Direct O-1 Loss Minimization and Margin
M aximization with Boosting

Shaodan Zhai, Tian Xia, Ming Tan and Shaojun Wang
Kno.e.sis Center
Department of Computer Science and Engineering
Wright State University
{zhai . 6, xi a. 7, tan. 6, shaoj un. wang}@w i ght . edu

Abstract

We propose a boosting method, DirectBoost, a greedy caateliescent algo-
rithm that builds an ensemble classifier of weak classiftersugh directly min-
imizing empirical classification error over labeled traigiexamples; once the
training classification error is reduced to a local coorténése minimum, Direct-
Boost runs a greedy coordinate ascent algorithm that aomiisly adds weak clas-
sifiers to maximize any targeted arbitrarily defined marginsl reaching a local
coordinatewise maximum of the margins in a certain senspeixental results
on a collection of machine-learning benchmark datasetes shat DirectBoost
gives better results than AdaBoost, LogitBoost, LPBoogi wdlumn generation
and BrownBoost, and is noise tolerant when it maximizes/dm order bottom
sample margin.

1 Introduction

The classification problem in machine learning and datanmiis to predict an unobserved discrete
output valuey based on an observed input vectorIn the spirit of the model-free framework, it
is always assumed that the relationship between the inmtiorvand the output value is stochastic
and described by a fixed but unknown probability distributi¢.X, V') [7]. The goal is to learn a
classifier, i.e., a mapping functigi{z) from z toy € Y such that the probability of the classification
error is small. As it is well known, the optimal choice is thay®s classifief |[7]. However, since
p(X,Y) is unknown, we cannot learn the Bayes classifier directlystelad, following Vapnik’s
general setting of the empirical risk minimization[[7] 24k focus on a more realistic goal: Given a
set of training dat® = {(xz1,v1), - , (xn,y,)} iINdependently drawn from(X,Y"), we consider
finding f(z) in a function clas${ that minimizes the empirical classification error,
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wherey; = argmaxycy yf(z;), Y = {—1,1} and1(-) is an indicator function. Under certain
conditions, direct empirical classification error minimiion is consistent[24] and under low noise
situations it has a fast convergence rate [15, 23]. Howelex,to the nonconvexity, nondifferen-
tiability and discontinuity of the classification error fttion, the minimization of[{[1) is typically
NP-hard for general linear models [13]. The common appréathminimize a surrogate function
which is usually a convex upper bound of the classificatioardunction. The problem of minimiz-
ing the empirical surrogate loss turns out to be a convexrprogiing problem with considerable
computational advantages and learned classifiers remagistent to Bayes classifiér [1,]120] 28] 29],
however clearly there is a mismatch between “desired” lasstfon used in inference and “train-
ing” loss function during the training process [16]. Moreavit has been shown that all boosting
algorithms based on convex functions are susceptible tiorarclassification noise [14].

Boosting is a machine-learning method based on the ideaafing a single, highly accurate clas-
sifier by combining many weak and inaccurate “rules of thtimb.remarkably rich theory and
a record of empirical succeds [18] have evolved around bapstevertheless it is still not clear
how to best exploit what is known about how boosting operatesn for binary classification. In



this paper, we propose a boosting method for binary claasific — DirectBoost — a greedy coor-
dinate descent algorithm that directly minimizes clasaifan error over labeled training examples
to build an ensemble linear classifier of weak classifierscelhe training error is reduced to a
(local coordinatewise) minimum, DirectBoost runs a cooatié ascent algorithm that greedily adds
weak classifiers by directly maximizing any targeted aabily defined margins, it might escape the
region of minimum training error in order to achieve a largargin. The algorithm stops once a
(local coordinatewise) maximum of the margins is reachedthé next section, we first present a
coordinate descent algorithm that directly minimizes @4slover labeled training examples. We
then describe coordinate ascent algorithms that aims ézttiirmaximize any targeted arbitrarily
defined margins right after we reach a (local coordinatéwrseimum of 0-1 loss. In Section 3, we
show experimental results on a collection of machine-iearbenchmark data sets for DirectBoost,
AdaBoost[9], LogitBoost[111], LPBoost with column genéoat[6] and BrownBoost[10], and dis-
cuss our findings. Due to space limitation, the proofs of tees, related works, technical details
as well as conclustions and future works are given in thevirsion of this papef[27].

