
5 Supplementary material

5.1 Seriation lemmas

Here, we prove some of the technical lemmas from Section 2.

Lemma 5.1 Suppose A 2 Sn is a {0, 1} R-matrix, and ⇧A is a P-matrix, then ⇧A⇧

T is an R-
matrix.

Proof. Without loss of generality, we can assume that the graph of A is irreducible (otherwise,
we simply repeat the proof on each block). If A 2 Sn is an irreducible {0, 1} R-matrix, then
diag(A) = 1. Let ⇧ be a permutation such that ⇧A is a P-matrix, so C = ⇧A⇧

T is a symmetric
P-matrix. Let 1  j < i  n, and suppose Cij = 1, then C

(i�1)j = 1 because Cjj = 1 and C is
a P-matrix. Similarly, because C is symmetric, if Cij = 1 then Cji = 1 and C

(j+1)i = 1 because
Cii = 1 and C is a P-matrix, so Ci(j+1)

= 1. This means that C is an R-matrix.

Lemma 5.2 Suppose A 2 Sn is a {0, 1} pre-R matrix, then ⇧A⇧

T is an R-matrix if and only if
⇧A2

⇧

T is an R-matrix.

Proof. If A 2 Sn is a {0, 1} pre-R matrix, then it must be pre-P (cf. remarks above). [15, Th. 6.3]
shows that ⇧A is a P-matrix iff ⇧A2

⇧

T is an R-matrix. Combining this with Lemma 5.1 yields the
desired result.

Note that a {0, 1} R-matrix is also a (symmetric) P-matrix. Note also that Lemma 5.1 shows that if
A is pre-R, then ⇧A⇧

T is an R-matrix, hence a P-matrix, and so is ⇧A (it is obtained by permuting
the columns of a P-matrix), so A is also pre-P.

Lemma 5.3 Let A 2 Sn, y 2 Rn and suppose we switch the values of yj and yj+1

calling the new
vector z, we have
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Proof. Because A is symmetric, we have

(f(y)� f(z))/2 =
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which yields the desired result.

Lemma 5.4 Suppose A = CUT (u, v), and write w = y⇡ the optimal solution to (2). If we call
I = [u, v] and Ic its complement, then

wj /2 [min(wI),max(wI)], for all j 2 Ic,

in other words, the coefficients in wI and wIc belong to disjoint intervals.
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Proof. Without loss of generality, we can assume that the coefficients of wI are sorted in increasing
order. By contradiction, suppose that there is a wj such that j 2 Ic and wj /2 [wu, wv]. Suppose
also that w is larger than the mean of coefficients inside I, i.e. wj � Pv

i=u+1

wi/(v � u). This,
combined with our assumption that wj  wv and Lemma 5.3 means that switching the values of wj

and wv will decrease the objective by

4

v�1X

i=u

✓
wj + wv

2

� yi

◆
(wv � wj)

which is positive by our assumptions on wj and the mean which contradicts optimality. A symmetric
result holds if wj is smaller than the mean.

Lemma 5.5 Suppose A 2 Rn⇥m is a Q-matrix, then A �AT is a conic combination of CUT matri-
ces.

Proof. Suppose, a 2 Rn is a unimodal vector, let us show that the matrix M = a � aT with
coefficients Mij = min{ai, aj} is a conic combination of CUT matrices. Let I = argmaxi ai, then
I is an index interval [I

min

, I
max

] because a is unimodal. Call ā = maxi ai and b = maxi2Ic ai
(with b = 0 when Ic = ;), the deflated matrix

M�
= M � (ā� b) CUT (I

min

, I
max

)

can be written M�
= a� � (a�)T with

a� = a� (ā� b)v

where vi = 1 iff i 2 I . By construction | argmaxM�| > |I|, i.e. the size of argmaxM increases
by at least one, so this deflation procedure ends after at most n iterations. This shows that a �
aT is a conic combination of CUT matrices when a is unimodal. Now, we have (A � AT

)ij =Pn
k=1

wk min{Aik, Ajk}, so A�AT is a sum of n matrices of the form min{Aik, Ajk} where each
column is unimodal, hence the desired result.

