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A Quartet tests pseudo-code

The pseudo-code for the rank and coherence tests described in Section 2.1 are presented below in
Algorithms 1 and 2:

Algorithm 1 QUARTET:Rank test

Require: quartet (a, b, c, d), empirical mo-
ments M̂(a,b,c,d), threshold τq

Ensure: boolean singly-coupled.
1: M(a,b) = unfold(M̂(a,b,c,d), (a, b), (c, d))

2: M(a,c) = unfold(M̂(a,b,c,d), (a, c), (b, d))

3: M(a,d) = unfold(M̂(a,b,c,d), (a, d), (b, c))
4: for u ∈ {b, c, d} do
5: λ3,(a,u) ← third eigenvalue of M(a,u)

6: end for
7: if maxu(λ3,(a,u)) > τq then
8: return False
9: end if

10: return True

Algorithm 2 QUARTET: Coherence test

Require: quartet (a, b, c, d), empirical mo-
ments M̂(a,b,c,d), thresholds τq , τ ′q .

Ensure: boolean singly-coupled.
1: for each triplet (u, v, w) in (a, b, c, d) do
2: θ(u,v,w) ←MIXTURE((u, v, w))
3: end for
4: if Variance(u,v,w)(θ(u,v,w)) > τq then
5: return False
6: end if
7: θM ← Mean(u,v,w)(θ(u,v,w))
8: Mθ,(a,b,c,d) = p(a, b, c, d; θM )

9: if |Mθ − M̂ |∞ > τ ′q then
10: return False
11: end if
12: return True

Figure 1: The two variants of the quartet test. Left: Rank test. Right: Coherence test. MIXTURE
refers to using Eq. 2 to learn the parameters as though the triplet is singly-coupled.

B Additional experiments

To illustrate the nature of the noisy-or network, Figure 2 shows examples of training images drawn
from the network.

We provide additional experiments to evaluate the sensitivity of the algorithm to the threshold pa-
rameters τq and τe. Figure 3 shows the sensitivity of the algorithm to choices of the threshold
variable τq . We use the rank quartet test so τ ′q is not considered. As τq is decreased, fewer sources
are discovered. When τq = 0.0001 no sources are discovered at all. Increasing τq does not severely
impact the performance of the algorithm since we sort the quartets by eigenvalue and choose the
lower ones first (see description in Section 4), though the best performance is obtained with a man-
ually optimized value of τq = 0.003.

The sensitivity of the algorithm to choices of the threshold variable τe is shown in Figure 4. Setting
τe too low results in learning a small number of sources that cover nearly the entire 8 × 8 grid.
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Figure 2: 25 random samples from the synthetic distribution. Each sample is displayed in a 8x8
pixel image.
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Figure 3: Sensitivity of the algorithm to threshold parameter τq with τe = 0.1 learned with 10,000
samples.

After these sources are discovered, we are unable to find any new singly-coupled quartets. When
τe = 0.0001, the first source discovered covers nearly all of the pixels, though most of them have
failure rates close to 1. Setting τe too high (i.e. > 0.1 not shown here), results in learning many
sources each with a small number of children.

C Conditional point-wise mutual information

In this section, we restate the result of Lemma 2 and give its complete proof.
Lemma. Let (a, b, x) be three observed variables in a noisy-or network, and let Ua,b be the set of
common parents of a and b. For U ∈ Ua,b, defining

pU |x̄ =
P (U, x̄)

P (x̄)
=

pUfU,x
1− pU + pUfU,x

,

we have pU |x̄ ≤ pU . Furthermore,

P (ā, b̄|x̄)

P (ā|x̄)P (b̄|x̄)
=

∏
U∈Ua,b

(1− pU |x̄ + pU |x̄fU,afU,b)

(1− pU |x̄ + pU |x̄fU,a)(1− pU |x̄ + pU |x̄fU,b)
≤ P (ā, b̄)

P (ā)P (b̄)
,

with equality if and only if (a, b, x) do not share a parent.

