
A Pseudocode for OCC BP-means

Algorithm 6: Serial BP-means
Input: data {xi}Ni=1, threshold λ
Initialize zi1 = 1, f1 = N−1∑

i xi, K = 1
while not converged do

for i = 1 to N do
for k = 1 to K do

Set zik to minimize ‖xi−
∑K
j=1 zijfj‖22

if ‖xi −
∑K
j=1 zijfi,j‖22 > λ2 then

Set K ← K + 1

Create feature fK ← xi −
∑K
k=1 zikfj

Assign ziK ← 1 (and ziK ← 0 for
j 6= i)

F ← (ZTZ)−1ZTX

Algorithm 7: BPValidate
Input: Set of proposed feature centers Ĉ
C ← ∅
for fnew ∈ Ĉ do

for fk′ ∈ C do
Set zik′ to minimize
‖fnew −∑fj∈C zijfj‖

2
2

if ‖fnew −∑fj∈C zijfj‖
2
2 > λ2 then

C ← C ∪
{
fnew −∑fj∈C zijfj

}

Ref(fnew)← {zij}fj∈C
Output: Accepted feature centers C

Algorithm 8: Parallel BP-means
Input: data {xi}Ni=1, threshold λ
Input: Epoch size b and P processors
Input: Partitioning B(p, t) of data {xi}i∈B(p,t) to

processor-epochs where b = |B(p, t)|
C ← ∅
while not converged do

for epoch t = 1 to N/(Pb) do
Ĉ ← ∅ // New candidate features
for p ∈ {1, . . . , P} do in parallel

// Process local data
for i ∈ B(p, t) do

// Optimistic Transaction
for fk ∈ C do

Set zik to minimize
‖xi −

∑
j zijfj‖22

if ‖xi −
∑
j zijfj‖22 > λ2 then

fnewi ← xi −
∑
j zijfj

zi ← zi⊕ Ref(fnewi )

Ĉ ← Ĉ ∪ fnewi

// Serially validate features

C ← C ∪ DPValidate(Ĉ)
Compute ZTZ =

∑
i ziz

T
i and ZTX =

∑
i zix

T
i

in parallel
Re-estimate features F ← (ZTZ)−1ZTX

Output: Accepted feature centers C

Figure 5: The Serial BP-Means algorithm and parallel implementation using the OCC pattern, similar to OCC
DP-means. Instead of proposing new clusters centered at the data point xi, in OCC BP-means we propose
features fnewi that allow us to obtain perfect representations of the data point. The validation process continues
to improve on the representation xi ≈

∑
k zikfk by using the most recently accepted features fk′ ∈ Ĉ, and only

accepts a proposed feature if the data point is still not well-represented.

B Proof of serializability of distributed algorithms

B.1 Proof of Theorem 4.1 for DP-means

We note that both distributed DP-means and BP-means iterate over z-updates and cluster / feature
means re-estimation until convergence. In each iteration, distributed DP-means and BP-means
perform the same set of updates as their serial counterparts. Thus, it suffices to show that each
iteration of the distributed algorithm is serially equivalent to an iteration of the serial algorithm.

Consider the following ordering on transactions:

• Transactions on individual data points are ordered before transactions that re-estimate cluster
/ feature means are ordered.
• A transaction on data point xi is ordered before a transaction on data point xj if

1. xi is processed in epoch t, xj is processed in epoch t′, and t < t′

2. xi and xj are processed in the same epoch, xi and xj are not sent to the master for
validation, and i < j

3. xi and xj are processed in the same epoch, xi is not sent to the master for validation
but xj is
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4. xi and xj are processed in the same epoch, xi and xj are sent to the master for
validation, and the master serially validates xi before xj

We show below that the distributed algorithms are equivalent to the serial algorithms under the above
ordering, by inductively demonstrating that the outputs of each transaction is the same in both the
distributed and serial algorithms.

