → +∞,

we have:

lim
m→+∞

1

mβ

m−1∑
j=0

Γ(β + j)

j!
= lim
m→+∞

1

m

m−1∑
j=0

(
j

m

)β−1

=

∫ 1

0

uβ−1du =
1

β
.

�

B Known horizon time

B.1 Regret analysis

Proposition 3 The two-target algorithm with targets `1 =

⌊(
αn
β+1

) 1
β+2

⌋
and `2 =

⌊
m
(
αn
β+1

) 1
β+1

⌋
satisfies:

lim
m→+∞

lim sup
n→+∞

E(Rn)

n
β
β+1

≤
(
β + 1

α

) 1
β+1

.

Proof. Let U1 = 1 if arm 1 is used until time n and U1 = 0 otherwise. Denote by M1 the total
number of 0’s received from arm 1:

M1 =

n∑
t=1

1{It=1}1{Xt=0}.

We have:

E(Rn) ≤ P (U1 = 0)(E(M1|U1 = 0) + E(Rn)) + P (U1 = 1)(m+ nE(1− θ1|U1 = 1)),

so that:

E(Rn) ≤ E(M1|U1 = 0)

P (U1 = 1)
+m+ nE(1− θ1|U1 = 1).

Let Nt be the number of 0’s received from arm 1 until time t when this arm is played until time t.
We take n sufficiently large so that n ≥ `2. Since P (N`1 = 0|θ1 = u) = u`1 , the probability that
the first target is achieved by arm 1 is given by:

P (N`1 = 0) = E(θ`11 ),

=

∫ 1

0

F (u
1
`1 )du,

∼n→+∞

∫ 1

0

α

(
− ln(u)

`1

)β
du = α

Γ(β + 1)

`β1
,

where we have used the fact that:

∀x > 0, Γ(x) ≡
∫ +∞

0

tx−1e−tdt =

∫ 1

0

(− ln(u))x−1du.

For the second target, we have:

P (N`2−`1 < m|θ1 = u) =

m−1∑
j=0

(
`2 − `1
j

)
u`2−`1−j(1− u)j ,
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so that:

P (U1 = 1|θ = u) = P (N`1 = 0, N`2−`1 < m|θ1 = u),

=

m−1∑
j=0

(
`2 − `1
j

)
u`2−j(1− u)j . (1)

We deduce the probability that arm 1 is used until time n:

P (U1 = 1) =

m−1∑
j=0

(
`2 − `1
j

)
E(θ`2−j1 (1− θ1)j).

For all j = 0, . . . ,m− 1, we have:

E(θ`2−j1 (1− θ1)j) =

j∑
i=0

(
j

i

)
(−1)iE(θ`2−j+i1 ),

∼n→+∞

j∑
i=0

(
j

i

)
(−1)iα

Γ(β + 1)

(`2 − j + i)β
,

∼n→+∞ αβ
Γ(β + j)

`β+j
2

,

where the last equivalent follows from Lemma 1. We deduce:

P (U1 = 1) ∼n→+∞

m−1∑
j=0

`j2
j!
αβ

Γ(β + j)

`β+j
2

,

∼n→+∞ αβγ(m)

(
β + 1

αn

) β
β+1

,

with

γ(m) =
1

mβ

m−1∑
j=0

Γ(β + j)

j!
.

Now,

E(M1|U1 = 0) = 1 + (m− 1)P (N`1 = 0|U1 = 0) ≤ 1 + (m− 1)
P (N`1 = 0)

P (U1 = 0)
.

Since P (N`1 = 0) and P (U1 = 0) tend respectively to 0 and 1 when n→ +∞, we deduce:

lim sup
n→+∞

E(M1|U1 = 0) ≤ 1.

It remains to calculate E(1− θ1|U1 = 1). Using (1), we get:

E(1− θ1|U1 = 1) =
E((1− θ1)1{U1=1})

P (U1 = 1)
,

=
1

P (U1 = 1)

m−1∑
j=0

(
`2 − `1
j

)
E(θ`2−j1 (1− θ1)j+1).