Proof. First we show that P (ā,b̄)

P (ā)P (b̄)
and P (ā,b̄|x̄)

P (ā|x̄)P (b̄|x̄)
have a similar form, depending only on parents

in Ua,b with pU |x̄ in the latter replacing pU in the former. Let Ua,b be the set of parents shared by a
and b, Ua be the set of parents of a that do not have b as a child, and Ub be the set of parents of b that
do not have a as a child. Then U = Ua,b ∪ Ua ∪ Ub is the set of parents of a or b, and:

P (ā, b̄)

P (ā)P (b̄)
=

∏
U∈U (1− pU + pUfU,afU,b)∏

U∈U (1− pU + pUfU,a)
∏
U∈U (1− pU + pUfU,b)

=

∏
U∈Ua,b∪Ua∪Ub (1− pU + pUfU,afU,b)∏

U∈Ua,b∪Ua (1− pU + pUfU,a)
∏
U∈Ua,b∪Ub (1− pU + pUfU,b)

=

∏
U∈Ua,b

(1− pU + pUfU,afU,b)
∏
U∈Ua (1− pU + pUfU,a)

∏
U∈Ub (1− pU + pUfU,b)∏

U∈Ua,b∪Ua (1− pU + pUfU,a)
∏
U∈Ua,b∪Ub (1− pU + pUfU,b)

=
∏

U∈Ua,b

(1− pU + pUfU,afU,b)

(1− pU + pUfU,a)(1− pU + pUfU,b)
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Figure 4: Sensitivity of the algorithm to threshold parameter τe with τq = 0.01 learned with 10,000
samples. On the left, edges are shown in grayscale according to their failure probabilities (white
close to 0, black close to 1). On the right, all pixels that are children of a source are colored white to
clearly show all of the edges. When τe is low, a small number of sources are learned that extend to
nearly all of the observations.

Let V be the set of parents of any of (a, b, x), defined similarly to U above. We then have:

P (ā, b̄|x̄) =
P (ā, b̄, x̄)

P (x̄)

=
∏
U∈V

(1− pU + pUfU,afU,bfU,x)

(1− pU + pUfU,x)

=
∏
U∈V

(1− pUfU,x
1− pU + pUfU,x

+
pUfU,x

1− pU + pUfU,x
fU,afU,b)

=
∏
U∈V

(1− pU |x̄ + pU |x̄fU,afU,b) =
∏
U∈U

(1− pU |x̄ + pU |x̄fU,afU,b)

The last line is true since V \ U is the set of parents that are parents of x but not parents of a or b.
The terms (1− pU |x̄ + pU |x̄fU,afU,b) = 1 for all U ∈ V \U thus they can be ignored in the product.

Similarly, P (ā|x̄) =
∏
U∈U (1 − pU |x̄ + pU |x̄fU,a) and P (b̄|x̄) =

∏
U∈U (1 − pU |x̄ + pU |x̄fU,b).

Thus,

P (ā, b̄|x̄)

P (ā|x̄)P (b̄|x̄)
=

∏
U∈U (1− pU |x̄ + pU |x̄fU,afU,b)∏

U∈U (1− pU |x̄ + pU |x̄fU,a)
∏
U∈U (1− pU |x̄ + pU |x̄fU,b)

=
∏

U∈Ua,b

(1− pU |x̄ + pU |x̄fU,afU,b)

(1− pU |x̄ + pU |x̄fU,a)(1− pU |x̄ + pU |x̄fU,b)

Next we show that pU |x̄ has the following property:

pU |x̄ =
P (U, x̄)

P (x̄)
=

pUfU,x
1− pU + pUfU,x

≤ pUfU,x
(1− pU )fU,x + pUfU,x

=
pUfU,x

(1− pU + pU )fU,x
= pU ,

with pU |x̄ = pU if and only if fU,x = 1 (i.e. x is not a child of U ). Finally, the function:

gy,z : θ 7→ 1− θ + θyz

(1− θ + θy)(1− θ + θz)

is strictly increasing for θ ∈ [0, 1
1+
√
yz ). pU is assumed to be less than 1

2 . Thus gfU,afU,b
(pU |x̄) ≤

gfU,afU,b
(pU ) with equality if and only if x is not a child of U .

