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Abstract
We propose a boosting method, DirectBoost, a greedy coordinate descent algo-
rithm that builds an ensemble classifier of weak classifiers through directly min-
imizing empirical classification error over labeled training examples; once the
training classification error is reduced to a local coordinatewise minimum, Direct-
Boost runs a greedy coordinate ascent algorithm that continuously adds weak clas-
sifiers to maximize any targeted arbitrarily defined marginsuntil reaching a local
coordinatewise maximum of the margins in a certain sense. Experimental results
on a collection of machine-learning benchmark datasets show that DirectBoost
gives better results than AdaBoost, LogitBoost, LPBoost with column generation
and BrownBoost, and is noise tolerant when it maximizes ann′th order bottom
sample margin.

1 Introduction
The classification problem in machine learning and data mining is to predict an unobserved discrete
output valuey based on an observed input vectorx. In the spirit of the model-free framework, it
is always assumed that the relationship between the input vector and the output value is stochastic
and described by a fixed but unknown probability distribution p(X,Y ) [7]. The goal is to learn a
classifier, i.e., a mapping functionf(x) fromx toy ∈ Y such that the probability of the classification
error is small. As it is well known, the optimal choice is the Bayes classifier [7]. However, since
p(X,Y ) is unknown, we cannot learn the Bayes classifier directly. Instead, following Vapnik’s
general setting of the empirical risk minimization [7, 24],we focus on a more realistic goal: Given a
set of training dataD = {(x1, y1), · · · , (xn, yn)} independently drawn fromp(X,Y ), we consider
findingf(x) in a function classH that minimizes the empirical classification error,
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n
∑

i=1

1(ŷi 6= yi) (1)

whereŷi = argmaxy∈Y yf(xi), Y = {−1, 1} and1(·) is an indicator function. Under certain
conditions, direct empirical classification error minimization is consistent [24] and under low noise
situations it has a fast convergence rate [15, 23]. However,due to the nonconvexity, nondifferen-
tiability and discontinuity of the classification error function, the minimization of (1) is typically
NP-hard for general linear models [13]. The common approachis to minimize a surrogate function
which is usually a convex upper bound of the classification error function. The problem of minimiz-
ing the empirical surrogate loss turns out to be a convex programming problem with considerable
computational advantages and learned classifiers remain consistent to Bayes classifier [1, 20, 28, 29],
however clearly there is a mismatch between “desired” loss function used in inference and “train-
ing” loss function during the training process [16]. Moreover, it has been shown that all boosting
algorithms based on convex functions are susceptible to random classification noise [14].

Boosting is a machine-learning method based on the idea of creating a single, highly accurate clas-
sifier by combining many weak and inaccurate “rules of thumb.” A remarkably rich theory and
a record of empirical success [18] have evolved around boosting, nevertheless it is still not clear
how to best exploit what is known about how boosting operates, even for binary classification. In
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this paper, we propose a boosting method for binary classification – DirectBoost – a greedy coor-
dinate descent algorithm that directly minimizes classification error over labeled training examples
to build an ensemble linear classifier of weak classifiers. Once the training error is reduced to a
(local coordinatewise) minimum, DirectBoost runs a coordinate ascent algorithm that greedily adds
weak classifiers by directly maximizing any targeted arbitrarily defined margins, it might escape the
region of minimum training error in order to achieve a largermargin. The algorithm stops once a
(local coordinatewise) maximum of the margins is reached. In the next section, we first present a
coordinate descent algorithm that directly minimizes 0-1 loss over labeled training examples. We
then describe coordinate ascent algorithms that aims to directly maximize any targeted arbitrarily
defined margins right after we reach a (local coordinatewise) minimum of 0-1 loss. In Section 3, we
show experimental results on a collection of machine-learning benchmark data sets for DirectBoost,
AdaBoost [9], LogitBoost [11], LPBoost with column generation [6] and BrownBoost [10], and dis-
cuss our findings. Due to space limitation, the proofs of theorems, related works, technical details
as well as conclustions and future works are given in the fullversion of this paper [27].