2 DirectBoost: Minimizing 0-1 Loss and Maximizing Margins

LetH = {hi,...,y} denote the set of all possible weak classifiers that can badupeal by the
weak learning algorithm, where a weak classifiere # is a mapping from an instance spakdo
Y ={-1,1}. Theh;s are not assumed to be linearly independent,7risi closed under negation,
i.e., bothh and—h belong toH. We assume that the training set consists of examples witida
{(s,9:)},i = 1,--- ,n, where(z;,y;) € X x Y that are generated independently frp(X,Y").
We defineC of H as the set of mappings that can be generated by taking a wdiglierage of

classifiers froni:
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The goal here is to fing € C that minimizes the empirical classification errar (1), ared lgood
generalization performance.

2.1 Minimizing 0-1 L oss

Similar to AdaBoost, DirectBoost works by sequentially ming an iterative greedy coordinate
descent algorithm, each time directly minimizitrge empirical classification errof]1) instead of
a weighted empirical classification error in AdaBoost. Tieator each iteration, only the parameter
of a weak classifier that leads to the most significant trugesdfi@ation error reduction is updated,
while the weights of all other weak classifiers are kept unglea. The rationale is that the inference
used to predict the label of a sample can be written as a lfneation with a single parameter.

Consider théth iteration, the ensemble classifier is

t
fe(z) = arhi(x) @)
k=1
where previous — 1 weak classifierd, (z) and corresponding weights,, k = 1,--- ,¢t — 1 have
been selected and determined. The inference function foplsar; is defined as
t—1
Fi(zi,y) = yfe(w:) = y (O axhi(@:)) + awyhi(z:) )
k=1

Sincea(z;) = 22;11 aihg(x;) is constant andy (x;) is either +1 or -1 depending on samplg
we re-write the equation above as,

Fi(zi,y) = y he(:)on + ya(e:) ®)

Note that for each labelof sampler;, there is a linear function ef; with the slope to be either +1 or
-1 and intercept to bga(z;). Given an input ofy;, each example; has two linear scoring functions,
Fy(x;,+1) andFy(x;, —1),i = 1,--- ,n, one for the positive label = +1 and one for the negative
labely = —1. From these two linear scoring functions, the one with tlghér score determines
the predicted labe}; of the ensemble classifigk(x;). The intersection poirt; of these two linear
scoring functions is the critical point that the predictatidly; switches its sign, the intersection
point satisfies the condition th&i («;, +1) = Fi(x;, —1) = 0, i.e. a(z;) + avhe(z;) = 0, and can
be computed as; = —}i(&)),i =1,---,n. These points divide; into (at most)n + 1 intervals,

each interval has the value of a true classification errais the classification error is a stepwise




Algorithm 1 Greedy coordinate descent algorithm that minimizes a G4.1o
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: Sort|a(z;)],4 = 1,--- ,nin anincreasing order.
: for a weak classifieh;, € H do
Visit each sample in the order thia{z;)| is increasing.
Compute the slope and intercept®fz;, v;) = yihi(x;)a + yiax;).
Leté; = |a(z;)].
If (slope> 0 and intercepk 0), error update on the righthand sidecpis -1.
If (slope < 0 and intercept> 0), error update on the righthand sidecpfs +1.

9: Incrementally calculate classification error on intenls,; s.

10:
: end for
12:
13:

the smallest exponential loss.

14:

Get the interval that has minimum classification error.

Pick the weak classifiers that lead to largest classificaioor reduction.
Among selected these weak classifiers, only update the tvefigime weak classifier that gives

Repeat 2-13 until training error reaches minimum.

function ofa;. The value ok;,: =1, - --

,n can be negative or positive, however sirfi¢és closed

in negation, we only care about these that are positive.