It follows that P (ā,b̄|x̄)

P (ā|x̄)P (b̄|x̄)
≤ P (ā,b̄)

P (ā)P (b̄)
with equality if and only if a, b and x have no parent that is

shared by all three.
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Figure 5: Probability distribution of the third eigenvalue for a quartet with coupling parents, when all
parameters are drawn uniformly at random. Blue: two parents, same failure probabilities. Green:
three parents, same failure probabilities. Red: two parents, different failure probabilities. Black:
three parents, different failure probabilities. This plot illustrates that rank testability only gets easier
for random parameters compared to the uniform parameter setting used in the experiments.

Rank test.

LetM be the 4×4 matrix representing the joint distribution of aggregated variables (a, b) and (c, d).
Let S be the set of parents shared between two or more of those, and ∀X ∈ S,∀u ∈ {a, b, c, d}, let
fX,u be the failure probability of the edge from X to u, and let nu be the probability that u is not
activated by parents outside of S.

∀S ⊂ S,∀u ∈ {a, b, c, d}, let eS,u = nu
∏
X∈S fX,u. eS,u is the marginal probability of u being

off given that nodes in S are on and nodes in S \ S are off. We then have:

M =
∑
S⊂S

(
∏
X∈S

pX
∏

Y ∈S\S

(1− pY ))qSr
T
S

With:

US =

 eS,aeS,b
eS,a(1− eS,b)
(1− eS,a)eS,b

(1− eS,a)(1− eS,b)

 , VS =

 eS,ceS,d
eS,c(1− eS,d)
(1− eS,c)eS,d

(1− eS,c)(1− eS,d)


In particular, this means that if {a, b, c, d} only share one parent, the rank of M is at most two (sum
of two rank one matrices).

Conversely, if |S| > 1, M is the sum of at least 4 rank 1 matrices, and its elements are polynomial
expressions in the parameters of the model. The determinant itself is then a polynomial function of
the parameters of the model P (nu, pX , fX,u;∀u ∈ {a, b, c, d}, X ∈ S). Hence, if P 6≡ 0, the set
of its roots has measure 0. Table 1 gives two examples of parameter settings showing that P 6≡ 0.
For other structures, notice that these can also serve as examples by setting pU = 0 for additional
parents.

U pU fU,a fU,b fU,c fU,d
X 0.2 0.2 0.4 0.6 1
Y 0.3 1 0.2 0.4 0.6

U pU fU,a fU,b fU,c fU,d
X 0.2 0.2 0.4 0.6 0.8
Y 0.3 1 0.2 0.4 1

Table 1: Two settings where the determinant of the moments matrix is non zero Left: Det(θ1) =
5.33× 10−7. Right: Det(θ2) = 4.95× 10−7
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Figure 6: Two networks with the same moments matrix. pX = 0.2, pX = 0.3, pZ = 0.37.
fX = (0.1, 0.2, 0.3), fY = (0.6, 0.4, 0.5), fZ = (0.28, 0.23, 0.33). The noise and full moments
matrix are given in Section E.

While these results show that rank testability holds with probability 1, they do not give much infor-
mation on the more practical notion of ε-rank testability. Figure 5 however provides an approxima-
tion of the probability density function of the third eigenvalue of the moments matrix of a noisy-or
network whose parameters are drawn from a uniform distribution.

E Non identifiability of the structure.