Denote the set of clusters after the t epoch as Ct.
The first transaction on xj in the serial ordering has C0 as its input. By definition of our ordering,
this transaction belongs the first epoch, and is either (1) not sent to the master for validation, or (2)
the first data point validated at the master. Thus in both the serial and distributed algorithms, the
first transaction either (1) assigns xj to the closest cluster in C0 if minµk∈C0 ‖xj − µk‖ < λ, or (2)
creates a new cluster with center at xj otherwise.

Now consider any other transaction on xj in epoch t.

Case 1: xj is not sent to the master for validation.
In the distributed algorithm, the input to the transaction is Ct−1. Since the transaction is
not sent to the master for validation, we can infer that there exists µk ∈ Ct−1 such that
‖xj − µk‖ < λ.
In the serial algorithm, xj is ordered after any xi if (1) xi was processed in an earlier epoch,
or (2) xi was processed in the same epoch but not sent to the master (i.e. does not create any
new cluster) and i < j. Thus, the input to this transaction is the set of clusters obtained at
the end of the previous epoch, Ct−1, and the serial algorithm assigns xj to the closest cluster
in Ct−1 (which is less than λ away).

Case 2: xj is sent to the master for validation.

In the distributed algorithm, xj is not within λ of any cluster center in Ct−1. Let Ĉt be the
new clusters created at the master in epoch t before validating xj . The distributed algorithm
either (1) assigns xj to µk∗ = argminµk∈Ĉt ‖xj − µk‖ if ‖xj − µk‖ ≤ λ, or (2) creates a
new cluster with center at xj otherwise.
In the serial algorithm, xj is ordered after any xi if (1) xi was processed in an earlier epoch,
or (2) xi was processed in the same epoch t, but xi was not sent to the master (i.e. does
not create any new cluster), or (3) xi was processed in the same epoch t, xi was sent to the
master, and serially validated at the master before xj . Thus, the input to the transaction is
Ct−1 ∪ Ĉt. We know that xj is not within λ of any cluster center in Ct−1, so the outcome of
the transaction is either (1) assign xj to µk∗ = argminµk∈Ĉt ‖xj − µk‖ if ‖xj − µk‖ ≤ λ,
or (2) create a new cluster with center at xj otherwise. This is exactly the same as the
distributed algorithm.

B.2 Proof of Theorem 4.1 for BP-means

The serial ordering for BP-means is exactly the same as that in DP-means. The proof for the
serializability of BP-means follows the same argument as in the DP-means case, except that we
perform feature assignments instead of cluster assignments.

B.3 Proof of Theorem 4.1 for OFL

Here we prove Theorem 4.1 that the distributed OFL algorithm is equivalent to a serial algorithm.

(Theorem 4.1, OFL). We show that with respect to the returned centers (facilities), the distributed
OFL algorithm is equivalent to running the serial OFL algorithm on a particular permutation of the
input data. We assume that the input data is randomly permuted and the indices i of the points xi refer
to this permutation. We assign the data points to processors by assigning the first b points to processor
p1, the next b points to processor p2, and so on, cycling through the processors and assigning them
batches of b points, as illustrated in Figure 6. In this respect, our ordering is generic, and can be
adapted to any assignments of points to processors. We assume that each processor visits its points in
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Processor 1 Processor 2 Processor P
B(1, 1) B(1, 2) . . . B(2, 1) B(2, 2) . . . . . . B(P, 1) B(P, 2) . . .

Serial
B(1, 1) B(2, 1) . . . B(P, 1) B(1, 2) B(2, 2) . . . . . . B(P,N/(Pb))

Figure 6: Illustration of distributed and serial order of blocks B(i, t) of length b for OFL. The order
within each block is maintained. Block B(i, t) is processed in epoch t by processor pi.

the order induced by the indices, and likewise the master processes the points of an epoch in that
order.

For the serial algorithm, we will use the following ordering of the data: Point xi precedes point xj if

1. xi is processed in epoch t and xj is processed in epoch t′, and t < t′, or

2. xi and xj are processed in the same epoch and i < j.