The greedy coordinate descent algorithm that sequentiailiymizes a 0-1 loss is described in
Algorithm 1, lines 3-11 are the weak learning steps and tisé aee boosting steps. Consider
an example with 4 samples to illustrate this procedure. Ssgfor a weak classifier, we have
Fy(zi,y:),1=1,2,3,4 as shown in Figurel 1. At; = 0, samples:; andz, have negative margins,
thus they are misclassified, the error rate is 50%. We inonéatig update the classification error on
intervals ofé;, i = 1, 2,3, 4: For Fy(x1,y1), its slope is negative and its intercept is negative, sample
x1 always has a negative margin foy > 0, thus there is no error update on the right-hand side of
é1. For Fy(z2, y2), its slope is positive and its intercept is negative, theenvh, is at the right side

of é;, samplex, has positive margin and becomes correctly classified, sgpdata the error by -1,
the error rate is reduced to 25%. HaK(z3, y3), its slope is negative and its intercept is positive, then
whena, is at the right side oé3, samplexrs has a negative margin and becomes misclassified, so
we update the error rate changes to 50% again.F-Qr,, y4), its slope is positive and its intercept

is positive, sample:, always has positive margin far, > 0, thus there is no error update on the
right-hand side oé,. We finally have the minimum error rate of 25% on the internvdld@, és].

Fy(xs, ys)

Fi(z1, 1)

a2+
\ll||’

as,|ay|

as,|as|

We repeat this procedure until the training error reaches
its minimum, which may be 0 in a data separable case.
We then go to the next stage, explained below, that aims to
maximize margins. A nice property of the above greedy
coordinate descent algorithm is that the classification er-
ror is monotonically decreasing. Assume there &fe
weak classifiers be considered, the computational com-
plexity of Algorithm 1 in the training stage 8(Mn) for
each iteration.

For boosting, as long as the weaker learner is strong
enough to achieve reasonably high accuracy, the data will
be linearly separable and the minimum 0-1 loss is usually

Figure 1: An example of computing mini-0. As shown in Theorem 1, the region of zero 0-1 loss is
mum 0-1 loss of a weak learner over 4 sanp (convex) cone.

ples.

Theorem 1 The region of zero training error, if exists, is a cone, anid imot a set of isolated cones.

Algorithm 1 is a heuristic procedure that minimizes 0-1 Jass not guaranteed to find the global
minimum, it may trap to a coordinatewise local minimuml[22Del loss. Nevertheless, we switch
to algorithms that directly maximize the margins we preseahow.

2.2 Maximizing Margins
The margins theory [17] provides an insightful analysis tlee success of AdaBoost where the
authors proved that the generalization error of any enseibksifiers is bounded in terms of the



entire distribution of margins of training examples, ashaslthe number of training examples and
the complexity of the base classifiers, and AdaBoost’s dyosahas a strong tendency to increase the
margins of training examples. Instead, we can prove thagémeralization error of any ensemble
classifier is bounded in terms of the average margin of bottbrsamples om’th order margin

of training examples, as well as the number of training exempnd the complexity of the base
classifiers. This view motivates us to propose a coordinsterd algorithm to directly maximize
several types of margins just right after the training ereaiches a (local coordinatewise) minimum.

The margin of a labeled exampler;,y;) with respect to an ensemble classifignz) =
S, arhy(z;) is defined to be
- Yi Zk:tl arhi (z:) ©)
D ket Ok
This is a real number between -1 and +1 that intuitively messthe confidence of the classifier in
its prediction on theth example. It is equal to the weighted fraction of base diass voting for
the correct label minus the weighted fraction voting foritheorrect label[[177].

We denote the minimum margin, the average margin, and mewagin over the training examples
aSgmin = minie{l,--- n} Mis Javerage = %Z?:l myg, andgmedian = median{mhi =1,-- ,TL}.
Furthermore, we can sort the margins over all training exasip an increasing order, and consider
n/ worst training examples’ < n that have smaller margins, and compute the average margm ov
thosen’ training examples We call this the average margin of théobot.’ samples, and denote
it 8S Gaverage n’ = W > eB,, Mis where B,,; denotes the set of’ samples having the smallest
margins.