Finding the latent structure of a network is an especially interesting problem. Not all network
structures are identifiable. Indeed, by applying the tensor decomposition method to a triplet that
shares two parents, we can often find one parent that would explain the moments just as well. Figure
6 gives an example of such a network. The parameters are the following:

original values
p = [0.20000000000000001, 0.29999999999999999]
f = [[0.10000000000000001, 0.20000000000000001, 0.29999999999999999],
[0.59999999999999998, 0.40000000000000002, 0.5]]

n = [0.94999999999999996, 0.94999999999999996, 0.94999999999999996]

new
p = 0.369002801906
f = [0.27471379503828641, 0.22833778992716067, 0.3253928941874199]
n = [0.93603297899373428, 0.91486319364631141, 0.92461657113192608]

original_D [[[ 0.50557963 0.05459129]
[ 0.06907822 0.05627086]]

[[ 0.05137117 0.04281791]
[ 0.06842098 0.15186994]]]

new_D [[[ 0.50557963 0.05459129]
[ 0.06907822 0.05627086]]

[[ 0.05137117 0.04281791]
[ 0.06842098 0.15186994]]]

difference = 3.46944695195e-17

F Sample complexity analysis

In this section, we give the full proofs of our sample complexity and correctness results. For sim-
plicity we assume fmin ≤ 1− fmax. We split the theorem statement of Theorem 1 from Section 3
into two parts for ease of presentation.

5



Theorem 1a. If a network with m observed variables is strongly quartet-learnable and ζ-rank-
testable, then it can be learned with probability (1− δ) with polynomial number of samples NS:

NS = 3 max(
4× 232

ζ8
,

3× 10402

n8
minp

2
min(1− fmax)8

) ln(
2m

δ
)

Theorem 1b. After N samples, the additive error on any of the parameters ε(N) is bounded with
probability 1− δ by:

ε(N) ≤
5000× 1050× 11648×

√
ln
(

2m
δ

)
f18
min(1− fmax)6n28

minp
13
min

1√
N
.

These results are proved in two steps. The structure learning algorithm is guaranteed to be correct if
the estimation errors on the moments is below some thresholds. The first step of the proof consists
of Lemmas 4 and 5 which give an expression of these thresholds as a function of the parameters of
the model for the quartet and extending tests respectively:

Lemma 4. If the model is (ζ)-rank-testable and the estimation error on the fourth order moments
of (a, b, c, d) is bounded by ε < ζ4/216, then the magnitude of the third eigenvalue of every 4 × 4

unfolding of the joint distribution is smaller than ζ
2 if and only if (a, b, c, d) is singly coupled.

Lemma 5. If the maximum estimation error ε on all of the moments up to third order is such that
1040ε < n4

minpmin(1− fmax)4, (a, b, x) share a parent if and only if:

P (ā, b̄)

P (ā)P (b̄)
− P (ā, b̄|x̄)

P (ā|x̄)P (b̄|x̄)
≥ pmin(1− fmax)3(1− f2

max)

40
.

The second step characterizes how sensitive the parameter learning is to this same estimation error.
The parameter learning algorithm first uses a tensor decomposition to find the prior of a new latent
variable and the failure probabilities of the members of a singly-coupled quartet:

Lemma 6. If the error on the moments is bounded by ε, then the error on the parameters we obtain
from the tensor decomposition of third-order moments is bounded by 5000×1050ε

f18
minp

12
minn

24
min(1−fmax)3

.

The parameter learning algorithm then finds the failure probability for new children of a known latent
variable using both the empirical moments and some previously estimated parameters. Hence, we
need to consider how sensitive it is to the error on both these sets of values:

Lemma 7. If the moments and parameters are known to within an error of ε, the error on the failure
probability we obtain from the extending step is bounded by 11648ε

(1−fmax)3n4
minpmin

.

Since the parameters used in the extending step are all given directly by the tensor decomposition,
the final error on the parameters given the estimation error is then simply obtained by multiplying
the factors of Lemmas 6 and 7.

Section F.1 presents some useful preliminary results. The correctness of the structure learning algo-
rithm is proven in F.2 and the bound on the parameter estimation error is proven in section F.3.