If the data is assigned to processors as outlined above, then the serial algorithm will process the points
exactly in the order induced by the indices. That means the set of points processed in any given epoch
t is the same for the serial and distributed algorithm. We denote by Ct the global set of validated
centers collected by OCC OFL up to (including) epoch t, and by C̃i the set of centers collected by the
serial algorithm up to (including) point xi.

We will prove the equivalence inductively.

Epoch t = 1. In the first epoch, all points are sent to the master. These are the first Pb points.
Since the master processes them in the same order as the serial algorithm, the distributed and serial
algorithms are equivalent.

Epoch t > 1. Assume that the algorithms are equivalent up to point xi−1 in the serial order, and
point xi is processed in epoch t. By assumption, the set Ct−1 of global facilities for the distributed
algorithm is the same as the set C̃(t−1)Pb collected by the serial algorithm up to point x(t−1)Pb. For
notational convenience, letD(xi, Ct) = minµ∈Ct ‖xi−µ‖2 be the distance of xi to the closest global
facility.

The essential issue to prove is the following claim:

Claim 1. If the algorithms are equivalent up to point xi−1, then the probability of xi becoming a
new facility is the same for the distributed and serial algorithm.

The serial algorithm accepts xi as a new facility with probability min{1, D(xi, C̃i−1)/λ2}. The dis-
tributed algorithm sends xi to the master with probability min{1, D(xi, Ct−1)/λ2}. The probability
of ultimate acceptance (validation) of xi as a global facility is the probability of being sent to the
master and being accepted by the master. In epoch t, the master receives a set of candidate facilities
with indices between (t− 1)Pb+ 1 and tPb. It processes them in the order of their indices, i.e., all
candidates xj with j < i are processed before i. Hence, the assumed equivalence of the algorithms up
to point xi−1 implies that, when the master processes xi, the set Ct−1 ∪ Ĉ equals the set of facilities
C̃i−1 of the serial algorithm. The master consolidates xi as a global facility with probability 1 if
D(xi, C̃i−1 ∪ Ĉ) > λ2 and with probability D(xi, C̃i−1 ∪ Ĉ)/D(xi, Ct−1) otherwise.

We now distinguish two cases. If the serial algorithm accepts xi because D(xi, C̃i−1) ≥ λ2, then for
the distributed algorithm, it holds that

D(xi, Ct−1) ≥ D(xi, Ct−1 ∪ Ĉ) = D(xi, C̃i−1) ≥ λ2 (1)

and therefore the distributed algorithm also always accepts xi.
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Otherwise, if D(xi, C̃i−1) < λ2, then the serial algorithm accepts with probability D(xi, C̃i−1)/λ2.
The distributed algorithm accepts with probability

P(xi accepted) = P(xi sent to master ) · P(xi accepted at master | xi sent) (2)

=
D(xi, Ct−1)

λ2
· D(xi, C̃i−1 ∪ Ĉ)

D(xi, Ct−1)
(3)

=
D(xi, C̃i−1)

λ2
. (4)

This proves the claim.

The claim implies that if the algorithms are equivalent up to point xi−1, then they are also equivalent
up to point xi. This proves the theorem.

B.4 Proof of Theorem 4.2 (Approximation bound)

We begin by relating the results of facility location algorithms and DP-means. Recall that the objective
of DP-means and FL is

J(C) =
∑

x∈X
min
µ∈C
‖x− µ‖2 + λ2|C|. (5)

In FL, the facilities may only be chosen from a pre-fixed set of centers (e.g., the set of all data
points), whereas DP-means allows the centers to be arbitrary, and therefore be the empirical mean
of the points in a given cluster. However, choosing centers from among the data points still gives a
factor-2 approximation. Once we have established the corresponding clusters, shifting the means to
the empirical cluster centers never hurts the objective. The following proposition has been a useful
tool in analyzing clustering algorithms:

Proposition B.1. Let C∗ be an optimal solution to the DP-means problem (5), and let CFL be an
optimal solution to the corresponding FL problem, where the centers are chosen from the data points.
Then

J(CFL) ≤ 2J(C∗).