The margin maximization method described below is a greedydinate ascent algorithm that adds
a weak classifier achieving maximum margin. It allows us toticwously maximize the margin
while keeping the training error at a minimum by running theegly coordinate descent algorithm
presented in the previous section. The manginis alinear fractional functionof «, and it is
quasiconvex, and quasiconcave, iqeiasilinear[2,[5]. Theoreni 2 shows that the average margin of
bottomn’ examples is quasiconcave in the region of the zero trainirg.e

Theorem 2 Denote the average margin of bottorhsamples as
Yi gy kb (i)
Gaverage n’ (Q) = Z ktl—
i€{B,/|a} Zk=1 Ok
where{B,,|a} denotes the set of samples whose margins are at the bottom for fixedrhen
Javerage n/ (¢¢) IN the region of zero training error is quasiconcave.

We d_enotea,» = Z;;:1 yioghg(x;), biy = yi_ht(xi) e {-1,41} andc = Zf:l oy, then the
margin on the'th example(z;, y;) can be rewritten as,

— a; + bira @)
c+ oy
The derivative of the margin oith example with respect o, is calculated as,
87774 o bi,tc — Qj

8)

Margin

O (c+ ar)?

me

Sincec > a;, depending on the sign @f ;, the derivative

of the margin on théth sample(z;, ;) is either positive or
negative, which is irrelevant to the value ®f. This is also
true for the second derivative of the margin. Therefore, the
margin on theth examplgx;, y;) with respect tay, is either
concave when it is monotonically increasing or convex when
it is monotonically decreasing. See Figlile 2 for a simple
Figure 2: Margin curves of six exam- illustration.
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ples are changed. The derivative 0fayerage CaN be written as,
agaverage o Zi:l bi,tc - Z?:l Q; (9)
Oovt (C + Oét)2
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Algorithm 2 Greedy coordinate ascent algorithm that maximizes theageemargin of bottom’
examples.
1: Input: @;=;.... , andc from previous round.
2: Sorta;—1,... », in anincreasing orde3,; < {n’ samples having the smallest a; at oy = 0}.
3: for a weak classifiedo
:  Determine the lowest sample whose margin is decreasingetedined.
ComputeD,,, ZieBn, (birc — a;).
J < 0,q; < 0.
Compute the intersectiay);, of thej + 1th highest increasing margin i, and thej + 1th
smallest decreasing margin Bf, (the complement of the sét,).
8: ifgj;1 <dandD, > 0then

S

9: Incrementally updatés,,,, BS, andD,, ata; = gj4+1;7 < j + 1.
10: Go backto Line 7.
11: €lse
12: if D, > 0theng* < d; otherwiseg* + ¢;.
13: Compute the average margin of the bottahexamples at*.
14:  endif
15: end for

16: Pick the weak classifier with the largest increment of theaye margin of bottom’ examples
with weight beingg*.
17: Repeat 2-16 until no increment in average margin of bottdexamples.

Therefore, the maximum average margin can only happen ag¢mase of the interval. As shown in
Figure[2, the maximum average margin is either at the origiat gointd, which depends on the
sign of the derivative if{9). If it is positive, the averagangin is monotonically increasing, we set
ay = d — ¢, otherwise we set, = 0. The greedy coordinate ascent algorithm found by: looking
at all weak classifiers ift(, if the nominator in[(B) is positive, we let its weightlose to the right
value on the interval where the training error is minimumg @ompute the value of the average
margin. We add the weak classifier which has the largest geerargin increment. We iterate this
procedure until convergence. Its convergence is given l@ofén{B shown below.

Theorem 3 When constrained to the region of zero training error, theegty coordinate ascent
algorithm that maximizes the average margin over all exaspbnverges to an optimal solution.