2 DirectBoost: Minimizing 0-1 Loss and Maximizing Margins
Let H = {h1, ..., hl} denote the set of all possible weak classifiers that can be produced by the
weak learning algorithm, where a weak classifierhj ∈ H is a mapping from an instance spaceX to
Y = {−1, 1}. Thehjs are not assumed to be linearly independent, andH is closed under negation,
i.e., bothh and−h belong toH. We assume that the training set consists of examples with labels
{(xi, yi)}, i = 1, · · · , n, where(xi, yi) ∈ X × Y that are generated independently fromp(X,Y ).
We defineC of H as the set of mappings that can be generated by taking a weighted average of
classifiers fromH:

C =

{

f : x →
∑

h∈H

αhh(x) | αh ≥ 0

}

, (2)

The goal here is to findf ∈ C that minimizes the empirical classification error (1), and has good
generalization performance.

2.1 Minimizing 0-1 Loss

Similar to AdaBoost, DirectBoost works by sequentially running an iterative greedy coordinate
descent algorithm, each time directly minimizingtrue empirical classification error (1) instead of
a weighted empirical classification error in AdaBoost. Thatis, for each iteration, only the parameter
of a weak classifier that leads to the most significant true classification error reduction is updated,
while the weights of all other weak classifiers are kept unchanged. The rationale is that the inference
used to predict the label of a sample can be written as a linearfunction with a single parameter.

Consider thetth iteration, the ensemble classifier is

ft(x) =

t
∑

k=1

αkhk(x) (3)

where previoust− 1 weak classifiershk(x) and corresponding weightsαk, k = 1, · · · , t− 1 have
been selected and determined. The inference function for samplexi is defined as

Ft(xi, y) = yft(xi) = y (

t−1
∑

k=1

αkhk(xi)) + αtyht(xi) (4)

Sincea(xi) =
∑t−1

k=1 αkhk(xi) is constant andhk(xi) is either +1 or -1 depending on samplexi,
we re-write the equation above as,

Ft(xi, y) = y ht(xi)αt + ya(xi) (5)

Note that for each labely of samplexi, there is a linear function ofαt with the slope to be either +1 or
-1 and intercept to beya(xi). Given an input ofαt, each examplexi has two linear scoring functions,
Ft(xi,+1) andFt(xi,−1), i = 1, · · · , n, one for the positive labely = +1 and one for the negative
labely = −1. From these two linear scoring functions, the one with the higher score determines
the predicted label̂yi of the ensemble classifierft(xi). The intersection pointei of these two linear
scoring functions is the critical point that the predicted label ŷi switches its sign, the intersection
point satisfies the condition thatFt(xi,+1) = Ft(xi,−1) = 0, i.e. a(xi) + αtht(xi) = 0, and can
be computed asei = −

a(xi)
ht(xi)

, i = 1, · · · , n. These points divideαt into (at most)n + 1 intervals,
each interval has the value of a true classification error, thus the classification error is a stepwise
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Algorithm 1 Greedy coordinate descent algorithm that minimizes a 0-1 loss.

1: D = {(xi, yi), i = 1, · · · , n}
2: Sort |a(xi)|, i = 1, · · · , n in an increasing order.
3: for a weak classifierhk ∈ H do
4: Visit each sample in the order that|a(xi)| is increasing.
5: Compute the slope and intercept ofF (xi, yi) = yihk(xi)α+ yia(xi).
6: Let êi = |a(xi)|.
7: If (slope> 0 and intercept< 0), error update on the righthand side ofêi is -1.
8: If (slope< 0 and intercept> 0), error update on the righthand side ofêi is +1.
9: Incrementally calculate classification error on intervalsof êis.

10: Get the interval that has minimum classification error.
11: end for
12: Pick the weak classifiers that lead to largest classificationerror reduction.
13: Among selected these weak classifiers, only update the weight of one weak classifier that gives

the smallest exponential loss.
14: Repeat 2-13 until training error reaches minimum.

function ofαt. The value ofei, i = 1, · · · , n can be negative or positive, however sinceH is closed
in negation, we only care about these that are positive.

