A Technical Lemmas

Lemma 1. For all episodes t and k < K:
Eg, [Li ke (00)(FY_ (d0) — i (¢0))] < Eg,[Lii(d0)] G

Proof. The first term in the expectation can be written as:

g, [Li et (@) FLL (001 2 S P(¢r ~ ¥)Eo, [ Lot (00 L (60) | 61 ~ ¥]

YEYVk
2N Pt~y k(0B [FL (0) |6 ~y]. @D
YEVk

The equality (a) is due to conditioning ¢; on the first £ — 1 observations y under the policy 79. The
equality (b) follows from the fact that the indicator 1, ;, +(¢;) (Equation 15) does not depend on the
observations from step k forward. The last two terms in Equation 21 may depend on each other in a
non-trivial manner. To break this dependency, we first bound the expectation over y using Holder’s
inequality and then the latter term by Lemma 2:

Eg, [Li ke (00) Fil_, (01)] < Eg, [Lik,e(or)] max Eg [ F (o) | ¢t ~ y]

< Eg, [14k,:(01)] Gk; (22)

where Gy, = (K — k + 1) maxy ey, max; g;(y) is an upper bound on the expected gain of 79 from
step k forward. The term G, is independent of ¢; and 7, the state and policy in episode ¢.

Similarly to Equation 21, the second term in the expectation can be written as:
Eg, [Lik,¢(0¢) Fr_ (1)) Z P(pr ~ y) ikt (y)Eg, [ Fi(d¢) | e~y ] (23)
YEYL
In Lemma 3, we show that Ey, [ F{_, (¢¢) | ¢+ ~ y] > 0 for all y and k. It follows that:
~Eg, [Lik,t(d) Fi_ (¢0)] < 0. (24)
Our main claim is obtained by combining the upper bounds in Equations 22 and 24. m
Lemma 2. Forallk < K:

E K—k+1 ;
max By [Fi,(¢) |4~ y] < ( +1) max maxgi(y).

Proof. First, we note that for all contexts y € Vg:

Es[F{,(9)|¢ ~y]
K
= ZE¢[1’(W§(¢>>,¢) ~J(m]1(6).0) |0~ ¥]

—ZZ @~y |6~ YEs[f(7(9),0) = f(m_1(¢),8) | ¢~y b~y ]

j=ky’'€Y;

—ZZ 6~y | ¢~y)Es[f(79(0),0) — f(n_1(0),0) | & ~y']. (25)

j=ky'€Y;

The last equality follows from the fact that P(¢ ~y’ | ¢ ~ y) > 0 implies y’ = y, and this further
implies that (¢ ~ y) A (¢ ~y') = ¢ ~ y’. Second, because the policy 79 in context y chooses an
item with the largest expected gain and f is adaptive submodular, we know that:

Ey [ f(n](9),0) = f(n]_1(6),0) [ & ~ '] < maxgi(y) (26)
for all 7 and y’ = y. This upper bound can be substituted into Equation 25 and yields:
E[F,(9)[6~y] < (K —k+1)maxgi(y). 27)

Our main claim is obtained by maximizing both sides of the above inequality over y. m
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Lemma 3. Forallk < K andy € Y}:
Ey[Fi(¢)|o~y]>0.

Proof. Similarly to Lemma 2, we note that for all y € y,g:

E¢[FI€%(¢)|¢NY]
K

= By [ f(x(9),0) — f(z}_1(),0) | ¢ ~¥]
j=k
K

=Y Plo~y |~ y)Es[f(7h(0),6) — f(mi1(0),0) |6~y b ~Y']
J=ky'€y}
K

=3 > P~y |6 ~yEs[ f(7h(0),8) — f(m}_1(¢).8) | o ~y']. (28)
J=ky' €y}

The last equality follows from the fact that P(¢ ~y’ | ¢ ~y) > 0 implies y’ = y, and this further
implies that (¢ ~y) A (¢ ~y’) = ¢ ~ y’. Because f is adaptive monotonic, we know that:

Ey [ f(m5(¢),¢) = f(7)_1(6),0) | ¢ ~y'] 2 0 (29)
for all j and y’. Our main claim follows from substituting the above bound into Equation 28. m

Lemma 4. Forall armsiand k < K:

7L+ 1), (30)

[SCRR )