F.1 Preliminary Results

Throughout the proofs, we will need to be able to bound the error on a fraction and on the roots of a
polynomial given the uncertainty on their terms. Lemmas 8 and 9 respectively give such bounds.

Lemma 8. Let ã ∈ [a − η, a + η] and b̃ ∈ [b − ε, b + ε]. If β < b − ε and a + η < A, then
ã
b̃
∈ [ab − ( Aβ2 ε+ 1

β η), ab + ( Aβ2 ε+ 1
β η]

Lemma 9. Let P (X) = aX2 + bX + c and ∆ = b2 − 4ac. Let (x1, x2) be the roots of P , and
suppose (ã, b̃, c̃) are estimates of (a, b, c) with an error bounded by ε. Suppose ∃d, 0 < d < ∆ and
∃k > 0,−k < (x̃1, x̃2) < k. Then the error on (x1, x2) is bounded by |(x1, x2) − (x̃1, x̃2)| ≤
2(1+k+k2)√

d
ε.

6



Proof of Lemma 8. We have,
a

b+ ε
− η

b− ε
≤ ã

b̃
≤ a

b− ε
+

η

b− ε
a

b
− aε

b(b+ ε)
− η

b− ε
≤ ã

b̃
≤ a

b
+

aε

b(b− ε)
+

η

b− ε
a

b
− (

aε

b(b− ε)
+

η

b− ε
) ≤ ã

b̃
≤ a

b
+ (

aε

b(b− ε)
+

η

b− ε
)

a

b
− (

Aε

β2
+
η

β
) ≤ ã

b̃
≤ a

b
+ (

Aε

βs
+
η

β
)

Proof of Lemma 9. Let K = 1 + k + k2, then P (x̃1) −Kε < P̃ (x̃1) = 0 < P (x̃1) + Kε, hence
the estimated x̃1 is between the roots of P −Kε and P +Kε. Moreover, since

√
1 + x ∈ (1, 1+x):

b+
√
b2 − 4a(c+Kε)

2a
=
b+
√

∆
√

1− 4aK
∆ ε

2a
≥ b+

√
∆

2a
− 2K√

∆
ε

b+
√
b2 − 4a(c−Kε)

2a
=
b+
√

∆
√

1 + 4aK
∆ ε

2a
≤ b+

√
∆

2a
+

2K√
∆
ε

Hence x1 − 2K√
∆
ε ≤ x̃1 ≤ x1 + 2K√

∆
ε. Similarly, x2 − 2K√

∆
ε ≤ x̃2 ≤ x2 + 2K√

∆
ε.

F.2 Correctness of the Structure Tests

At every stage of the algorithm, the moments are known to some error ε.We first determine how small
ε needs to be for the rank test to be guaranteed to successfully identify singly-coupled quartets:
Lemma 4. If the model is (ζ)-rank-testable and the estimation error on the fourth order moments
of (a, b, c, d) is bounded by ε < ζ4/216, then the magnitude of the third eigenvalue of every 4 × 4

unfolding of joint distribution is smaller than ζ
2 if and only if (a, b, c, d) is singly coupled.

Proof of Lemma 4. For each unfoldingM , let M̃ be our estimate ofM , and suppose ||M−M̃ ||∞ ≤
ε, then the spectral norm of the difference ||M − M̃ ||sp ≤ 4ε. We can then use a result from Elsner
(1985) showing that, if λ is the third eigenvalue of M and λ̃ is the third eigenvalue of M̃ , then:

|λ− λ̃| ≤ (||M ||sp + ||M̃ ||sp)
3
4 ||M − M̃ ||

1
4
sp ≤ 8ε

1
4 .

Hence, if λ ≥ ζ, then λ̃ ≥ ζ − 8ε
1
4 .