The greedy coordinate descent algorithm that sequentiallyminimizes a 0-1 loss is described in
Algorithm 1, lines 3-11 are the weak learning steps and the rest are boosting steps. Consider
an example with 4 samples to illustrate this procedure. Suppose for a weak classifier, we have
Ft(xi, yi), i = 1, 2, 3, 4 as shown in Figure 1. Atαt = 0, samplesx1 andx2 have negative margins,
thus they are misclassified, the error rate is 50%. We incrementally update the classification error on
intervals ofêi, i = 1, 2, 3, 4: ForFt(x1, y1), its slope is negative and its intercept is negative, sample
x1 always has a negative margin forαt > 0, thus there is no error update on the right-hand side of
ê1. ForFt(x2, y2), its slope is positive and its intercept is negative, then whenαt is at the right side
of ê2, samplex2 has positive margin and becomes correctly classified, so we update the error by -1,
the error rate is reduced to 25%. ForFt(x3, y3), its slope is negative and its intercept is positive, then
whenαt is at the right side of̂e3, samplex3 has a negative margin and becomes misclassified, so
we update the error rate changes to 50% again. ForFt(x4, y4), its slope is positive and its intercept
is positive, samplex4 always has positive margin forαt > 0, thus there is no error update on the
right-hand side of̂e4. We finally have the minimum error rate of 25% on the interval of [ ê2, ê3].

0

a1
a2

a3,|a3|

a4,|a4|

|a1|
|a2|

ê1 ê2 ê3 ê4

0

Ft(x2, y2)

Ft(x3, y3)

Ft(x4, y4)

Ft(x1, y1)

25%

50%
Classification error

αt

αtê2 ê3

Figure 1: An example of computing mini-
mum 0-1 loss of a weak learner over 4 sam-
ples.

We repeat this procedure until the training error reaches
its minimum, which may be 0 in a data separable case.
We then go to the next stage, explained below, that aims to
maximize margins. A nice property of the above greedy
coordinate descent algorithm is that the classification er-
ror is monotonically decreasing. Assume there areM
weak classifiers be considered, the computational com-
plexity of Algorithm 1 in the training stage isO(Mn) for
each iteration.

For boosting, as long as the weaker learner is strong
enough to achieve reasonably high accuracy, the data will
be linearly separable and the minimum 0-1 loss is usually
0. As shown in Theorem 1, the region of zero 0-1 loss is
a (convex) cone.

Theorem 1 The region of zero training error, if exists, is a cone, and itis not a set of isolated cones.

Algorithm 1 is a heuristic procedure that minimizes 0-1 loss, it is not guaranteed to find the global
minimum, it may trap to a coordinatewise local minimum [22] of 0-1 loss. Nevertheless, we switch
to algorithms that directly maximize the margins we presentbelow.

2.2 Maximizing Margins
The margins theory [17] provides an insightful analysis forthe success of AdaBoost where the
authors proved that the generalization error of any ensemble classifiers is bounded in terms of the
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entire distribution of margins of training examples, as well as the number of training examples and
the complexity of the base classifiers, and AdaBoost’s dynamics has a strong tendency to increase the
margins of training examples. Instead, we can prove that thegeneralization error of any ensemble
classifier is bounded in terms of the average margin of bottomn′ samples orn′th order margin
of training examples, as well as the number of training examples and the complexity of the base
classifiers. This view motivates us to propose a coordinate ascent algorithm to directly maximize
several types of margins just right after the training errorreaches a (local coordinatewise) minimum.

The margin of a labeled example(xi, yi) with respect to an ensemble classifierft(x) =
∑t

k=1 αkhk(xi) is defined to be

mi =
yi

∑t

k=1
αkhk(xi)

∑t

k=1
αk

(6)

This is a real number between -1 and +1 that intuitively measures the confidence of the classifier in
its prediction on theith example. It is equal to the weighted fraction of base classifiers voting for
the correct label minus the weighted fraction voting for theincorrect label [17].

We denote the minimum margin, the average margin, and medianmargin over the training examples
asgmin = mini∈{1,··· ,n} mi, gaverage = 1

n

∑n

i=1 mi, andgmedian = median{mi, i = 1, · · · , n}.
Furthermore, we can sort the margins over all training examples in an increasing order, and consider
n′ worst training examplesn′ ≤ n that have smaller margins, and compute the average margin over
thosen′ training examples. We call this the average margin of the bottom n′ samples, and denote
it as gaverage n′ = 1

n′

∑
i∈Bn′

mi, whereBn′ denotes the set ofn′ samples having the smallest
margins.