Now consider a greedy coordinate ascent algorithm maxngighe average margin of bottoni
training exampleSgaverage n/- Apparently maximizing the minimum margin is a special chge
choosings’ = 1. Figure2 is a simple illustration with six training examgpl®ur aim is to maximize
the average margin of the bottadrexamples. The intervdd, d] of «; indicates an interval where
the training error is zero. On the point @fthe sample margimg alters from positive to negative,
which causes the training error jump from 0 to 1/6. As showhRigure[2, the margin of each of six
training examples is either monotonically increasing ardasing.

If we know a fixed set of bottom’ training examples having smaller margins for an intervakpof
with a minimum training error, it is straightforward to couip the derivative of the average margin
of bottomn/’ training examples as

8gaverage n’ _ ZiGB"/ bi,tC - ZiGB”/ Qi (10)
Oy (c+ a¢)?

Again gayverage n’ IS @ monotonic function ofi;, depending on the sign of the derivative[inl(10), it is
maximized either on the left side or on the right side of tterival.

In general, the set of bottom’ training examples for an interval ef, with a minimum training
error varies ovety, it is required to precisely search for any snapshot of bottbexamples with a
different value ofn.

To address this, we first examine when the margins of two elesriptersect. Consider thigh
example(z;, y;) with marginm,; = %12.%t and thejth example(z;,y;) with marginm; =

ctoy

aitbiva Noticed,, b; is either -1 or +1. Assumi = b;, then because; # m; (sincea; # a;),

ctay

the margins of exampléand example never intersect; assunte # b;, then becauser; = m;



ata, = “’;7‘”' the margins of exampleand examplg might intersect with each otheri’l“;—‘”|
belongs to the interval af; with the minimum training error. In summary, given any twongaes,
we can decide whether they intersect by checking whéthems have the same sign, if not, they
do intersect, and we can determine the intersection point.

The greedy coordinate ascent algorithm that sequentialyimmzes the average margin of bottom
n’ examples is described in Algorithm 2, lines 3-15 are the weakning steps and the rest are
boosting steps. At line 5 we compuie,, which can be used to check the sign of the derivative
in (I0). Since the function of the average margin of bottenexamples is quasiconcave, we can
determine the optimal point' by D,,., and only need to compute the margin valug*atWe add the
weak learner, which has the largest increment of the avaraggin over bottonn” examples, into
the ensembled classifier. This procedure terminates ietlseno increment in the average margin
of bottomn’ examples over the considered weak classifier8/ Mveak learners are considered, the
computational complexity of Algorithm 2 in the training g&isO (max(nlogn, Mn')) for each
iteration. The convergence analysis of Algorithm 2 is gibgnTheoreni 4.

Theorem 4 When constrained to the region of zero training error, theagty coordinate ascent
algorithm that maximizes average margin of bottehsamples converges to a coordinatewise max-
imum solution, but it is not guaranteed to converge to anmatisolution due to the non-smoothness
of the average margin of bottoni samples.

e-relaxation: Unfortunately, there is a fundamental difficulty in the egly coordinate ascent al-
gorithm that maximizes the average margin of bottehsamples: It gets stuck at a corner, from
which it is impossible to make progress along any coordidattion. We propose asirelaxation
method to overcome this difficulty. This method was first mregd by[[B] for the assignment prob-
lem, and was extended to the linear cost network flow probledstrictly convex costs and linear
constraints[[4, 21]. The main idea is to allow a single cauatk to change even if this worsens the
margin function. When a coordinate is changed, it is seplas ore minus the value that maximizes
the margin function along that coordinate, wheis a positive number.

We can design a similar greedy coordinate ascent algorithdiréctly maximize the bottom’th
sample margin by only making a slight modification to Algbnit 2: for a weak classifier, we choose
the intersection point that led to the largest increasinthefoottomn’th margin. When combined
with e-relaxation, this algorithm will eventually approach a §maighbourhood of a local optimal
solution that maximizes the bottonith sample margin. As shown in Figure 2, bottarth margin

is a multimodal function, this algorithm withrelaxation is very sensitive to the choicerdf and it
usually gets stuck in a bad coordinatewise point withoutgisirelaxation. However, an impressive
advantage is that this method is tolerant to noise, whichbgishown in Section 3.