5.2 Convex relaxation results

We now prove some of the convex relaxation results obtained in Section 3.

Proposition 5.6 The optimization problem

min

{⇧2Dn, eT1 ⇧v+1eTn⇧v}

1

p
Tr(Y T

⇧

TLA⇧Y )� µ

p
kP⇧k2F (10)

is equivalent to problem (5), their objectives differ by a constant. Furthermore, when µ 
�
2

(LA)�1

(Y Y T
), this problem is convex.

Proof. Remark that
kP⇧k2F = Tr(⇧TPTP⇧) = Tr(⇧TP⇧)

= Tr(⇧T
(I � 1

n
11T

)⇧) = Tr(⇧T
⇧� 1

n
11T

))

= Tr(⇧T
⇧)� 1

where we used the fact that P is the (symmetric) projector matrix onto the orthogonal of 1 and ⇧ is
doubly stochastic (so ⇧1 = ⇧

T1 = 1). We deduce that problem (6) has the same objective function
as (5) up to a constant. Moreover, it is convex when µ  �

2

(LA) since the Hessian of the objective
is given by

⌃ =

1

p
Y Y T ⌦ LA � µ

p
· I⌦ P

and the eigenvalues of Y Y T ⌦ LA, which are equal to �i(LA)�j(Y Y T
) for all i, j in {1, . . . , n}

are all superior or equal to the eigenvalues of µ · I⌦ P which are all smaller than µ.

We now show that that minimizing the average of the relaxed problems costs provides in a sense a
tighter relaxation to the combinatorial problem 2 than solving individually the relaxed problems.
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Proposition 5.7 Let ⇧

0

be the optimal solution of 2, ⇧

?
i the optimal solution of 3

with y = yi and ⇧

?
m be the optimal solution of 4. ⇧

0

is an optimal solution to
min{⇧2Pn, eT1 ⇧v+1eTn⇧v}
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Proof. ⇧

0

is optimal for all problems 2 with y = yi so it is optimal for
min{⇧2Pn, eT1 ⇧v+1eTn⇧v}

1

p

Pp
i=1

yTi ⇧
TLA⇧yi. The first inequality comes from the optimality

of each ⇧

?
i for problem 3 with y = yi. The second inequality comes from the optimality of ⇧?

m for
the relaxed problem 4.

With independent constraints (D full rank), at each iteration, the full variable updates in the dual
Euclidean projection problem over doubly stochastic matrices are given by

• Z = max{0, x1T
+ 1yT +DzgT �⇧

0

}
• x =

1

n (⇧0

1� (yT1+ 1)1�DzgT1+ Z1)

• y =

1

n (⇧
T
0

1� (xT1+ 1)1+ ZT1)

• z =

1

kgk2
2
max{0, (DTD)

�1

(DT
(Z +⇧

0

)g + � �DTxgT1)}.

The convergence of the algorithm can be monitored through the duality gap formed by the difference
of the objective of (8) and (9).

5.3 Numerical experiments

Kendall Sol. Spectral QP QP Reg QP + 0.1%
Kendall ⌧ 1.00±0.00 0.75±0.00 0.70±0.22 0.73±0.22 0.76±0.16

Spearman ⇢ 1.00±0.00 0.90±0.00 0.87±0.19 0.88±0.19 0.91±0.16
Comb. Obj. 38520±0 38903±0 42293±14928 41810±13960 43457±23004
# R-constr. 1556±0 1802±0 2029±491 2021±484 2050±747

QP + 0.2% QP + 0.5% QP + 1.1% QP + 2.4% QP + 5.1%
Kendall ⌧ 0.79±0.07 0.80±0.04 0.81±0.03 0.83±0.03 0.86±0.02

Spearman ⇢ 0.93±0.05 0.94±0.03 0.94±0.02 0.96±0.02 0.97±0.01
Comb. Obj. 43227±12475 44970±8456 43748±7989 43064±8105 42575±5779
# R-constr. 2026±485 2116±377 2045±356 2026±358 1978±288

QP + 10.7% QP + 22.3% QP + 47.5% QP + 100%
Kendall ⌧ 0.89±0.02 0.93±0.01 0.97±0.01 0.99±0.00