Eg,,....om [Z Lip(o)H{Ti(t —1) > b }| <

t=1

o 9 (v)
where {; ), = [8 yIélJE}i( A%(y) log n—‘

Proof. Our proof has the same structure as the proof of Theorem 1 by Auer et al. [1]. Let ¢; ;. be a
positive integer. Then for all arms ¢ and steps k:

D Lina(@)H{Ti(t — 1) > £ix}

t=1

= D Line(@)UTi(t - 1) > i}
t=l; +1

< Z {3y € Vi : (ima-1) + -1m0-1)%(Y) =
t=l; +1

(ﬁi*(y),Ti*(y)(tfl) + thlvTi*(y)(tfl))gi*(Y) (y)7 T‘Z(t — 1) > Ei,k}
n t t

< D0 > Y {3y €Vt (Bis, +-1.5)3i(Y) = Pir(y),s + Ct-1.6)Gi-(v) (¥) }

t=0; p+1s=1s;=0; +1

n—1 t+1 t+1

Z Z Z ]1{3}’ € yk:,i : (ﬁi,si + Ct,si)gi(Y) > (ﬁi*(y),s + ct7s)gi*(y) (Y)} . 3D

t=L; ), s=1 s;=4; 1 +1

The existence of y € Vi ; such that (p; s, + ct,s,)9i(¥) > (Di=(y),s + Ct,5)Fi=(y) (¥) implies that at
least one of the following claims must be true:

Jy € Vi : Dix(y),s < Pix(y) — Ct,s (32)
ﬁi,si Z pl + Ct,Si (33)
Iy €kt Piry)Gir () (¥) < PiGi(y) +2¢1,5,9i(y)- (34)
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We bound the probability of the first two events (Equations 32 and 33) using Hoeffding’s inequality
and the union bound:

Lexp[—4logt] = Lt~ (35)
exp[—4logt] = t~*. (36)

P(3y € Vk,i : Div(y),s < Pi=(y) — Ct.s)
P(ﬁi,si Z Di + Ct,si)

IN A

When ¢; , = [8 mlejxx 2?2((’;/)) log n-‘ , the third event (Equation 34) cannot happen. In particular, for
YeVik,i T

_2
ally € V;and s; > 8 max gg(” log n, we can show that:
’ YEVk,i i ™)

Az . Az
> 5:(y) { AY) i (y)}
9:(y)  veves gi(y)
> 0. (37)
Therefore, we may conclude that:
B | D Vit (@) I{Ti(t — 1) > Ei,k}l
t=1
co t+1 t+1
< Z Z Z [P(Hy € yk?,i :ﬁi*(y),s < Pix(y) — ct,s) + P(ﬁi,si >pi+ Ct,si)]
t=1 s=1s;=1
<L+ (t+1)4*
t=1
<(L+1)) 472
t=1
2
=3 (L +1). (38)
]
B Categorical State Variables
In this section, we show how to generalize our work to categorical state variables.
We assume that each item ¢ has M possible states, ¢[i] € {1,..., M}. The state of item ¢ is drawn
i.i.d. from a categorical distribution, which is described by M probabilities p; 1, . .., p; ar such that
Z%zl pi,m = 1. In this setting, the joint probability distribution of states factors as:
L M
L oli]l=m
P@=¢) =[] [ piot=m. (39)
i=1m=1
Based on the above assumption, we rewrite the expected gain (Equation 5) as:
M
9i(Y) = Pimim(¥y), (40)
m=1
where:
Gim(y) = Eg[ f(dom (y) U{i},¢) — f(dom(y),¢) | ¢ ~y, di] =m] (41)

is the expected gain when item ¢ is in state m. Similarly to Section 3.1, we assume that the function
Gi,m (y) is known and can be computed without knowing P(®).
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Algorithm 0ASM changes in the computation of the index. The index is computed as:

M
Z (Dim, (1) + Ct—1,73 (t—1))Fi.m (¥ ) 42)

m=1

where p; 7 (¢—1) i the maximum-likelihood estimate of p; ., from the first £ — 1 episodes, which
is computed from T; (¢ — 1) observations of item 4.

Our analysis changes in Lemma 4. First, the events in Equations 32 and 33 have to be bounded for
allm € {1,..., M}. Second, the event in Equation 34 does not happen when:

M _
o= |8 ngx S—arylosn| )

2

As a result, our final regret bound is:

L K
<Z£ ZGkalk—&—;wQML L+1) Z (44)
k=1 k=1

i=1

O(logn) o(1)
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