
A Technical Lemmas

Lemma 1. For all episodes t and k ≤ K:

Eφt

[
1i,k,t(φt)(F

g
k→(φt)− F tk→(φt))

]
≤ Eφt [1i,k,t(φt)]Gk.

Proof. The first term in the expectation can be written as:

Eφt [1i,k,t(φt)F
g
k→(φt)]

(a)
=
∑
y∈Yk

P (φt ∼ y)Eφt [1i,k,t(φt)F
g
k→(φt) |φt ∼ y ]

(b)
=
∑
y∈Yk

P (φt ∼ y)1i,k,t(y)Eφt [F
g
k→(φt) |φt ∼ y ] . (21)

The equality (a) is due to conditioning φt on the first k− 1 observations y under the policy πg . The
equality (b) follows from the fact that the indicator 1i,k,t(φt) (Equation 15) does not depend on the
observations from step k forward. The last two terms in Equation 21 may depend on each other in a
non-trivial manner. To break this dependency, we first bound the expectation over y using Hölder’s
inequality and then the latter term by Lemma 2:

Eφt
[1i,k,t(φt)F

g
k→(φt)] ≤ Eφt

[1i,k,t(φt)] max
y∈Yk

Eφt
[F gk→(φt) |φt ∼ y ]

≤ Eφt [1i,k,t(φt)]Gk, (22)

where Gk = (K − k + 1) maxy∈Yk
maxi gi(y) is an upper bound on the expected gain of πg from

step k forward. The term Gk is independent of φt and πt, the state and policy in episode t.

Similarly to Equation 21, the second term in the expectation can be written as:

Eφt

[
1i,k,t(φt)F

t
k→(φt)

]
=
∑
y∈Yt

k

P (φt ∼ y)1i,k,t(y)Eφt

[
F tk→(φt)

∣∣φt ∼ y
]
. (23)

In Lemma 3, we show that Eφt
[F tk→(φt) |φt ∼ y ] ≥ 0 for all y and k. It follows that:

−Eφt

[
1i,k,t(φt)F

t
k→(φt)

]
≤ 0. (24)

Our main claim is obtained by combining the upper bounds in Equations 22 and 24.

Lemma 2. For all k ≤ K:

max
y∈Yk

Eφ[F gk→(φ) |φ ∼ y ] ≤ (K − k + 1) max
y∈Yk

max
i
gi(y).

Proof. First, we note that for all contexts y ∈ Yk:

Eφ[F gk→(φ) |φ ∼ y ]

=

K∑
j=k

Eφ
[
f(πgj (φ), φ)− f(πgj−1(φ), φ)

∣∣φ ∼ y
]

=

K∑
j=k

∑
y′∈Yj

P (φ ∼ y′ | φ ∼ y)Eφ
[
f(πgj (φ), φ)− f(πgj−1(φ), φ)

∣∣φ ∼ y, φ ∼ y′
]

=

K∑
j=k

∑
y′∈Yj

P (φ ∼ y′ | φ ∼ y)Eφ
[
f(πgj (φ), φ)− f(πgj−1(φ), φ)

∣∣φ ∼ y′
]
. (25)

The last equality follows from the fact that P (φ ∼ y′ | φ ∼ y) > 0 implies y′ � y, and this further
implies that (φ ∼ y) ∧ (φ ∼ y′) ≡ φ ∼ y′. Second, because the policy πg in context y chooses an
item with the largest expected gain and f is adaptive submodular, we know that:

Eφ
[
f(πgj (φ), φ)− f(πgj−1(φ), φ)

∣∣φ ∼ y′
]
≤ max

i
gi(y) (26)

for all j and y′ � y. This upper bound can be substituted into Equation 25 and yields:

Eφ[F gk→(φ) |φ ∼ y ] ≤ (K − k + 1) max
i
gi(y). (27)

Our main claim is obtained by maximizing both sides of the above inequality over y.
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Lemma 3. For all k ≤ K and y ∈ Ytk:

Eφ
[
F tk→(φ)

∣∣φ ∼ y
]
≥ 0.

Proof. Similarly to Lemma 2, we note that for all y ∈ Ytk:

Eφ
[
F tk→(φ)

∣∣φ ∼ y
]

=

K∑
j=k

Eφ
[
f(πtj(φ), φ)− f(πtj−1(φ), φ)

∣∣φ ∼ y
]

=

K∑
j=k

∑
y′∈Yt

j

P (φ ∼ y′ | φ ∼ y)Eφ
[
f(πtj(φ), φ)− f(πtj−1(φ), φ)

∣∣φ ∼ y, φ ∼ y′
]

=

K∑
j=k

∑
y′∈Yt

j

P (φ ∼ y′ | φ ∼ y)Eφ
[
f(πtj(φ), φ)− f(πtj−1(φ), φ)

∣∣φ ∼ y′
]
. (28)

The last equality follows from the fact that P (φ ∼ y′ | φ ∼ y) > 0 implies y′ � y, and this further
implies that (φ ∼ y) ∧ (φ ∼ y′) ≡ φ ∼ y′. Because f is adaptive monotonic, we know that:

Eφ
[
f(πtj(φ), φ)− f(πtj−1(φ), φ)

∣∣φ ∼ y′
]
≥ 0 (29)

for all j and y′. Our main claim follows from substituting the above bound into Equation 28.

Lemma 4. For all arms i and k ≤ K:

Eφ1,...,φn

[
n∑
t=1

1i,k,t(φt)1{Ti(t− 1) > `i,k}

]
≤ 2

3
π2(L+ 1), (30)

where `i,k =

⌈
8 max
y∈Yk,i

ḡ2i (y)

∆2
i (y)

log n

⌉
.