The margin maximization method described below is a greedy coordinate ascent algorithm that adds
a weak classifier achieving maximum margin. It allows us to continuously maximize the margin
while keeping the training error at a minimum by running the greedy coordinate descent algorithm
presented in the previous section. The marginmi is a linear fractional functionof α, and it is
quasiconvex, and quasiconcave, i.e.,quasilinear[2, 5]. Theorem 2 shows that the average margin of
bottomn′ examples is quasiconcave in the region of the zero training error.
Theorem 2 Denote the average margin of bottomn′ samples as

gaverage n′(α) =
∑

i∈{B
n′ |α}

yi
∑t

k=1
αkhk(xi)

∑t

k=1
αk

where{Bn′ |α} denotes the set ofn′ samples whose margins are at the bottom for fixedα. Then
gaverage n′(α) in the region of zero training error is quasiconcave.

We denoteai =
∑t−1

k=1 yiαkhk(xi), bi,t = yiht(xi) ∈ {−1,+1} and c =
∑t−1

k=1 αk, then the
margin on theith example(xi, yi) can be rewritten as,

mi =
ai + bi,tαt

c+ αt

(7)

The derivative of the margin onith example with respect toαt is calculated as,
∂mi

∂αt

=
bi,tc− ai

(c+ αt)2
(8)

αt0 d

m6

m5

m4

m3

m2

m1

Margin

q1 q2 q3 q4

Figure 2: Margin curves of six exam-
ples. At pointsq1, q2, q3 andq4, the me-
dian example is changed. At pointsq2
and q4, the set of bottomn′ = 3 exam-
ples are changed.

Sincec ≥ ai, depending on the sign ofbi,t, the derivative
of the margin on theith sample(xi, yi) is either positive or
negative, which is irrelevant to the value ofαt. This is also
true for the second derivative of the margin. Therefore, the
margin on theith example(xi, yi) with respect toαt is either
concave when it is monotonically increasing or convex when
it is monotonically decreasing. See Figure 2 for a simple
illustration.

Consider a greedy coordinate ascent algorithm that maxi-
mizes the average margingaverage over all training examples.
The derivative ofgaverage can be written as,

∂gaverage

∂αt

=

∑n

i=1
bi,tc−

∑n

i=1
ai

(c+ αt)2
(9)
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Algorithm 2 Greedy coordinate ascent algorithm that maximizes the average margin of bottomn′

examples.
1: Input: ai=1,··· ,n andc from previous round.
2: Sortai=1,··· ,n in an increasing order.Bn′ ← {n′ samples having the smallest ai at αt = 0}.
3: for a weak classifierdo
4: Determine the lowest sample whose margin is decreasing and determined.
5: ComputeDn′ ←

∑
i∈Bn′

(bi,tc− ai).
6: j ← 0, qj ← 0.
7: Compute the intersectionqj+1 of thej+1th highest increasing margin inBn′ and thej+1th

smallest decreasing margin inBc
n′ (the complement of the setBn′).

8: if qj+1 < d andDn′ > 0 then
9: Incrementally updateBn′ , Bc

n′ andDn′ atαt = qj+1; j ← j + 1.
10: Go back to Line 7.
11: else
12: if Dn′ > 0 thenq∗ ← d; otherwiseq∗ ← qj .
13: Compute the average margin of the bottomn′ examples atq∗.
14: end if
15: end for
16: Pick the weak classifier with the largest increment of the average margin of bottomn′ examples

with weight beingq∗.
17: Repeat 2-16 until no increment in average margin of bottomn′ examples.

Therefore, the maximum average margin can only happen at twoends of the interval. As shown in
Figure 2, the maximum average margin is either at the origin or at pointd, which depends on the
sign of the derivative in (9). If it is positive, the average margin is monotonically increasing, we set
αt = d − ǫ, otherwise we setαt = 0. The greedy coordinate ascent algorithm found by: looking
at all weak classifiers inH, if the nominator in (9) is positive, we let its weightǫ close to the right
value on the interval where the training error is minimum, and compute the value of the average
margin. We add the weak classifier which has the largest average margin increment. We iterate this
procedure until convergence. Its convergence is given by Theorem 3 shown below.