3 Experimental Results

In the experiments below, we first evaluate the performarid@irectBoost on 10 UCI data sets.
We then evaluate noise robustness of DirectBoost. For alhtgorithms in our comparison, we
use decision trees with depth of either 1 or 3 as weak leagiecs for the small datasets, decision
stumps (tree depth of 1) is already strong enough. DirectBwith decision trees is implemented
by a greedy top-down recursive partition algorithm to find tree but differently from AdaBoost
and LPBoost, since DirectBoost does not maintain a digidhwver training samples. Instead, for
each splitting node, DirectBoost simply chooses the aiteilto split on by minimizing 0-1 loss or
maximizing the predefined margin value. In all the experitadate-relaxation is used, the value
of € is 0.01. Note that our empirical study is focused on whethermroposed boosting algorithm
is able to effectively improve the accuracy of state-of-#ineboosting algorithms with the same
weak learner spacH, thus we restrict our comparison to boosting algorithm#whe same weak
learners, rather than a wide range of classification alymst such as SVMs and KNN.

3.1 Experimentson UCI data

We first compare DirectBoost with AdaBoost, LogitBoost,tsofirgin LPBoost and BrownBoost
on 10 UCI data sdlfrom the UCI Machine Learning Repositofyl [8]. We partiticacé UCI dataset

into five parts with the same number of samples for five-foluksrvalidation. In each fold, we use
three parts for training, one part for validation, and th@a@ing part for testing. The validation

'For Adult data, where we use a subset a5a in LIBSVM set http://mwwatsiedu.twf cjlin/libsvm. We
do not use the original Adult data which has 48842 examples since LS Bats very slow on it.



Datasets | N D depth AdaBoost LogitBoost LPBoost BrownBoost DirectBogst DirectBoos‘fWg DirectBoost  qer
Tic-tac-toe | 958 9 3 | 1.47(0.7) 1.47(1.0) 2.62(0.8) 3.66(1.3) 0.63(0.4) 1.15(0.8) 1.05(0.4)
Diabetes | 768 8 3 |27.71(1.7) 27.32(1.3) 26.01(3.3) 26.67(2.6) 25.62(2.5) 25.8%9(3 23.4(3.7)
Australian | 690 14 3 |14.2(1.8) 16.23(2.6) 14.49(4.4) 13.77(4.6) 14.06(3.6) 13.33(3.0) 13.48(2.9)
Fourclass | 862 2 3 [1.86(1.3) 2.44(1.6) 3.02(2.3) 2.33(1.7) 2.33(1.0) 1.86(1.3) 1.74(15)
lonosphere | 351 34 3 |9.71(3.7) 9.71(3.1) 8.57(2.7) 10.86(2.8) 7.71(3.0) 8.29(2.7) 7.71(4.4)
Splice 1000 61 3 | 5.3(1.4) 5.3(2.6) 4.8(1.4) 6.1(1.1) 4.8(0.7) 4.0(0.5) 6.7(1.6)
Cancer-wdbg 569 29 1 |4.25(2.5) 4.42(1.4) 3.89(1.5) 4.25(2.2) 4.96(3.0) 4.07(2.0) 3.72(2.9)
Cancer-wpbg 198 32 1 [27.69(7.6) 30.26(7.3) 26.15(10.5) 28.72(8.4) 27.69(8.1) 24.62(7.6) 27.18(10.0)
Heart 270 13 1 [17.41(7.7) 18.52(5.1) 19.26(8.1) 18.15(7.2) 18.15(5.1) 16.67(7.5) 18.15(7.6)
Adult 6414 14 3 |15.6(0.7) 15.39(0.8) 16.2(1.1) 15.56(0.9) 16.25(1.7) 15.28(0.8) 15.8(1.1)

Table 1:Percent test errors of AdaBoost, LogitBoost, soft margin LPBodtt olumn generation, Brown-
Boost, and three DirectBoost methods on 10 UCI datasets each with Nesaamgl D attributes.