Spearman ⇢ 0.98±0.01 0.99±0.00 1.00±0.00 1.00±0.00
Comb. Obj. 40452±4107 38126±1916 37602±775 37203±125
# R-constr. 1855±191 1646±110 1545±43 1512±9

Table 3: Performance metrics (median and stdev over 100 runs of the QP relaxation, for Kendall’s ⌧ ,
Spearman’s ⇢, the objective value in (1), and the number of R-matrix monotonicity constraint vi-
olations), comparing Kendall’s original solution with that of the Fiedler vector, the seriation QP
in (6) and the semi-supervised seriation QP in (7) with an increasing number of pairwise ordering
constraints specified, out of the 3422 possible pairs in this problem. Note that the semi-supervised
solution actually improves on Kendall’s original solution.
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Kendall Sol. Spectral QP QP Reg QP + 0.1%
Kendall ⌧ 1.00 0.76 0.86 0.89 0.86
Spearman ⇢ 1.00 0.90 0.96 0.97 0.97
Comb Obj. 38520.00 38903.00 30862.00 31369.00 32464.00
# R-constr. 1556.00 1802.00 1335.00 1371.00 1465.00

QP + 0.2% QP + 0.5% QP + 1.1% QP + 2.4% QP + 5.1%
Kendall ⌧ 0.86 0.87 0.90 0.89 0.90
Spearman ⇢ 0.96 0.97 0.98 0.98 0.98
Comb Obj. 31082.00 32345.00 32956.00 32209.00 33669.00
# R-constr. 1361.00 1480.00 1514.00 1460.00 1559.00

QP + 10.7% QP + 22.3% QP + 47.5% QP + 100%
Kendall ⌧ 0.92 0.96 0.99 1.00
Spearman ⇢ 0.99 1.00 1.00 1.00
Comb Obj. 34303.00 33731.00 35270.00 36758.00
# R-constr. 1561.00 1456.00 1461.00 1492.00

Table 4: Performance metrics (best of 100 runs of the QP relaxation, for Kendall’s ⌧ , Spearman’s ⇢,
the objective value in (1), and the number of R-matrix monotonicity constraint violations), com-
paring Kendall’s original solution with that of the Fiedler vector, the seriation QP in (6) and the
semi-supervised seriation QP in (7) with an increasing number of pairwise ordering constraints
specified, out of the 3422 possible pairs in this problem. Note that the semi-supervised solution
actually improves on Kendall’s original solution.

No noise Noise within spectral gap Large noise
True 1.00±0.00 1.00±0.00 1.00±0.00
Spectral 1.00±0.00 0.96±0.10 0.46±0.29
QP 0.57±0.36 0.52±0.35 0.42±0.32
QP Reg 0.66±0.36 0.56±0.35 0.39±0.32
QP Reg + 0.1% 0.77±0.33 0.38±0.32 0.77±0.33
QP Reg + 0.7% 0.80±0.25 0.78±0.29 0.80±0.27
QP Reg + 1.4% 0.80±0.23 0.78±0.25 0.79±0.20
QP Reg + 2.5% 0.83±0.13 0.83±0.12 0.81±0.10
QP Reg + 4.6% 0.87±0.07 0.86±0.06 0.85±0.09
QP Reg + 8.7% 0.91±0.04 0.90±0.04 0.90±0.04
QP Reg + 16.1% 0.95±0.02 0.95±0.02 0.94±0.02
QP Reg + 29.7% 0.98±0.01 0.98±0.01 0.98±0.01
QP Reg + 54.3% 1.00±0.00 1.00±0.00 1.00±0.00
QP Reg + 100.0% 1.00±0.00 1.00±0.00 1.00±0.00