Proof. (Proposition B.1) It is folklore that Proposition B.1) holds for the K-means objective, i.e.,

min
C⊆X,|C|=k

n∑

i=1

min
µ∈C
‖xi − µ‖2 ≤ 2 min

C⊆X

n∑

i=1

min
µ∈C
‖xi − µ‖2. (6)

In particular, this holds for the optimal number K∗ = |C∗|. Hence, it holds that

J(CFL) ≤ min
C⊆X,|C|=K∗

n∑

i=1

min
µ∈C
‖xi − µ‖2 + λ2K∗ ≤ 2J(C∗). (7)

With this proposition at hand, all that remains is to prove an approximation factor for the FL problem.

Proof. (Theorem 4.2) First, we observe that the proof of Theorem 4.1 implies that, for any random
order of the data, the OCC and serial algorithm process the data in exactly the same way, performing
ultimately exactly the same operations. Therefore, any approximation factor that holds for the serial
algorithm straightforwardly holds for the OCC algorithm too.

Hence, it remains to prove the approximation factor of the serial algorithm. Let CFL
1 , . . . , CFL

k be
the clusters in an optimal solution to the FL problem, with centers µFL

1 , . . . µ
FL
k . We analyze each

optimal cluster individually. The proof follows along the lines of the proofs of Theorems 2.1 and 4.2
in [10], adapting it to non-metric squared distances. We show the proof for the constant factor, the
logarithmic factor follows analogously by using the ring-splitting as in [10].

First, we see that the expected total cost of any point x is bounded by the distance to the closest open
facility y that is present when x arrives. If we always count in the distance of ‖x− y‖2 into the cost
of x, then the expected cost is γ(x) = λ2‖x− y‖2/λ2 + ‖x− y‖2 = 2‖x− y‖2.
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We consider an arbitrary cluster C∗i and divide it into |C∗|/2 good points and |C∗|/2 bad points.
Let Di =

1
|CFL|

∑
x∈C∗i ‖x− µi‖ be the average service cost of the cluster, and let dg and db be the

service cost of the good and bad points, respectively (i.e., Di = (dg + db)/|CFL
i |). The good points

satisfy ‖x − µFL
i ‖ ≤ 2Di. Suppose the algorithm has chosen a center, say y, from the points CFL

i .
Then any other point x ∈ CFL

i can be served at cost at most

‖x− y‖2 ≤
(
‖x− µFL

i ‖+ ‖y − µFL
i ‖
)2
≤ 2‖x− µFL

i ‖2 + 4Di. (8)

That means once the algorithm has established a good center within CFL
i , all other good points

together may be serviced within a constant factor of the total optimal service cost of CFL, i.e.,
at 2dg + 4(dg + db). The assignment cost of all the good points in CFL

i that are passed before
opening a good facility is, by construction of the algorithm and expected waiting times, in expectation
λ2. Hence, in expectation, the cost of the good points in CFL

i will be bounded by
∑
xgood γ(x) ≤

2(2dg + 4dg + 4db + λ2).

Next, we bound the expected cost of the bad points. We may assume that the bad points are injected
randomly in between the good points, and bound the servicing cost of a bad point xb ∈ CFL

i in terms
of the closest good point xg ∈ CFL

i preceding it in our data sequence. Let y be the closest open
facility to µFL

i when y arrives. Then

‖xb − y‖2 ≤ 2‖y − µFL
i ‖2 + 2‖xb − µFL‖2. (9)

Now assume that xg was assigned to y′. Then

‖y − µFL
i ‖2 ≤ ‖y′ − µFL

i ‖2 ≤ 2‖y′ − xg‖2 + 2‖xg − µFL‖2. (10)

From (9) and (8), it then follows that

‖xb − y‖2 ≤ 4‖y′ − xg‖2 + 4‖xg − µFL‖2 + 2‖xb − µFL‖2 (11)

= 2γ(xg) + 4‖xg − µFL‖2 + 2‖xb − µFL‖2. (12)

Since the data is randomly permuted, xg could be, with equal probability, any good point, and in
expectation we will average over all good points.