Proof. Our proof has the same structure as the proof of Theorem 1 by Auer et al. [1]. Let `i,k be a
positive integer. Then for all arms i and steps k:
n∑
t=1

1i,k,t(φt)1{Ti(t− 1) > `i,k}

=

n∑
t=`i,k+1

1i,k,t(φt)1{Ti(t− 1) > `i,k}

≤
n∑

t=`i,k+1

1
{
∃y ∈ Yk,i : (p̂i,Ti(t−1) + ct−1,Ti(t−1))ḡi(y) ≥

(p̂i∗(y),Ti∗(y)(t−1) + ct−1,Ti∗(y)(t−1))ḡi∗(y)(y), Ti(t− 1) > `i,k
}

≤
n∑

t=`i,k+1

t∑
s=1

t∑
si=`i,k+1

1
{
∃y ∈ Yk,i : (p̂i,si + ct−1,si)ḡi(y) ≥ (p̂i∗(y),s + ct−1,s)ḡi∗(y)(y)

}
=

n−1∑
t=`i,k

t+1∑
s=1

t+1∑
si=`i,k+1

1
{
∃y ∈ Yk,i : (p̂i,si + ct,si)ḡi(y) ≥ (p̂i∗(y),s + ct,s)ḡi∗(y)(y)

}
. (31)

The existence of y ∈ Yk,i such that (p̂i,si + ct,si)ḡi(y) ≥ (p̂i∗(y),s + ct,s)ḡi∗(y)(y) implies that at
least one of the following claims must be true:

∃y ∈ Yk,i : p̂i∗(y),s ≤ pi∗(y) − ct,s (32)
p̂i,si ≥ pi + ct,si (33)

∃y ∈ Yk,i : pi∗(y)ḡi∗(y)(y) < piḡi(y) + 2ct,si ḡi(y). (34)
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We bound the probability of the first two events (Equations 32 and 33) using Hoeffding’s inequality
and the union bound:

P (∃y ∈ Yk,i : p̂i∗(y),s ≤ pi∗(y) − ct,s) ≤ L exp[−4 log t] = Lt−4 (35)

P (p̂i,si ≥ pi + ct,si) ≤ exp[−4 log t] = t−4. (36)

When `i,k =

⌈
8 max
y∈Yk,i

ḡ2i (y)

∆2
i (y)

log n

⌉
, the third event (Equation 34) cannot happen. In particular, for

all y ∈ Yk,i and si ≥ 8 max
y∈Yk,i

ḡ2i (y)

∆2
i (y)

log n, we can show that:

pi∗(y)ḡi∗(y)(y)− piḡi(y)− 2ct,si ḡi(y) = ḡi(y)

[
∆i(y)

ḡi(y)
− 2

√
2 log t

si

]

≥ ḡi(y)

[
∆i(y)

ḡi(y)
− min

y∈Yk,i

∆i(y)

ḡi(y)

]
≥ 0. (37)

Therefore, we may conclude that:

Eφ1,...,φn

[
n∑
t=1

1i,k,t(φt)1{Ti(t− 1) > `i,k}

]

≤
∞∑
t=1

t+1∑
s=1

t+1∑
si=1

[
P (∃y ∈ Yk,i : p̂i∗(y),s ≤ pi∗(y) − ct,s) + P (p̂i,si ≥ pi + ct,si)

]
≤ (L+ 1)

∞∑
t=1

(t+ 1)2t−4

≤ (L+ 1)

∞∑
t=1

4t−2

=
2

3
π2(L+ 1). (38)

B Categorical State Variables

In this section, we show how to generalize our work to categorical state variables.

We assume that each item i has M possible states, φ[i] ∈ {1, . . . ,M}. The state of item i is drawn
i.i.d. from a categorical distribution, which is described by M probabilities pi,1, . . . , pi,M such that∑M
m=1 pi,m = 1. In this setting, the joint probability distribution of states factors as:

P (Φ = φ) =

L∏
i=1

M∏
m=1

p
1{φ[i]=m}
i,m . (39)

Based on the above assumption, we rewrite the expected gain (Equation 5) as:

gi(y) =

M∑
m=1

pi,mḡi,m(y), (40)

where:

ḡi,m(y) = Eφ[ f(dom(y) ∪ {i} , φ)− f(dom(y) , φ) |φ ∼ y, φ[i] = m ] (41)

is the expected gain when item i is in state m. Similarly to Section 3.1, we assume that the function
ḡi,m(y) is known and can be computed without knowing P (Φ).
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Algorithm OASM changes in the computation of the index. The index is computed as:

M∑
m=1

(p̂i,m,Ti(t−1) + ct−1,Ti(t−1))ḡi,m(y), (42)

where p̂i,m,Ti(t−1) is the maximum-likelihood estimate of pi,m from the first t− 1 episodes, which
is computed from Ti(t− 1) observations of item i.

Our analysis changes in Lemma 4. First, the events in Equations 32 and 33 have to be bounded for
all m ∈ {1, . . . ,M}. Second, the event in Equation 34 does not happen when:

`i,k =

8 max
y∈Yk,i

(∑M
m=1 ḡi,m(y)

)2

∆2
i (y)

log n

 . (43)

As a result, our final regret bound is:

R(n) ≤
L∑
i=1

`i

K∑
k=1

Gkαi,k︸ ︷︷ ︸
O(logn)

+
2

3
π2ML(L+ 1)

K∑
k=1

Gk︸ ︷︷ ︸
O(1)

. (44)
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