A Appendix - Supplemental Material

Proof of Lemma 2.1. By the Cauchy-Schwarz Inequality,
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Since the norms of the row of V/|[V'||, , are < 1,
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Using the identity ||VH§2 = tr(VV7T) and the preceding inequalities,
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Proof of Lemma 3.1. We first assume that A > 0. Using the spectral decomposition of A and the
assumptions that 0 = F' < I and tr(F") < d, it is straightforward to show that

(A,E —F) = (EA,I—F)—((I—- E)A, F)
> A(E, I — F) = Mgy, (I — E, F)
5(d— (B, F)).

NowO0<FE <Tand0 < F < 1. So
2(d—(E,F)) =tr(E)+tr(F) — 2(E, F)
> I3 + I1Fl; - 2(E, F)
= [IE - FIl3 -

If A is not positive semidefinite, then we may choose ¢ > 0 sufficiently large so that A + ¢I = 0.
Note that A + cI has the same spectral gap as A and (A + c¢[,E — F) = (A,E — F). So the
indefinite case follows from the positive semidefinite case. ]

Proof of Corollary 3.2. The definition of the Fantope ensures that rank()A( ) > d, so X does have a
principal d-dimensional subspace (though not necessarily unique). Since II is a rank-d projection
matrix, Ag(II) — A\g41(II) = 1. Now apply Corollary 3.1. [ |

Proof of Theorem 3.1. Since X is optimal and II is feasible for (1),
0<(S,4) = A(IT+ Al — [Tl ) -
On the otherhand, Lemma 3.1 implies
g 2
SMAll < —(5,4).
Thus,
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Let J be the subset of indices of the nonzero entries of II. For a symmetric matrix B, we write B
for the matrix equal to B on J and zero off of J. Then ||B||;; = ||Bs|l;; + ||B — Bysl|; ; and
II = HJ. So

[All = [T+ Al + [T

1,1 — HAJ||1,1 — [y + AJ||1,1 + ||HJ||1,1
< QHAJ||1,17
where the second line is the triangle inequality. Since A ; has at most s2 nonzero entries,
1Al < slllAllly < sl All, - u
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Proof of Theorem 3.2. Clearly,
Do = {j : Mj; = 0,X;; >t} C{j : |Aj5] > 1},
D= {j: My; > 26, X5 <t} {5+ |Ag] > 1},
and Dy N Dy = ). Then by Markov’s Inequality,
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Proof of Theorem 3.3. We have by (3) and the union bound that
P (Wl = A) < 2exp (—4logp + 2logp) = 2/p°,
and Theorem 3.1 yields the desired result. ]

Proof of Corollary 3.3. Note that ||~'/2u||2 < A, ||u|3. Under assumption (5), it can be shown by
Bernstein’s Inequality [see 1, Lemma 2.2.11] that S — X satisfies (3) with ¢ = c\; where ¢ > Oisa
constant depending only on L. The assumption that log p < n in (4) ensures that only the moderate
sub-Gaussian deviation in Bernstein’s Inequality is active. ]

Proof of Corollary 3.4. Liu et al. [2, Theorem 4.2] use Hoeffding’s Inequality for U-statistics to
show that
max P (|S;; — S| > t) < 2exp ( —4nt?/o?). [
ij

Proof of Lemma 4.1. Let V denote the matrix whose columns are the eigenvectors of X. Since the
Frobenius norm and Fantope are orthogonally invariant,

1 2 . 1 2
Pra(X) = argmin JIX < VIE =V | argmin Ly g2 V7
YeFd 0=y=1,(y,1)=d

The Lagrangian associated with the problem above is

1 2
Sl =wlls + (v = 1,m0) = (y,70) +6((y, 1) — ) ,
which upon differentiation with respect to y and comparing to 0 yields the optimality condition
y—”)/-l-Tl —T(]+91:0.

By complementary slackness, if 0 < y; < 1 then 79; = 7; = 0 and y; = ~y; — 6. Thus, the optimal
value of y must satisfy

Zmin(max(yi —0,0),1) =d. [ |
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