Theorem 3 When constrained to the region of zero training error, the greedy coordinate ascent
algorithm that maximizes the average margin over all examples converges to an optimal solution.

Now consider a greedy coordinate ascent algorithm maximizing the average margin of bottomn′

training examples,gaverage n′ . Apparently maximizing the minimum margin is a special caseby
choosingn′ = 1. Figure 2 is a simple illustration with six training examples. Our aim is to maximize
the average margin of the bottom3 examples. The interval[0, d] of αt indicates an interval where
the training error is zero. On the point ofd, the sample marginm3 alters from positive to negative,
which causes the training error jump from 0 to 1/6. As shown inFigure 2, the margin of each of six
training examples is either monotonically increasing or decreasing.

If we know a fixed set of bottomn′ training examples having smaller margins for an interval ofαt

with a minimum training error, it is straightforward to compute the derivative of the average margin
of bottomn′ training examples as

∂gaverage n′

∂αt

=

∑

i∈B
n′

bi,tc−
∑

i∈B
n′

ai

(c+ αt)2
(10)

Againgaverage n′ is a monotonic function ofαt, depending on the sign of the derivative in (10), it is
maximized either on the left side or on the right side of the interval.

In general, the set of bottomn′ training examples for an interval ofαt with a minimum training
error varies overαt, it is required to precisely search for any snapshot of bottom n′ examples with a
different value ofα.

To address this, we first examine when the margins of two examples intersect. Consider theith
example(xi, yi) with marginmi =

ai+bi,tαt

c+αt
and thejth example(xj , yj) with marginmj =

aj+bj,tαt

c+αt
. Noticebi, bj is either -1 or +1. Assumebi = bj , then becausemi 6= mj (sinceai 6= aj),

the margins of examplei and examplej never intersect; assumebi 6= bj , then becausemi = mj

5



atαt =
|ai−aj |

2 , the margins of examplei and examplej might intersect with each other if|ai−aj |
2

belongs to the interval ofαt with the minimum training error. In summary, given any two samples,
we can decide whether they intersect by checking whetherb terms have the same sign, if not, they
do intersect, and we can determine the intersection point.

The greedy coordinate ascent algorithm that sequentially maximizes the average margin of bottom
n′ examples is described in Algorithm 2, lines 3-15 are the weaklearning steps and the rest are
boosting steps. At line 5 we computeDn′ which can be used to check the sign of the derivative
in (10). Since the function of the average margin of bottomn′ examples is quasiconcave, we can
determine the optimal pointq∗ byDn′ , and only need to compute the margin value atq∗. We add the
weak learner, which has the largest increment of the averagemargin over bottomn′ examples, into
the ensembled classifier. This procedure terminates if there is no increment in the average margin
of bottomn′ examples over the considered weak classifiers. IfM weak learners are considered, the
computational complexity of Algorithm 2 in the training stage isO (max(n log n,Mn′)) for each
iteration. The convergence analysis of Algorithm 2 is givenby Theorem 4.

Theorem 4 When constrained to the region of zero training error, the greedy coordinate ascent
algorithm that maximizes average margin of bottomn′ samples converges to a coordinatewise max-
imum solution, but it is not guaranteed to converge to an optimal solution due to the non-smoothness
of the average margin of bottomn′ samples.

ǫ-relaxation: Unfortunately, there is a fundamental difficulty in the greedy coordinate ascent al-
gorithm that maximizes the average margin of bottomn′ samples: It gets stuck at a corner, from
which it is impossible to make progress along any coordinatedirection. We propose anǫ-relaxation
method to overcome this difficulty. This method was first proposed by [3] for the assignment prob-
lem, and was extended to the linear cost network flow problem and strictly convex costs and linear
constraints [4, 21]. The main idea is to allow a single coordinate to change even if this worsens the
margin function. When a coordinate is changed, it is set toǫ plus orǫ minus the value that maximizes
the margin function along that coordinate, whereǫ is a positive number.