Table 5: Median ± stdev. on Spearman’s ⇢ between the true Markov chain ordering, the Fiedler
vector, the seriation QP in (6) and the semi-supervised seriation QP in (7) with varying numbers of
pairwise orders specified. We observe the (randomly ordered) model covariance matrix (no noise),
the sample covariance matrix with enough samples so the error is smaller than half of the spectral
gap, then much fewer samples (Large noise).
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No noise Noise within spectral gap Large noise
True 1.00 1.00 1.00
Spectral 1.00 1.00 1.00
QP 1.00 1.00 1.00
QP Reg 1.00 1.00 1.00
QP Reg add 0.1% cons 1.00 0.99 1.00
QP Reg add 0.7% cons 0.97 0.98 0.96
QP Reg add 1.4% cons 0.94 0.95 0.97
QP Reg add 2.5% cons 0.98 0.95 0.95
QP Reg add 4.6% cons 0.95 0.97 0.95
QP Reg add 8.7% cons 0.98 0.99 0.96
QP Reg add 16.1% cons 0.99 0.98 0.99
QP Reg add 29.7% cons 1.00 1.00 1.00
QP Reg add 54.3% cons 1.00 1.00 1.00
QP Reg add 100.0% cons 1.00 1.00 1.00

Table 6: Best Spearman’s ⇢ between the true Markov chain ordering, the Fiedler vector, the seriation
QP in (6) and the semi-supervised seriation QP in (7) with varying numbers of pairwise orders speci-
fied. We observe the (randomly ordered) model covariance matrix (no noise), the sample covariance
matrix with enough samples so the error is smaller than half of the spectral gap, then much fewer
samples (Large noise).

No noise Noise within spectral gap Large noise
True 1.00±0.00 1.00±0.00 1.00±0.00
Spectral 1.00±0.00 0.86±0.14 0.41±0.25
QP 0.49±0.34 0.55±0.31 0.45±0.27
QP Reg 0.50±0.34 0.58±0.31 0.45±0.27
QP Reg + 0.1% 0.65±0.29 0.40±0.26 0.60±0.27
QP Reg + 0.7% 0.66±0.21 0.65±0.23 0.62±0.23
QP Reg + 1.4% 0.66±0.19 0.63±0.21 0.65±0.17
QP Reg + 2.5% 0.67±0.12 0.66±0.11 0.65±0.10
QP Reg + 4.6% 0.71±0.08 0.70±0.07 0.68±0.08
QP Reg + 8.7% 0.75±0.05 0.75±0.06 0.75±0.05
QP Reg + 16.1% 0.83±0.05 0.83±0.05 0.82±0.05
QP Reg + 29.7% 0.92±0.03 0.91±0.03 0.91±0.03
QP Reg + 54.3% 0.98±0.01 0.97±0.01 0.97±0.02
QP Reg + 100.0% 1.00±0.00 1.00±0.00 0.99±0.00

Table 7: Median ± stdev. on Kendall’s ⌧ between the true Markov chain ordering, the Fiedler
vector, the seriation QP in (6) and the semi-supervised seriation QP in (7) with varying numbers of
pairwise orders specified. We observe the (randomly ordered) model covariance matrix (no noise),
the sample covariance matrix with enough samples so the error is smaller than half of the spectral
gap, then much fewer samples (Large noise).
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No noise Noise within spectral gap Large noise
True 1.00 1.00 1.00
Spectral 1.00 0.99 0.98
QP 1.00 0.97 0.98
QP Reg 1.00 0.97 0.97
QP Reg add 0.1% cons 0.98 0.95 0.97
QP Reg add 0.7% cons 0.89 0.94 0.88
QP Reg add 1.4% cons 0.85 0.85 0.91
QP Reg add 2.5% cons 0.91 0.86 0.83
QP Reg add 4.6% cons 0.83 0.89 0.85
QP Reg add 8.7% cons 0.91 0.92 0.86
QP Reg add 16.1% cons 0.95 0.93 0.94
QP Reg add 29.7% cons 0.99 0.98 0.98
QP Reg add 54.3% cons 1.00 1.00 1.00
QP Reg add 100.0% cons 1.00 1.00 1.00

Table 8: Best Kendall’s ⌧ between the true Markov chain ordering, the Fiedler vector, the seriation
QP in (6) and the semi-supervised seriation QP in (7) with varying numbers of pairwise orders speci-
fied. We observe the (randomly ordered) model covariance matrix (no noise), the sample covariance
matrix with enough samples so the error is smaller than half of the spectral gap, then much fewer
samples (Large noise).