We then need to find how small the error on the empirical moments needs to be for the extending
step to be correct:
Lemma 5. If the maximum estimation error ε on all of the moments up to third order is such that
1040ε < n4

minpmin(1− fmax)4, (a, b, x) share a parent if and only if:

P (ā, b̄)

P (ā)P (b̄)
− P (ā, b̄|x̄)

P (ā|x̄)P (b̄|x̄)
≥ pmin(1− fmax)3(1− f2

max)

40

Proof of Lemma 5. Indeed, we have:

P (ā, b̄)

P (ā)P (b̄)
− P (ā, b̄|x̄)

P (ā|x̄)P (b̄|x̄)
= gfA,a,fA,b

(pA)− gfA,a,fA,b
(pA|x̄)

Moreover:

pA − pA|x̄ = pA(1− fA.x
1− pA + pAfA.x

)

≥ 1

2
pmin(1− fmax)

7



And, for p ≤ 1
2 :

∂gfA,a,fA,b
(p)

∂p
=

(1− fA,a)(1− fA,b)((1− fA,afA,b)p2 − 2p+ 1)

(1− p(1− fA,a))2(1− p(1− fA,b))2

≥ (1− fmax)2(1− f2
max)

8

Hence:
P (ā, b̄)

P (ā)P (b̄)
− P (ā, b̄|x̄)

P (ā|x̄)P (b̄|x̄)
>
pmin(1− fmax)3(1− f2

max)

8
.

Suppose the estimation error on all of the probabilities is bounded by ε < n2
min

4 , then the error
on P (ā)P (b̄) is bounded by 3ε. We have P (ā)P (b̄) > n2

min and P (ā, b̄) ≤ 1, thus according to
lemma 8 using A = 1, β = n2

min/4, the estimation error on P (ā,b̄)

P (ā)P (b̄)
− P (ā,b̄|x̄)

P (ā|x̄)P (b̄|x̄)
is bounded by

2× ( 48
n4
min

ε+ 4
n2
min

) ≤ 104
n4
min

ε = η.

Hence, if ε ≤ n4
minpmin(1−fmax)3(1−f2

max)
104×10 , η ≤ pmin(1−fmax)3(1−f2

max)
10 , which proves the lemma.

We can now prove the first part of our theorem.

Proof of Theorem 1a. According to Lemmas 4 and 5, we need to bound the error on fourth-order
moments by η4 and on the third-order moments by η3 respectively. Using a Chernoff bound we get
that after N samples:

• if N ≥ 3
η24

ln( 2m4

δ ), then the error on a fourth-order moment is smaller than η4 with prob-

ability (1− δ
m4 ), hence the maximum error on the fourth-order moments is bounded by η4

with probability at least (1− δ).

• Similarly, if N ≥ 3
η23

ln( 2m3

δ ), then the maximum error on the third-order moments is
bounded by η3 with probability at least (1− δ).

Taking the maximum of these numbers of samples, we find that with probability at least (1− δ), all
our structure tests are correct.

F.3 Parameter Estimation Error

Even when the algorithm finds the right structure, the error in the parameters it returns depends on
the difference between the true moments and the empirical moments. The magnitude of the error in
the parameters learned by the tensor decomposition method is bounded by a multiplicative factor of
this difference:
Lemma 6. If the error on the moments is bounded by ε, then the error on the parameters we obtain
from the tensor decomposition of third-order moments is bounded by 5000×1050

f18
minp

12
minn

24
min(1−fmax)3

ε.

Proof of Lemma 6. We seek a bound on the errors of fX,u and pX for a triplet (u, v, w) singly
coupled by latent variable X as a function of ε. Assume that matrices X1 = P (v, w, u = 0) and
X2 = P (v, w, u = 1) are known to some element-wise error ε. Let Y2 = X2X

−1
1 and let (λ1, λ2)

be the eigenvalues of Y2.
From Eq. 2 we have that:

fX,u =
1 + λ1

1 + λ2
.

We first bound the error on X−1
1 . If X1 =

(
a b
c d

)
, then we have X−1

1 = 1
ad−bc

(
d −b
−c a

)
.