Finally, with probability 2/|CFL
i | there is no good point before xg. In that case, we will count in xb

as the most costly case of opening a new facility, incurring cost λ2. In summary, we can bound the
expected total cost of CFL by
∑

x good

γ(x) +
∑

x bad

γ(x) ≤ 12dg + 8db + λ2 +
2CFL

2CFLλ
2 + 2(2

2|CFL
i |

2|CFL| (12dg + 8db + λ2) + 4dg + 2db)

(13)

≤ 68dg + 42db + 4λ2 ≤ 68J(CFL). (14)

This result together with Proposition B.1 proves the theorem.

C Master processing bound for DP-means (Theorem 4.3)

We restate Theorem 4.3 here for convenience.

DP-Means Scalability. Assume N data points are generated iid to form a random number (KN ) of
well-spaced clusters of diameter λ: λ is an upper bound on the distances within clusters and a lower
bound on the distance between clusters. Then the expected number of serially validated points is
bounded above by Pb+E [KN ] for P processors and b points per epoch.

Proof. As in the theorem statement, we assume P processors, b points assigned to each processor per
epoch, and N total data points. We further assume a generative model for the cluster memberships:
namely, that they are generated iid from an arbitrary distribution (πj)∞j=1. That is, we have

∑∞
j=1 πj =

1 and, for each j, πj ∈ [0, 1]. We see that there are perhaps infinitely many latent clusters. Nonetheless,
in any data set of finite size N , there will of course be only finitely many clusters to which any data
point in the set belongs. Call the number of such clusters KN .
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Consider any particular cluster indexed by j. At the end of the first epoch in which a worker sees
j, that worker (and perhaps other workers) will send some data point from j to the master. By
construction, some data point from j will belong to the collection of cluster centers at the master
by the end of the processing done at the master and therefore by the beginning of the next epoch.
It follows from our assumption (all data points within a single cluster are within a λ diameter) that
no other data point from cluster j will be sent to the master in future epochs. It follows from our
assumption about the separation of clusters that no points in other clusters will be covered by any
data point from cluster j.

Let Sj represent the (random) number of points from cluster j sent to the master. Since there are Pb
points processed by workers in a single epoch, Nj is constrained to take values between 0 and Pb.
Further, note that there are a total of N/(Pb) epochs.

Let Aj,s,t be the event that the master is sent s data points from cluster j in epoch t. All of the events
{Aj,s,t} with s = 1, . . . , P b and t = 1, . . . , N/(Pb) are disjoint. Define A′j,0 to be the event that, for
all epochs t = 1, . . . , N/(Pb), zero data points are sent to the master; i.e., A′j,0 :=

⋃
tAj,0,t. Then

A′j,0 is also disjoint from the events {Aj,s,t} with s = 1, . . . , P b and t = 1, . . . , N/(Pb). Finally,

A′j,0 ∪
Pb⋃

s=1

N/(Pb)⋃

t=1

Aj,s,t

covers all possible data configurations. It follows that

E[Sj ] = 0 ∗ P[A′j,0] +
Pb∑

s=1

N/(Pb)∑

t=1

sP[Aj,s,t] =
Pb∑

s=1

N/(Pb)∑

t=1

sP[Aj,s,t]

Note that, for s points from cluster j to be sent to the master at epoch t, it must be the case that no
points from cluster j were seen by workers during epochs 1, . . . , t− 1, and then s points were seen
in epoch t. That is, P[Aj,s,t] = (1− πj)Pb(t−1) ·

(
Pb
s

)
πsj (1− πj)Pb−s.

Then

E[Sj ] =

(
Pb∑

s=1

s

(
Pb

s

)
πsj (1− πj)Pb−s

)
·



N/(Pb)∑

t=1

(1− πj)Pb(t−1)



= πjPb ·
1− (1− πj)Pb·N/(Pb)

1− (1− πj)Pb
,

where the last line uses the known, respective forms of the expectation of a binomial random variable
and of the sum of a geometric series.

To proceed, we make use of a lemma.