We can design a similar greedy coordinate ascent algorithm to directly maximize the bottomn′th
sample margin by only making a slight modification to Algorithm 2: for a weak classifier, we choose
the intersection point that led to the largest increasing ofthe bottomn′th margin. When combined
with ǫ-relaxation, this algorithm will eventually approach a small neighbourhood of a local optimal
solution that maximizes the bottomn′th sample margin. As shown in Figure 2, bottomn′th margin
is a multimodal function, this algorithm withǫ-relaxation is very sensitive to the choice ofn′, and it
usually gets stuck in a bad coordinatewise point without using ǫ-relaxation. However, an impressive
advantage is that this method is tolerant to noise, which will be shown in Section 3.

3 Experimental Results

In the experiments below, we first evaluate the performance of DirectBoost on 10 UCI data sets.
We then evaluate noise robustness of DirectBoost. For all the algorithms in our comparison, we
use decision trees with depth of either 1 or 3 as weak learnerssince for the small datasets, decision
stumps (tree depth of 1) is already strong enough. DirectBoost with decision trees is implemented
by a greedy top-down recursive partition algorithm to find the tree but differently from AdaBoost
and LPBoost, since DirectBoost does not maintain a distribution over training samples. Instead, for
each splitting node, DirectBoost simply chooses the attribute to split on by minimizing 0-1 loss or
maximizing the predefined margin value. In all the experiments thatǫ-relaxation is used, the value
of ǫ is 0.01. Note that our empirical study is focused on whether the proposed boosting algorithm
is able to effectively improve the accuracy of state-of-the-art boosting algorithms with the same
weak learner spaceH, thus we restrict our comparison to boosting algorithms with the same weak
learners, rather than a wide range of classification algorithms, such as SVMs and KNN.

3.1 Experiments on UCI data

We first compare DirectBoost with AdaBoost, LogitBoost, soft margin LPBoost and BrownBoost
on 10 UCI data sets1 from the UCI Machine Learning Repository [8]. We partition each UCI dataset
into five parts with the same number of samples for five-fold cross validation. In each fold, we use
three parts for training, one part for validation, and the remaining part for testing. The validation

1For Adult data, where we use a subset a5a in LIBSVM set http://www.csie.ntu.edu.tw/̃ cjlin/libsvm. We
do not use the original Adult data which has 48842 examples since LPBoost runs very slow on it.
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Datasets N D depth AdaBoost LogitBoost LPBoost BrownBoost DirectBoostavg DirectBoostǫavg DirectBoostorder

Tic-tac-toe 958 9 3 1.47(0.7) 1.47(1.0) 2.62(0.8) 3.66(1.3) 0.63(0.4) 1.15(0.8) 1.05(0.4)

Diabetes 768 8 3 27.71(1.7) 27.32(1.3) 26.01(3.3) 26.67(2.6) 25.62(2.5) 25.49(3.0) 23.4(3.7)

Australian 690 14 3 14.2(1.8) 16.23(2.6) 14.49(4.4) 13.77(4.6) 14.06(3.6) 13.33(3.0) 13.48(2.9)

Fourclass 862 2 3 1.86(1.3) 2.44(1.6) 3.02(2.3) 2.33(1.7) 2.33(1.0) 1.86(1.3) 1.74(1.5)

Ionosphere 351 34 3 9.71(3.7) 9.71(3.1) 8.57(2.7) 10.86(2.8) 7.71(3.0) 8.29(2.7) 7.71(4.4)

Splice 1000 61 3 5.3(1.4) 5.3(2.6) 4.8(1.4) 6.1(1.1) 4.8(0.7) 4.0(0.5) 6.7(1.6)

Cancer-wdbc 569 29 1 4.25(2.5) 4.42(1.4) 3.89(1.5) 4.25(2.2) 4.96(3.0) 4.07(2.0) 3.72(2.9)

Cancer-wpbc 198 32 1 27.69(7.6) 30.26(7.3) 26.15(10.5) 28.72(8.4) 27.69(8.1) 24.62(7.6) 27.18(10.0)

Heart 270 13 1 17.41(7.7) 18.52(5.1) 19.26(8.1) 18.15(7.2) 18.15(5.1) 16.67(7.5) 18.15(7.6)

Adult 6414 14 3 15.6(0.7) 15.39(0.8) 16.2(1.1) 15.56(0.9) 16.25(1.7) 15.28(0.8) 15.8(1.1)