Since

E(θ`2−j1 (1− θ1)j+1) ∼n→+∞ αβ
Γ(β + j + 1)

`β+j+1
2

,

we obtain:
m−1∑
j=0

(
`2 − `1
j

)
E(θ`2−j1 (1− θ1)j+1) ∼n→+∞

m−1∑
j=0

`j2
j!
αβ

Γ(β + j + 1)

`β+j+1
2

,

∼n→+∞ αβγ′(m)
β + 1

αn
,
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with

γ′(m) =
1

mβ+1

m−1∑
j=0

Γ(β + j + 1)

j!
,

and

E(1− θ1|U1 = 1) ∼n→+∞
γ′(m)

γ(m)

(
β + 1

αn

) 1
β+1

.

Finally, we get:

lim sup
n→+∞

E(Rn)

n
β
β+1

≤ 1

αβγ(m)

(
α

β + 1

) β
β+1

+
γ′(m)

γ(m)

(
β + 1

α

) 1
β+1

,

and the result follows from the fact that, by Lemma 2, γ(m) → 1
β and γ′(m) → 1

β+1 when
m→ +∞. �

B.2 Lower bound

To prove the lower bound, we need the following technical result:

Lemma 3 Let L be the length of the first run of any arm, with parameter θ. For any sequence of
positive numbers εk = O(k−

1
β+1 ), we have:

E(L|θ ≤ 1− εk) =

 O(k
1−β
β+1 ) if β < 1,

O(ln k) if β = 1,
O(1) if β > 1.

Moreover, for any sequence of positive numbers εk tending to 0,

lim
k→+∞

εkE(L|θ ≤ 1− εk) = 0.

Proof. We have:

E(L|θ ≤ 1− εk) = E

(
1

1− θ
|θ ≤ 1− εk

)
.

Let c < 1 be such that F (u) ≤ 2α(1−u)β for all u > c. Take k sufficiently large so that 1−εk > c.
For some constant C > 0,

E(L|θ ≤ 1− εk) = 1 +

∫ 1
εk

1 (F (1− 1
u )− F (1− εk))du

1− F (1− εk)
,

≤ C +

∫ 1
εk
1

1−c
F (1− 1

u )du

1− F (1− εk)
,

≤ C +

∫ 1
εk
1

1−c

2α
uβ

du

1− F (1− εk)
.

We distinguish between three cases:

• If β < 1, ∫ 1
εk

1
1−c

du

uβ
=
εβ−1
k − (1− c)β−1

1− β
≤

εβ−1
k

1− β
.

• If β = 1, ∫ 1
εk

1
1−c

du

uβ
= − ln(εk) + ln(1− c) ≤ − ln(εk).
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• If β > 1, ∫ 1
εk

1
1−c

du

uβ
=
εβ−1
k − (1− c)β−1

1− β
≤ (1− c)β−1

β − 1
.

The proof then follows from the fact that F (1− εk)→ 0 when k → +∞. �

Theorem 2 For any algorithm with known time horizon n,

lim inf
n→+∞

E(Rn)

n
β
β+1

≥
(
β + 1

α

) 1
β+1

.

Proof. Assume an oracle reveals the parameter of each arm after the first failure of this arm. With
this information, the optimal policy explores a random number of arms, each until the first failure,
then plays only one of these arms until time n. Let µ be the parameter of the best known arm at
time t. We need to characterize the optimal policy for the remaining k = n − t time steps. Let
V1(k, µ) = k(1 − µ) be the expected number of failures when the best known arm is exploited
for the remaining k time steps and V2(k, µ) be the expected number of failures when exactly one
additional arm, with random parameter θ, is explored:

V2(k, µ) = E

(
k−1∑
t=0

θt(1− θ)
(

1 + V1(k − t− 1, µ ∨ θ)
))

.

Now let V (k, µ) be the minimum expected number of failures when k steps remain and µ is the
parameter of the best known arm. This is the value function of a Markov Decision process, which
satisfies Bellman’s equation:

V (k, µ) = min

(
V1(k, µ), E

(
k−1∑
t=0

θt(1− θ)
(

1 + V (k − t− 1, µ ∨ θ)
)))

. (2)

By construction, we have, for any algorithm, E(Rn) ≥ V (n, 0) for all n ≥ 1.

Observe that for all k ≥ 1, there exists some threshold µk such that V1(k, µ) ≤ V2(k, µ) if and only
if µ ≥ µk. This follows from the fact that V2(k, µ)− V1(k, µ) is a non-decreasing function of µ:

∂V2

∂µ
(k, µ)− ∂V1

∂µ
(k, µ) = −E

(
k−1∑
t=0

θt(1− θ)(k − t− 1)1{θ≤µ}

)
+ k ≥ 0.

