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1 The Simplified Network Dynamics

Substituting the Gaussian ansatz Eqs.(11,12) into the network dynamics Eq.(4), and under the con-
dition of equal connection width, we obtain the left-hand (LHS) and the right-hand sides (RHS)
of Eq.(4) (only the result for the network 1 is shown; the result for the network 2 can be similar
obtained), which are:

LHS = τ
dA1

dt
exp

[
− (θ − z1)

2

4a2

]
+

τA1

2a

dz1
dt

(
θ − z1

a

)
exp

[
− (θ − z1)

2

4a2

]
. (S1)

RHS = −A1exp

[
− (θ − z1)

2

4a2

]
+ ρ

∫
θ′

J11B1√
2πa

exp

[
− (θ − θ′)2

2a2

]
exp

[
− (θ′ − z1)

2

2a2

]
dθ′

+ρ

∫
θ′

J12B2√
2πa

exp

[
− (θ − θ′)2

2a2

]
exp

[
− (θ′ − z2)

2

2a2

]
dθ′ + α1exp

[
− (θ − µ1)

2

4a2

]
+ η1ξ1(θ, t),

= −A1exp

[
− (θ − z1)

2

4a2

]
+

ρJ11B1√
2

exp

[
− (θ − z1)

2

2a2

]
,

+
ρJ12B2√

2
exp

[
− (θ − z2)

2

2a2

]
+ α1exp

[
− (θ − µ1)

2

4a2

]
+ η1ξ1(θ, t). (S2)

Projecting Eqs.(S1-S2) onto the height and position motion modes (Eq. 9 and 10), we get the sim-
plified dynamics,
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When (z1 − z2)
2/8a2 is sufficiently small (which is the case for the parameters we choose), the

above equations can be further simplified (the dynamics for the network 2 is added),
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When two networks are completely symmetric and replace ρJlm/
√
2 with J̃lm, the above equations

give to Eqs.(13,14,15) in the main text.

For the convenience of description, we re-organize the position dynamics into the matrix form,
which is given by,

Ż = MZZ+ IZ + βξ(t), (S9)
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2 Stationary States of the Coupled Networks

When two networks are completely symmetric, without external inputs, the bump heights for two
networks are exactly the same, which satisfy (from Eq.13)
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Thus, the steady active bump height (non-zero) is solved to be
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The necessary condition for existence of active bump state is therefore given by
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3 Decoding Results of the Coupled Networks

If the parameters for two networks are not the same, the decoding errors can be obtained by solving
the stochastic differential equation (Eq.S9) directly, which is given by
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where Ws is a 2-by-1 vector and each element denoting a standard Wiener process, and
⟨dWs(i)dWs(j)⟩ = δ(i − j). From the solution of Z(t), the dynamics of covariance matrix of
bump positions Cov[Z(t)] is governed by,
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The stationary value of Cov[Z(t)] satisfies
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Pairing elements by elements of the above equation, we get
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where Tz and DZ are the trace and determinant of the matrix MZ , respectively. Substituting the
elements of MZ into above equation, we obtain the Eq.24.
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