Lemma C.1. Let m be a positive integer and π ∈ (0, 1]. Then

1

1− (1− π)m ≤
1

mπ
+ 1.

Proof. A particular subcase of Bernoulli’s inequality tells us that, for integer l ≤ 0 and real x ≥ −1,
we have (1 + x)l ≥ 1 + lx. Choose l = −m and x = −π. Then

(1− π)m ≤ 1

1 +mπ

⇔ 1− (1− π)m ≥ 1− 1

1 +mπ
=

mπ

1 +mπ

⇔ 1

1− (1− π)m ≤
mπ + 1

mπ
=

1

mπ
+ 1.
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We can use the lemma to find the expected total number of data points sent to the master:

E
∞∑

j=1

Sj =
∞∑

j=1

ESj =
∞∑

j=1

πjPb ·
1− (1− πj)N
1− (1− πj)Pb

≤
∞∑

j=1

πjPb ·
(
1 +

1

πjPb

)
·
(
1− (1− πj)N

)

= Pb

∞∑

j=1

πj
(
1− (1− πj)N

)
+

∞∑

j=1

(
1− (1− πj)N

)

≤ Pb+
∞∑

j=1

P(cluster j occurs in the first N points)

= Pb+ E[KN ].

Conversely,

E
∞∑

j=1

Sj ≥
∞∑

j=1

πjPb = Pb.

To analyze the total running time, we note that after each of the N/(Pb) epochs the master and
workers must communicate. Each worker must process N/P data points, and the master sees at most
kN + Pb points. Thus, the total expected running time is O(N/(Pb) +N/P + Pb).

C.1 Experiment – under assumptions of theorem

To demonstrate the bound on the expected number of data points proposed but not accepted as new
centers, we generated synthetic data with separable clusters. Cluster proportions are generated using
the stick-breaking procedure for the Dirichlet process, with concentration parameter θ = 1. Cluster
means are set at µk = (2k, 0, 0, . . . , 0), and generated data uniformly in a ball of radius 1/2 around
each center. Thus, all data points from the same cluster are at most distance 1 from one another, and
more than distance of 1 from any data point from a different cluster.

We follow the same experimental framework in Section 5.1.

(a) DP-means, separable (b) OFL, separable

Figure 7: Simulated distributed DP-means and OFL: expected number of data points proposed but not accepted
as new clusters is independent of size of data set.

In the case where we have separable clusters (Figure 7), Ê[MN − kN ] is bounded from above by Pb,
which is in line with the above Theorem 4.3.
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C.2 Experiment – assumptions of theorem violated

We further examine the rejection rate of distributed DP-means when the assumptions of the theorem
are violated. Specifically, we vary the separation between cluster centers, and the algorithm choice of
λ relative to the cluster diameter.

Data is synthetically generated using the stick-breaking process with θ = 1, truncated to a maximum
of 16 clusters in 16 dimensions. Cluster centers are chosen to keep all pairwise distances at a fixed
separation. Data points are generated in balls of radius 1 around the cluster centers.

Separation between cluster centers is varied between 0 (completely overlapping), 1 (partially overlap-
ping), and 2 (almost separated). The choice of λ is varied between 0.5 (smaller than actual radius), 1,
2, and 4. Note that data points from the same cluster are within a distance of 2 from one another, and
all data points are within a distance of 4 from one another.

Figure 8 shows the number of cluster centers that are rejected by distributed DP-means. We observe
that the bounds of the theorem hold even when the assumptions are violated.
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(a) λ = 0.5, separation 0 (b) λ = 0.5, separation 1 (c) λ = 0.5, separation 2

(d) λ = 1, separation 0 (e) λ = 1, separation 1 (f) λ = 1, separation 2

(g) λ = 2, separation 0 (h) λ = 2, separation 1 (i) λ = 2, separation 2

(j) λ = 4, separation 0 (k) λ = 4, separation 1 (l) λ = 4, separation 2

Figure 8: Number of proposed but rejected cluster centers, for various choices of λ and underlying separation
between cluster centers. Note that the y-axis for λ = 0.5 is different than for other choices of λ.
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