Moreover, (ad − bc) = pX(1 − pX)fX,u(1 − fX,v)(1 − fX,w)n2
1n2n3 ≥ f3

minp
2
minn

4
min, so if

ε <
f3
minp

2
minn

4
min

2 , we get using lemma 8 with A = 1, β =
f3
minp

2
minn

4
min

2 that the element-wise
error on X−1

1 is at most 25ε
f6
minp

4
minn

8
min

. Hence the error on the terms of Y2 is bounded by
6×25ε

f6
minp

4
minn

8
min

.
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(λ1, λ2) are the roots of the polynomial P (X) = X2−Tr(Y2)X+Det(Y2) and ∆ = |λ1−λ2|2 >
(1− fmax)2. Moreover, Det(Y2) = λ1λ2 > 0, so:

− 2

f3
minp

2
minn

4
min

< − 2

ad− bc
< −|Tr(Y2)| < (λ1, λ2) < |Tr(Y2)| < 2

ad− bc
<

2

f3
minp

2
minn

4
min

Hence, according to Lemma 9, the error on the eigenvalues of Y2 is bounded by
1050ε

f12
minp

8
minn

16
min(1−fmax)

.

Furthermore, we have n1 = λ1

1+λ1
, hence 1+λ1 = 1

1−n > 1, hence if η = 1050ε
f12
minp

8
minn

16
min(1−fmax)

<
1
2 , the error on fX,u is bounded by:

η

1 + λ1 − η
+

(1 + λ2)η

(1 + λ1)(1 + λ1 − η)
≤ 2(1 + fmax)η =

2100(1 + fmax)ε

f12
minp

8
minn

16
min(1− fmax)

Let us now bound the error on the parameter pX . According to Equation 2, we have:

pX =
1 + λ2

λ2 − λ1
× 1T (X2 − λ1X1)1 .

We showed that the error on λ1 and λ2 is bounded by η. Moreover, for ε ≤ f12
minp

8
minn

16
min(1−fmax)

8400 ,
we can apply lemma 8 with A = 3

f3
minp

2
minn

4
min

and β = 1−fmax

4 to bound the error on
1+λ2

λ2−λ1
by e1 = 100

f3
minp

2
minn

4
min(1−fmax)2

. Since the error on the individual terms of X1 and X2 is

bounded by ε << η, we can also coarsely bound the error on 1T (X2−λ1X1)1 by e2 = 16×2×η.

Given our upper bound on (λ1, λ2) and lower bound on λ2 − λ1, we also have
1+λ2

λ2−λ1
≤ m1 = 12

f3
minp

2
minn

4
min(1−fmax)

, and 1T (X2 − λ1X1)1 ≤ m2 = 48
f3
minp

2
minn

4
min

.
Hence, the error on pX is bounded by:

e1 ×m2 + e2 ×m1 + e1 × e2 ≤
5000× 1050ε

f18
minp

12
minn

24
min(1− fmax)3

.

We now bound the error introduced by the extending step, which takes as input both empirical
moments and estimated parameters:
Lemma 7. If the moments and parameters are known to within an error of ε, the error on the failure
probability we obtain from the extending step is bounded by 11648

(1−fmax)3n4
minpmin

ε.

Proof of Lemma 7. As stated above in the proof of Lemma 5, if the moments are known with error
ε <

n2
min

4 , R is known to within 52ε
n4
min

. The error on the coefficients of Q(X) is then bounded by

7 × 52ε
n4
min

. Moreover, we know that one root is smaller than 1
2 and that the other is bigger than

1

1+
√
fA,afA,b

, hence
√

∆
R(fA,a−1)(fA,b−1) > 1

1+
√
fA,afA,b

− 1
2 > (1 − fmax), which implies that

∆ > (1− fmax)6R2
min > (1− fmax)6. We can then use lemma 9 with k = 1 to show that the error

on the roots of Q(X) is bounded by 7×4×52ε
(1−fmax)3n4

min
. Additionally assuming ε < pmin/2 and using

lemma 8 with A = 1/2, β = 1/2, the error on fA,x is then bounded by 1−pA
pA

2×4×1456ε
(1−fmax)3n4

min
<

11648ε
(1−fmax)3n4

minpmin
.