Now we study the behaviour of the threshold µk for large k. Define εk by:∫ 1

1−εk
F (u)du =

1

k
.

Since ∫ 1

1−ε
F (u)du ∼ α

β + 1
εβ+1 when ε→ 0+,

we get:

εk ∼
(
β + 1

αk

) 1
β+1

when k → +∞.

We shall prove that µk ≥ 1 − εk and 1 − µk ∼ εk when k → +∞. To do so, we compare the
average rewards obtained from state (k, µ) if we do not explore any new arm and if we explore
exactly one more arm. We divide the k remaining rounds into the exploration phase, where the new
arm is played until the first failure, and the exploitation phase where the best arm is played. Given
the parameter θ of the new arm and the length L of its first run, the expected number of failures
removed thanks to the exploration of the new arm is:

L(1− µ)− 1 + (k − L)(µ ∨ θ − µ) = k(µ ∨ θ − µ)− 1 + L(1− µ ∨ θ).
Taking expectation, we conclude that it is beneficial to explore a new arm if and only if:

k

∫ 1

µ

F (u)du− 1 + E(L(1− µ ∨ θ)) ≥ 0.
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In particular, it is better to explore a new arm whenever µ ≤ 1− εk and thus µk ≥ 1− εk. Now let
δ ∈ (0, 1) and assume that µ > 1− εk(1− δ). Since

k

∫ 1−εk(1−δ)

1−εk
F (u)du ≥ kεkδF (1− εk(1− δ)) ∼k→+∞ δ(1− δ)β ,

there exists some constant c > 0 such that for sufficiently large k,

k

∫ 1

µ

F (u)du− 1 ≤ −c.

Moreover,

E(L(1− µ ∨ θ)) ≤ P (θ > µ) + (1− µ)E(L|θ ≤ µ),

which tends to 0 in view of Lemma 3. Thus, for sufficiently large k, it is better not to explore a new
arm and thus µk ≤ 1− εk(1− δ). We have proved that for any δ ∈ (0, 1), there exists k0 such that
for all k ≥ k0, 1− εk ≤ µk ≤ 1− εk(1− δ).

Next we show that µk is non-decreasing in k for k large enough. To prove this, we establish that,
for k large enough,

V2(k, µk)− V2(k − 1, µk) ≤ 1− µk. (3)
This implies:

V1(k − 1, µk) = V1(k, µk)− (1− µk) = V2(k, µk)− (1− µk) ≤ V2(k − 1, µk),

and thus µk ≥ µk−1. Since

V2(k, µ)− V2(k − 1, µ) = E(1L<k−1(1− θ ∨ µ) + 1L=k−1),

= E((1− θ ∨ µ)(1− θk−1) + θk−1(1− θ)),
inequality (3) is equivalent to:

E(µk − θ ∨ µk − θk−1(θ − θ ∨ µk)) ≤ 0.

Now, we can choose δ ∈ (0, 1) and hence k0 such that for all k ≥ k0:

E(θ ∨ µk − µk) =

∫ 1

µk

F (u)du ≥
∫ 1

1−εk(1−δ)
F (u)du ≥ 1

2

∫ 1

1−εk
F (u)du =

1

2k
.

Moreover, for all k ≥ k0,

E(θk−1(θ ∨ µk − θ)) ≤ µk−1
k E(1θ≤µk(µk − θ)) ≤ µkk ≤ (1− εk(1− δ))k.

Using the fact that εk ∼
(
β+1
αk

) 1
β+1

, we deduce that there exists some k1 ≥ k0 such that for all
k ≥ k1,

(1− εk(1− δ))k ≤ 1

2k
,

which proves that (3) holds for k ≥ k1.

Finally, we compute V (k, µ). Specifically, we prove that for k large enough, V (k, µ) = V1(k, µ) if
and only if µ ≥ µk. If µ < µk, then

V (k, µ) ≤ V2(k, µ) < V1(k, µ).