set is used to choose the optimal model for each algorithm: Ag@Boost and LogitBoost, the
validation data is used to perform early stopping sinceetlieno nature stopping criteria for these
algorithms. We run the algorithms until convergence whieestopping criterion is that the change
of loss is less thaie-6, and then choose the ensemble classifier from the roudwiitimum error
on the validation data. For BrownBoost, we select the ofdtoutoff parameters by the validation
set, which are chosen frof0.0001, 0.001, 0.01, 0.03, 0.05, 0.08, 0.1, 0.14, 0.17,.0LPBoost
maximizes the soft margin subject to linear constraintsplijective is equivalent to DirectBoost
with maximizing the average margin of bottom samples[[19], thus we set the same candidate
parameters.’/n = {0.01,0.05,0.1,0.2,0.5,0.8} for them. For LPBoost, the termination rule we
use is same to the one inl [6], and we select the optimal regataim parameter by the validation
set. For DirectBoost, the algorithm terminates when thgneoi increment in the targeted margin
value, and we select the model with the optimaby the validation set.

We use DirectBoogt, to denote our method that runs Algorithm 1 first and then maesthe
average of bottorm’ margins without-relaxation, DirectBoogt, to denote our method that runs
Algorithm 1 first and then maximizes the average margin ofdmot.’ samples with-relaxation, and
DirectBoost, 4., to denote our method that runs Algorithm 1 first and then maémthe bottom
n’th margin withe-relaxation. The means and standard deviations of testseare given in Tablel1.
Clearly DirectBoosl,,, DirectBoos},,, and DirectBoos}.q.. outperform other boosting algorithms
in general, specially DirectBodgt, is better than AdaBoost, LogitBoost, LPBoost and BrownBoos
over all data sets except Cancer-wdbc. Among the family oé@Boost algorithms, DirectBoqst
wins on two datasets where it searches the optimal margirisolin the region of zero training
error, this means that keeping the training error at zero heagt to good performance in some
cases. DirectBoosti., wins on three other datasets, but its results are unstablesemsitive to

n'. With e-relaxation, DirectBoost, searches the optimal margin solution in the whole parameter
space and gives the best performance on the remaining 5etatdtss well known that AdaBoost
performs well on the datasets with a small test error suclicag€-toe and Fourclass, it is extremely
hard for other boosting algorithms to beat AdaBoost. Nédesss, DirectBoost is still able to give
even better results in this case. For example, on Tic-tack&ta set, the test error becomes 0.63%,
more than half the error rate reduction. Our method would beemaluable for those who value
prediction accuracy, which might be the case in areas of cabdnd genetic research.

. LPBoost
,,,,,, DirectBoost; o

777777 LeBoost DirectBoost,,, and LPBoost are both designed
= to maximize the average margin over bot-
tom n’ samples [[I9], but as shown by the
left figure in Figure[B, DirectBoogf, gener-
ates a larger margin value than LPBoost when
, ‘ decision trees with depth greater than 1 are
e used as weak learners, this may explain why

. DirectBoosf,, outperforms LPBoost. When
Figure 3: The value of average margins of bottarh q] b b

Bottom ave. margins objective
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Botiom ave. margins objective
2

samples vs. the number of iterations for LPBoost wi ecision stumps are used as weak learners,
column generation and DirectBoggt on Australian PBoost converges to a global optimal solu-

dataset, left: Decision tree, right: Decision stump, 10N, and DirectBoogt, nearly converges to
the maximum margin as shown by the right fig-

ure in Figurd B, even though no theoretical justificationriewn for this observed phenomenon.