Table 1:Percent test errors of AdaBoost, LogitBoost, soft margin LPBoost with column generation, Brown-
Boost, and three DirectBoost methods on 10 UCI datasets each with N samples and D attributes.

set is used to choose the optimal model for each algorithm: For AdaBoost and LogitBoost, the
validation data is used to perform early stopping since there is no nature stopping criteria for these
algorithms. We run the algorithms until convergence where the stopping criterion is that the change
of loss is less than1e-6, and then choose the ensemble classifier from the round with minimum error
on the validation data. For BrownBoost, we select the optimal cutoff parameters by the validation
set, which are chosen from{0.0001, 0.001, 0.01, 0.03, 0.05, 0.08, 0.1, 0.14, 0.17, 0.2}. LPBoost
maximizes the soft margin subject to linear constraints, its objective is equivalent to DirectBoost
with maximizing the average margin of bottomn′ samples [19], thus we set the same candidate
parametersn′/n = {0.01, 0.05, 0.1, 0.2, 0.5, 0.8} for them. For LPBoost, the termination rule we
use is same to the one in [6], and we select the optimal regularization parameter by the validation
set. For DirectBoost, the algorithm terminates when there is no increment in the targeted margin
value, and we select the model with the optimaln′ by the validation set.

We use DirectBoostavg to denote our method that runs Algorithm 1 first and then maximizes the
average of bottomn′ margins withoutǫ-relaxation, DirectBoostǫavg to denote our method that runs
Algorithm 1 first and then maximizes the average margin of bottomn′ samples withǫ-relaxation, and
DirectBoostorder to denote our method that runs Algorithm 1 first and then maximizes the bottom
n′th margin withǫ-relaxation. The means and standard deviations of test errors are given in Table 1.
Clearly DirectBoostavg, DirectBoostǫavg and DirectBoostorder outperform other boosting algorithms
in general, specially DirectBoostǫ

avg is better than AdaBoost, LogitBoost, LPBoost and BrownBoost
over all data sets except Cancer-wdbc. Among the family of DirectBoost algorithms, DirectBoostavg

wins on two datasets where it searches the optimal margin solution in the region of zero training
error, this means that keeping the training error at zero maylead to good performance in some
cases. DirectBoostorder wins on three other datasets, but its results are unstable and sensitive to
n′. With ǫ-relaxation, DirectBoostǫavg searches the optimal margin solution in the whole parameter
space and gives the best performance on the remaining 5 data sets. It is well known that AdaBoost
performs well on the datasets with a small test error such as Tic-tac-toe and Fourclass, it is extremely
hard for other boosting algorithms to beat AdaBoost. Nevertheless, DirectBoost is still able to give
even better results in this case. For example, on Tic-tac-toe data set, the test error becomes 0.63%,
more than half the error rate reduction. Our method would be more valuable for those who value
prediction accuracy, which might be the case in areas of medical and genetic research.

Figure 3: The value of average margins of bottomn′

samples vs. the number of iterations for LPBoost with
column generation and DirectBoostǫ

avg on Australian
dataset, left: Decision tree, right: Decision stump.

DirectBoostǫavg and LPBoost are both designed
to maximize the average margin over bot-
tom n′ samples [19], but as shown by the
left figure in Figure 3, DirectBoostǫ

avg gener-
ates a larger margin value than LPBoost when
decision trees with depth greater than 1 are
used as weak learners, this may explain why
DirectBoostǫavg outperforms LPBoost. When
decision stumps are used as weak learners,
LPBoost converges to a global optimal solu-
tion, and DirectBoostǫavg nearly converges to
the maximum margin as shown by the right fig-

ure in Figure 3, even though no theoretical justification is known for this observed phenomenon.
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# of iterations Total running times

AdaBoost 117852 31168

LPBoost 286 167520

DirectBoostǫavg 1737 606

Table 2: Number of iterations and total run times (in
seconds) in training stage on Adult dataset with 10000
training samples and the depth of DecisionTrees is 3.