Since µk is arbitrarily close to 1 as k → +∞, there exists k2 ≥ k1 such that for all k ≥ k2,
µk ≥ max(µ1, . . . , µk1). Hence, µk ≥ µs for all s ≤ k, using the monotonicity of µk for k ≥ k1.
Now assume that µ ≥ µk. We prove by induction on t ∈ {1, . . . , k} that V (t, λ) = V1(t, λ) for all
λ ≥ µ. For t = 1, this is immediate since λ ≥ µ ≥ µk ≥ µ1. Assume that the property holds for all
t ≤ s, for some s < k, and let us prove it for s+ 1. Since λ ≥ µk ≥ µs+1,

V1(s+ 1, λ) ≤ V2(s+ 1, λ) = E

(
s∑
t=0

θt(1− θ)(1 + V1(s− t, λ ∨ θ))

)
,

= E

(
s∑
t=0

θt(1− θ)(1 + V (s− t, λ ∨ θ))

)
,
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where the last equality is obtained by the induction assumption, since λ ≥ µ. It then follows from
Bellman’s equation (2) that V (s+ 1, λ) = V1(s+ 1, λ).

From the above analysis, we know that if there remain k timesteps, for some k ≥ k2, then a new
arm must be explored if and only if µ ≥ µk. To conclude the proof, let ε > 0 and denote by An the
first arm whose parameter θ satisfies:

α

β + 1
(1− θ)β+1 <

1− ε
n

and by θ̄n the corresponding limiting parameter:

(1− θ̄n)β+1 =
(1− ε)(β + 1)

αn
.

Since ∫ 1

θ̄n

F (u)du ∼ 1− ε
n

when n→ +∞,

we have θ̄n ≥ 1− εn and thus the number of explored arms Kn satisfies Kn ≤ An for sufficiently
large n. Moreover,

E(An) =
1

F (θ̄n)
∼ 1

α

(
αn

(1− ε)(β + 1)

) β
β+1

when n→ +∞.

The parameter θAn of arm An is independent of An and satisfies:

1− E(θAn) = 1− E(θ|θ > θ̄n),

= 1− θ̄n −
∫ 1

θ̄n
F (u)du

F (θ̄n)
,

∼ β

β + 1
(1− θ̄n) =

β

β + 1

(
(1− ε)(β + 1)

αn

) 1
β+1

when n→ +∞.

For all k = 1, 2, . . ., let L1(k) be the length of the first run of arm k (until the first failure):

E(L1(1) + . . .+ L1(An − 1)) =

∞∑
k=1

P (An = k)E(L1(1) + . . .+ L1(k − 1)|An = k),

=

∞∑
k=1

P (An = k)E(L1(1) + . . .+ L1(k − 1)|θ1, . . . , θk−1 ≤ θ̄n),

=

∞∑
k=1

P (An = k)(k − 1)E(L1(1)|θ1 ≤ θ̄n),

= (E(An)− 1)E(L1(1)|θ1 ≤ θ̄n).

Using Lemma 3, we get:

E(L1(1) + . . .+ L1(An − 1)) =

 O(n
1

β+1 ) if β < 1,
O(
√
n ln(n)) if β = 1,

O(n
β
β+1 ) if β > 1.

Let:

ϕ(β) =

{
1

1+β/2 if β ≤ 1,
β

β+1/2 if β > 1,
and φ(β) =

{
1

1+β/3 if β ≤ 1,
β

β+1/3 if β > 1,

Observe that ϕ(β) < φ(β) < 1. We have

E(L1(1) + . . .+ L1(An − 1))/nϕ(β) → 0

and
P (L1(1) + . . .+ L1(An − 1) ≤ nφ(β))→ 1

7



when n→ +∞. For the latter, assume that c ≡ lim infn P (L1(1)+. . .+L1(An−1) > nφ(β)) > 0.
Then,

E(L1(1) + . . .+ L1(An − 1))

nϕ(β)
≥ cnφ(β)−ϕ(β) → +∞,

a contradiction.

Since Kn ≤ An, we have:

E(Rn) ≥ E(Kn) + E((n− L1(1)− . . .− L1(An − 1))(1− θAn)).

Observe that, on the event {L1(1)+ . . .+L1(An−1) ≤ nφ(β)}, for sufficiently large n, the number
of explored arms satisfies Kn ≥ A′n where A′n denotes the first arm whose parameter θ is such that∫ 1

θ

F (u)du <
1

n− nφ(β)
.

Since P (L1(1) + . . .+ L1(An − 1) ≤ nφ(β))→ 1 and

E(A′n) ∼ 1

α

(
α(n− nφ(β))

(1− ε)(β + 1)

) β
β+1

when n→ +∞,

we get:

lim inf
n→+∞

E(Kn)

n
β
β+1

≥ 1

α

(
α

(1− ε)(β + 1)

) β
β+1

.