Tabld2 shows the number of iterations and total #ofiterations  Total running time
run times (in seconds) for AdaBoost, LPBoost AdaBoost 117852 31168

and DirectBoos,, at the training stage, where LPBoost 286 167520

we use the Adult dataset with 10000 training | pirectBoost,,, 1737 606

samples. All these three algorithms employ de-

cision trees with a depth of 3 as weak learner able 2: Number of iterations and total run times (in

The experiments are conducted on a PC wi egqnds) in training stage on Adult dgte}set with :.LOOOO
Core2 Duo 2.6GHz CPU and 2G RAM. Clearly ining samples and the depth of DecisionTrees is 3.
DirectBoosf,,, takes less time for the entire training stage since it cgegmuch faster. LPBoost
converges in%ess than three hundred rounds, but as a totattiee algorithm, it has a greater com-
putational cost on each round. To handle large scale datansptactice, similar to AdaBoost, we
can use many tricks. For example, we can partition the datanmany parts and use distributed
algorithms to select the weak classifier.

3.2 Evaluate noise robustness

In the experiments conducted below, we evaluate the noisestoess of each boosting method.
First, we run the above algorithms on a synthetic examplatedeby [14]. This is a simple coun-
terexample to show that for a broad class of convex lossifumstno boosting algorithm is provably
robust to random label noise, this class includes AdaBaasjitBoost, etc. For LPBoost and its
variations [25/°26], they do not satisfy the preconditiohthe theorem presented Ky [14], but Glo-
cer [12] showed experimentally that these soft margin bogshethods have the same problem as
the AdaBoost and LogitBoost to handle random noise.

! n [AB LB LPB BB DB, DBoger data 7 [ AB LB LPB BB DB, DBoer
5 0 0 0 0 0 0 0 wdbc 0 | 43 44 40 45 41 3.7
0.05| 176 O 0 1.2 0 0 0.05| 66 6.8 49 65 50 5.0
02 | 242 234 145 22 247 0 02|88 88 76 83 84 6.6
20 0 0 0 0 06 0 0 lono. O |97 97 86 88 83 7.7
0.05| 30.0 29.6 27.0 150 254 0 0.05|10.3 123 93 115 93 8.6
0.2 {299 300 298 19.6 29.6 3.2 0.2 |16.6 150 146 179 144 95

Table 3: Percent test errors of AdaBoost (AB)JTable 4: Percent test errors of AdaBoost (AB),
LogitBoost (LB), LPBoost (LPB), BrownBoost (BB),LogitBoost (LB), LPBoost (LPB), BrownBoost (BB),

DirectBoosf,;, and DirectBoostier On Long and DirectBoosf,, and DirectBoostser on two UCI
Servedio’s example with random noise. datasets with random noise.

We repeat the synthetic learning problem with binary-vdlueeak classifiers that is described
in [14]. We set the number of training examples to 1000 andahels are corrupted with a noise
raten at 0%, 5%, and 20% respectively. Examples in this settindpiaiay vectors of lengthl+ 11.
Table[3 reports the error rates on a clean test data set w800, that is, the labels of test data
are uncorrupted, and a same size clean data is generatdilatioa data. AdaBoost performs very
poor on this problem. This result is not surprising at alcsifil4] designed this example on pur-
pose to explain the inadequacy of convex optimization nathbogitBoost, LPBoost with column
generation, and DirectBogs}, perform better in the case thiat 5 andn = 5%, but for the other
cases they do as bad as AdaBoost. BrownBoost is designedig® tolerance, and it does well in
the case of = 5, but it also cannot handle the caselof 20 andn > 0%. On the other hand,
DirectBoost, 4. performs very well for all cases, showing DirectBog&t,'s impressive noise tol-
erance property since the most difficult examples are gigewithout any penalty.

These algorithms are also tested on two UCI datasets, rdpdmrupted with additional label
noise on training data at rates of 5% and 20% respectivelairAgve keep the validation and the
test data are clean. The results are reported in Table 4 bydldecross validation, the same as
Experiment 1. LPBoost with column generation, Directh%sand DirectBoos},q. do well in
the case ofy = 5%, and their performance is better than AdaBoost, LogitBaast BrownBoost.
For the case of = 20%, all the algorithms perform much worse than the correspundbise-free
case, except DirectBoqgsi., which still generates a good performance close to the rfoggeease.
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