Table 2 shows the number of iterations and total
run times (in seconds) for AdaBoost, LPBoost
and DirectBoostǫavg at the training stage, where
we use the Adult dataset with 10000 training
samples. All these three algorithms employ de-
cision trees with a depth of 3 as weak learners.
The experiments are conducted on a PC with
Core2 Duo 2.6GHz CPU and 2G RAM. Clearly
DirectBoostǫavg takes less time for the entire training stage since it converges much faster. LPBoost
converges in less than three hundred rounds, but as a total corrective algorithm, it has a greater com-
putational cost on each round. To handle large scale data sets in practice, similar to AdaBoost, we
can use many tricks. For example, we can partition the data into many parts and use distributed
algorithms to select the weak classifier.

3.2 Evaluate noise robustness

In the experiments conducted below, we evaluate the noise robustness of each boosting method.
First, we run the above algorithms on a synthetic example created by [14]. This is a simple coun-
terexample to show that for a broad class of convex loss functions, no boosting algorithm is provably
robust to random label noise, this class includes AdaBoost,LogitBoost, etc. For LPBoost and its
variations [25, 26], they do not satisfy the preconditions of the theorem presented by [14], but Glo-
cer [12] showed experimentally that these soft margin boosting methods have the same problem as
the AdaBoost and LogitBoost to handle random noise.

l η AB LB LPB BB DBǫ
avg DBorder

5 0 0 0 0 0 0 0

0.05 17.6 0 0 1.2 0 0

0.2 24.2 23.4 14.5 2.2 24.7 0

20 0 0 0 0 0.6 0 0

0.05 30.0 29.6 27.0 15.0 25.4 0

0.2 29.9 30.0 29.8 19.6 29.6 3.2

Table 3: Percent test errors of AdaBoost (AB),
LogitBoost (LB), LPBoost (LPB), BrownBoost (BB),
DirectBoostǫavg, and DirectBoostorder on Long and
Servedio’s example with random noise.

data η AB LB LPB BB DBǫ
avg DBorder

wdbc 0 4.3 4.4 4.0 4.5 4.1 3.7

0.05 6.6 6.8 4.9 6.5 5.0 5.0

0.2 8.8 8.8 7.6 8.3 8.4 6.6

Iono. 0 9.7 9.7 8.6 8.8 8.3 7.7

0.05 10.3 12.3 9.3 11.5 9.3 8.6

0.2 16.6 15.0 14.6 17.9 14.4 9.5

Table 4: Percent test errors of AdaBoost (AB),
LogitBoost (LB), LPBoost (LPB), BrownBoost (BB),
DirectBoostǫavg, and DirectBoostorder on two UCI
datasets with random noise.

We repeat the synthetic learning problem with binary-valued weak classifiers that is described
in [14]. We set the number of training examples to 1000 and thelabels are corrupted with a noise
rateη at 0%, 5%, and 20% respectively. Examples in this setting arebinary vectors of length2l+11.
Table 3 reports the error rates on a clean test data set with size 5000, that is, the labels of test data
are uncorrupted, and a same size clean data is generated as validation data. AdaBoost performs very
poor on this problem. This result is not surprising at all since [14] designed this example on pur-
pose to explain the inadequacy of convex optimization methods. LogitBoost, LPBoost with column
generation, and DirectBoostǫ

avg perform better in the case thatl = 5 andη = 5%, but for the other
cases they do as bad as AdaBoost. BrownBoost is designed for noise tolerance, and it does well in
the case ofl = 5, but it also cannot handle the case ofl = 20 andη > 0%. On the other hand,
DirectBoostorder performs very well for all cases, showing DirectBoostorder’s impressive noise tol-
erance property since the most difficult examples are given up without any penalty.

These algorithms are also tested on two UCI datasets, randomly corrupted with additional label
noise on training data at rates of 5% and 20% respectively. Again, we keep the validation and the
test data are clean. The results are reported in Table 4 by five-fold cross validation, the same as
Experiment 1. LPBoost with column generation, DirectBoostǫ

avg and DirectBoostorder do well in
the case ofη = 5%, and their performance is better than AdaBoost, LogitBoost, and BrownBoost.
For the case ofη = 20%, all the algorithms perform much worse than the corresponding noise-free
case, except DirectBoostorder which still generates a good performance close to the noise-free case.
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