By the independence of θAn and L1(1), . . . , L1(An − 1),

E((n− L1(1)− . . .− L1(An − 1))(1− θAn))

n
β
β+1

=
(n− E(L1(1) + . . .+ L1(An − 1)))(1− E(θAn))

n
β
β+1

,

→ β

β + 1

(
(1− ε)(β + 1)

α

) 1
β+1

.

Letting ε tend to 0 gives the desired bound:

lim inf
n→+∞

E(Rn)

n
β
β+1

≥ 1

α

(
α

β + 1

) β
β+1

+
β

β + 1

(
β + 1

α

) 1
β+1

=

(
β + 1

α

) 1
β+1

.

�

C Unkown horizon time

C.1 Regret analysis

Proposition 4 The two-target algorithm with time-dependent targets `1(t) =

⌊(
αt
β

) 1
β+2

⌋
and

`2(t) =

⌊
m
(
αt
β

) 1
β+1

⌋
satisfies:

lim
m→+∞

lim sup
n→+∞

E(Rn)

n
β
β+1

≤ β + 1

β

(
β

α

) 1
β+1

.

Proof. The proof is similar to that of Proposition 2. We have:

Rn ≤ Kn +m

Kn∑
k=1

1{L1(k)>`1(k)} +

n∑
t=1

(1−Xt)1{L2(It)>`2(t)}.
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Let U ′1 = 1 if arm 1 is used until time n and U ′1 = 0 otherwise, for a two-target algorithm with
known time horizon n and targets `1(n) and `2(n). Denote by K ′n the number of explored arms for
this algorithm. By Lemma 1, we get as in the proof of Proposition 3:

P (U ′1 = 1) ∼ αβγ(m)

(
β

αn

) β
β+1

when n→ +∞,

so that:

E(Kn) ≤ E(K ′n) ∼ 1

αβγ(m)

(
αn

β

) β
β+1

when n→ +∞.

Moreover, as in the proof of Proposition 3,

lim
n→+∞

1

n
β
β+1

E

(
Kn∑
k=1

1{L1(k)>`1(k)}

)
= 0,

and

E((1−Xt)1{L2(It)>`2(t)}) ≤ E(1−Xt|L2(It) > `2(t)) ∼ γ′(m)

γ(m)

(
β

αt

) 1
β+1

when t→ +∞,

so that:

lim sup
n→+∞

1

n
β
β+1

n∑
t=1

E((1−Xt)1{L2(It)>`2(t)}) ≤
γ′(m)

γ(m)

(
β

α

) 1
β+1

lim
n→+∞

1

n

n∑
t=1

(n
t

) 1
β+1

,

=
γ′(m)

γ(m)

(
β

α

) 1
β+1

∫ 1

0

du

u
1

β+1

,

=
γ′(m)

γ(m)

(
β

α

) 1
β+1 β + 1

β
.

Combining the previous results yields:

lim sup
n→+∞

E(Rn)

n
β
β+1

≤ 1

αβγ(m)

(
α

β

) β
β+1

+
γ′(m)

γ(m)

(
β

α

) 1
β+1 β + 1

β
,

=
1

γ(m)β

(
β

α

) 1
β+1

(
1

β
+ γ′(m)(β + 1)

)
.

The proof follows from the fact that, by Lemma 2, βγ(m) → 1 and (β + 1)γ′(m) → 1 when
m→ +∞. �

C.2 Lower bound

As for the uniform mean-reward distribution, we conjecture that the two-target algorithm is optimal
in the sense that, for any algorithm, if E(Rn)/n

β
β+1 tends to some limit, then this limit is at least

β+1
β

(
β
α

) 1
β+1

. Consider an oracle that reveals the parameter of each arm after the first failure of
this arm, as in the proof of Theorem 2. With this information, an optimal policy exploits an arm
whenever its parameter is larger than some increasing function θ̄t of time t.

Assume that 1 − θ̄t ∼ 1

ct
1

β+1
for some c > 0 when t → +∞. Then proceeding as in the proof of

Theorem 2, we get:

lim inf
n→+∞

E(Rn)

n
β
β+1

≥ cβ

α
+ lim
n→+∞

1

n

n∑
t=1

1

c

β

β + 1

(n
t

) 1
β+1

,

=
cβ

α
+

1

c

β

β + 1

∫ 1

0

du

u
1

β+1

,

=
cβ

α
+

1

c
≥ β + 1

β

(
β

α

) 1
β+1

,

the minimum being reached for c = (α/β)
1

β+1 .
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