
1 Supplementary Material

1.1 Derivation of equation (2)

The multi-information is de�ned as

I [Y : U : V ] =

〈

log
p (y,u,v)

p (y) p (u) p (v)

〉

Y ,U ,V

.

It sati�es the hain rule

I [Y : U : V ] = I [(Y ,U) : V ] + I [Y : U ] .

Therefore,

I [Y : U : V ] = I [(Y ,U) : V ] + I [Y : U ]

= I [Y : (U ,V )] + I [U : V ]

⇔ I [(Y ,U) : V ] = I [Y : (U ,V )] + I [U : V ]− I [Y : U ]

= I [Y : X] + I [U : V ]− I [Y : U ] .

1.2 Kernels and their derivatives

RBF kernel The RBF kernel is given by

k (xi,xj) = exp

(

−
‖xi − xj‖

2

σ2

)

.

Its derivative w.r.t. xi is

∂

∂xi

k (xi,xj) = k (xi,xj) · −
2

σ2
(xi − xj) .

RBF tensor kernel The RBF tensor kernel is given by

k ((x1,y1) , (x2,y2)) = exp

(

−
‖x1 ⊗ y1 − x2 ⊗ y2‖

2
2

σ2

)

‖x1 ⊗ y1 − x2 ⊗ y2‖
2
2 = 〈x1 ⊗ y1,x1 ⊗ y1〉 − 2 〈x1 ⊗ y1,x2 ⊗ y2〉+ 〈x2 ⊗ y2,x2 ⊗ y2〉

= 〈x1,x1〉 〈y1,y1〉 − 2 〈x1,x2〉 〈y1,y2〉+ 〈x2,x2〉 〈y2,y2〉 .

The derivative of k w.r.t. x1 and y2 are given by

∂

∂x1
k ((x1,y1) , (x2,y2)) = k ((x1,y1) , (x2,y2)) · −

2

σ2
(〈y1,y1〉x1 − 〈y1,y2〉x2)

∂

∂y1

k ((x1,y1) , (x2,y2)) = k ((x1,y1) , (x2,y2)) · −
2

σ2
(〈x1,x1〉 y1 − 〈x1,x2〉 y2) .

1.3 Computation of J

For the regular ase For HSIC, the matrix J an be omputed in terms of the partial derivatives

(

D(u)
η

)

ij
=

(
∂

∂uiη

k
(
(ui,vi,yi) ,

(
uj ,vj ,yj

))
)

ij

of the kernel with respet to the ηth dimension of u (and analogously for v) in the �rst argument, even if i = j.

In general, onsider any funtion f that depends on a kernel matrix K whih in turn depends on set of data points ui

olleted in the rows of a matrix Υ. Sine Kij only depends on the ith and jth example, the derivative

∂f
∂uνη

an be written as

∂f

∂uνη

=

m∑

i,j=1

(
df

dK

)

ij

dkij
duνη

(δiν + δjν) or

∂f

∂Υ:η
= diag

((

∂f

∂K
+

∂f

∂K

⊤
)

D(u)⊤
η

)

, (1.1)
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where Υ:η denotes the ηth olumn of Υ. With f = tr and

∂
∂K1

tr (K1HK2H) = HK2H , the derivatives in J =
(
J (u), J (v)

)
an

be generially omputed as a funtion of the derivatives of kernels D
(u)
η and D

(v)
η :

J (u)
η =

2

(m− 1)2
diag

(

HK2HD(u)⊤
η

)

J (v)
η =

2

(m− 1)
2 diag

(

HK1HD(v)⊤
η

)

,

sine tr (K1HK2H) = tr (K2HK1H).

For the inomplete Cholesky deomposition When omputing the derivative of γ̂2
hs with the inomplete Cholesky de-

omposition, we need to take into aount that (i) eah entry in the kernel matrix might now be a funtion of more than a pair

of data points, and we (ii) want to avoid having to ompute the whole kernel matrix. In order to ompute the derivative note

that the approximation K̃ = LL⊤
to K is given by

K ≈ K̃ = LL⊤ =

(
Kii Kij

K⊤

ii K⊤

ijK
−1
ii Kij

)

,

where i is an index set ontaining the indies of the pivot elements used to ompute the inomplete Cholesky deomposition and

j = {1, ...,m} \ i is its omplement [1℄. Therefore,

tr



K̃ HK̃2H
︸ ︷︷ ︸

=:A(2)



 = tr

(

KiiA
(2)
ii

)

+ tr

(

KijA
(2)
ji

)

+ tr

(

KjiA
(2)
ij

)

+ tr

(

K⊤

ijK
−1
ii KijA

(2)
jj

)

,

where indexing with the index sets i and j denotes the extration of a sub-matrix of the respetive matrix.

We an now take the derivatives of γ̂2
hs with respet to the pivot and non-pivot elements (orresponding to the index sets i

and j and�equivalently�to rows of J). Note that equation (1.1) beomes

∂f
∂Υ:η

= diag

(
∂f
∂K

D⊤
η

)

in the ase of the ross-kernel

matrix Kij . Using the produt rule for matrix derivatives [2℄, this redues the derivative of the approximate ase to the one

above sine

∂

∂Kji

tr

(

K⊤

ijK
−1
ii KijA

(2)
jj

)

= K−1
ii KijA

(2)
jj +

(

A
(2)
jj KjiK

−1
ii

)⊤

∂

∂Kii

tr

(

KjiK
−1
ii KijA

(2)
jj

)

= −K−1
ii KijA

(2)
jj KjiK

−1
ii .

Let K := K1, A
(2) := HK̃2K, and i and j the pivot and non-pivot indies of K1. Then the �rst k olumns (orresponding to

the features ui) of J are given by

J
(u)
iη =

2

(m− 1)
2

(

diag

(

A
(2)
ii D

(u)⊤
iiη

)

+ diag

(

A
(2)
ij D

(u)⊤
ijη

)

+ diag

(

K−1
ii KijA

(2)
jj D

(u)⊤
ijη

)

− diag

(

K−1
ii KijA

(2)
jj K

⊤

ijK
−1
ii D

(u)⊤
iiη

))

J
(u)
jη =

2

(m− 1)2

(

diag

(

A
(2)
ji D

(u)⊤
jiη

)

+ diag

(

A
(2)
jj K

⊤

ijK
−1
ii D

(u)⊤
jiη

))

.

Let K := K2, A
(1) := HK̃1H , and i and j the pivot and non-pivot indies of K2. Then the last n− k olumns (orresponding

to the features vi) of J are given by

J
(v)
iη =

2

(m− 1)
2

(

diag

(

A
(1)
ii D

(v)⊤
iiη

)

+ diag

(

A
(1)
ij D

(v)⊤
ijη

)

+ diag

(

K−1
ii KijA

(1)
jj D

(v)⊤
ijη

)

− diag

(

K−1
ii KijA

(1)
jj K

⊤

ijK
−1
ii D

(v)⊤
iiη

))

J
(v)
jη =

2

(m− 1)
2

(

diag

(

A
(1)
ji D

(v)⊤
jiη

)

+ diag

(

A
(1)
jj K

⊤

ijK
−1
ii D

(v)⊤
jiη

))

.
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