We can now prove the second part of our theorem.

Proof of Theorem 1b. Using a Chernoff bound we have that the error in the empirical moments

obtained from N samples is less than
√

ln( 2m
δ ) 1√

N
with probability 1 − δ. We combine the mul-

tiplicative factors on the error introduced by the tensor decomposition (Lemma 6) and during the
extension step (Lemma 7) to achieve the stated result.
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F.4 Subtracting off

We proved that we could learn a class of strongly quartet-learnable noisy-or networks in polyno-
mial time and sample complexity. We now give an extension of our algorithm to quartet-learnable
networks.

The main idea behind the extension is the notion of subtracting off introduced in Section 1. Once
we have learned all latent variables that have a singly coupled quartet of children, we can “remove”
them from the network and obtain the moments that would have been generated by the rest of the
network without them.

If some of the removed latent variables were coupling for otherwise singly coupled quartet, we can
then discover new latent variables, and repeat the operation. If a network is quartet-learnable, we
can find all of the latent variables in a finite number of subtracting off steps, which we call the depth
of the network.

Since the tests for finding and extending latent variables are only guaranteed to work when the error
in the moments is small, we need to check that this step does not introduce too big a difference
between the empirical and the true subtracted off moments.

The terms of the joint distribution of 4 observed variables are obtained from the negative moments
by inclusion/exclusion formulas, which have up to 15 terms, hence the error is at most 15 times the
error on the negative moment, given by Lemma 3 of Section 3 which we restate and prove here:
Lemma 3. If the additive error on the negative moments of an observed quartet C and on the
parameters of the l latent variables, (X1, . . . , Xl), which we want to remove from C is bounded by
ε, then the error on the subtracted off moments is bounded by 22l × 6(l + 2)ε.

Proof of Lemma 3. We have pmin < pX < 1
2 and fmin < fc ∀c ∈ C, so for ε < pminf

4
min

6 ,
(1 − p̃X + p̃X

∏
c∈C f̃X,c) > (1 − pX + pX

∏
c∈C fX,u) − 6ε > 1

2 . Moreover, if the error on
(1−pX +pX

∏
c∈C fX,c) is bounded by 6ε, then the error on

∏l
j=1 (1− pXj

+ pXj

∏
c∈C fXj ,c) is

bounded by 6(l+ 1)ε for ε small enough (ε < 1
3l2(1+ε)l

), and
∏l
j=1 (1− p̃Xj + p̃Xj

∏
c∈C f̃Xj ,c) >

( 1
2 )l. Since the negative moment NC < 1, using Lemma 8, we then get that the error on the adjusted

moment, Ñ ′C , is bounded by 22l × 6(l + 2)ε.

Using this lemma and the error propagation bound of Theorem 1b, we can prove a polynomial
sample complexity for structure learning of quartet learnable noisy-or networks.

To that end, we introduce the width W of the network, which is the maximum number of parents
that need to be subtracted off to be able to learn the parameters for a new singly-coupled quartet.
This leads to the following result, initially presented in Section 3:
Theorem 2. If a network withm observed variables is quartet-learnable at depth d, ζ-rank-testable,
and has widthW , then its structure can be learned with probability (1−δ) withNS samples, where:

NS = O
(( W4W

f18
min(1− fmax)6n28

minp
13
min

)2d

×max
( 1

ζ8
,

1

n8
minp

2
min(1− fmax)8

)
ln
(2m

δ

))
Proof of Theorem 2. The tests have the same requirements as in the proof for Theorem 1a, but
each round of parameter learning introduces the multiplicative factor to the error given in Theorem
1b. Subtracting off after that introduces the multiplicative factor given in Lemma 3. Combining the
three results proves the theorem.
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