No noise Noise within spectral gap Large noise
True 0±0 142±99 823±250
Spectral 0±0 780±528 1715±560
QP 1782±917 1640±754 1746±459
QP Reg 1766±919 1566±746 1734±455
QP Reg + 0.1% 1738±690 2035±596 1942±442
QP Reg + 0.7% 1886±535 1998±529 2164±392
QP Reg + 1.4% 1982±546 2160±476 2308±393
QP Reg + 2.5% 1948±484 2048±430 2352±364
QP Reg + 4.6% 1818±381 1934±391 2246±368
QP Reg + 8.7% 1660±325 1757±318 2105±319
QP Reg + 16.1% 1157±307 1279±329 1740±360
QP Reg + 29.7% 547±225 780±264 1278±305
QP Reg + 54.3% 150±100 322±130 932±275
QP Reg + 100.0% 0±0 142±99 798±251

Table 9: Median ± stdev. on number of violated R-matrix monotonicity constraints for the true
Markov chain ordering, the Fiedler vector, the seriation QP in (6) and the semi-supervised seriation
QP in (7) with varying numbers of pairwise orders specified. We observe the (randomly ordered)
model covariance matrix (no noise), the sample covariance matrix with enough samples so the error
is smaller than half of the spectral gap, then much fewer samples (Large noise).
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No noise Noise within spectral gap Large noise
True 0 23 352
Spectral 0 89 414
QP 0 261 488
QP Reg 0 263 547
QP Reg add 0.1% cons 115 439 916
QP Reg add 0.7% cons 655 456 1060
QP Reg add 1.4% cons 822 1064 1139
QP Reg add 2.5% cons 587 1169 1555
QP Reg add 4.6% cons 1002 902 1507
QP Reg add 8.7% cons 750 710 1379
QP Reg add 16.1% cons 336 534 997
QP Reg add 29.7% cons 85 205 615
QP Reg add 54.3% cons 0 54 393
QP Reg add 100.0% cons 0 23 308

Table 10: Best number of violated R-matrix monotonicity constraints for the true Markov chain
ordering, the Fiedler vector, the seriation QP in (6) and the semi-supervised seriation QP in (7) with
varying numbers of pairwise orders specified. We observe the (randomly ordered) model covariance
matrix (no noise), the sample covariance matrix with enough samples so the error is smaller than
half of the spectral gap, then much fewer samples (Large noise).

No noise Noise within spectral gap Large noise
True 40145±0 40136±402 40588±4203
Spectral 40145±0 41417±1542 45765±5886
QP 43245±3548 43272±3081 45467±5008
QP Reg 43135±3448 43363±3073 45467±4946
QP Reg + 0.1% 45701±3700 46315±3352 46463±5582
QP Reg + 0.7% 47510±3870 47396±3800 49116±6349
QP Reg + 1.4% 48887±4029 48765±3933 49798±6040
QP Reg + 2.5% 47525±3705 48117±3805 50061±6053
QP Reg + 4.6% 47554±3070 47220±3166 49345±5687
QP Reg + 8.7% 45716±2652 46171±2559 47500±5606
QP Reg + 16.1% 43782±1985 43889±2545 45087±5140
QP Reg + 29.7% 41518±1148 41806±1376 42566±4423
QP Reg + 54.3% 40338±357 40409±500 41004±4230
QP Reg + 100.0% 40145±0 40136±402 40587±4201

Table 11: Median ± stdev. on objective value in problem (1) for the true Markov chain ordering,
the Fiedler vector, the seriation QP in (6) and the semi-supervised seriation QP in (7) with varying
numbers of pairwise orders specified. We observe the (randomly ordered) model covariance matrix
(no noise), the sample covariance matrix with enough samples so the error is smaller than half of the
spectral gap, then much fewer samples (Large noise).
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No noise Noise within spectral gap Large noise
True 40145 39032 30820
Spectral 40145 39516 33805
QP 40145 39736 32935
QP Reg 40145 39736 32918
QP Reg add 0.1% cons 40220 40764 33158
QP Reg add 0.7% cons 41562 40642 32337
QP Reg add 1.4% cons 41554 42688 33472
QP Reg add 2.5% cons 41240 42012 33942
QP Reg add 4.6% cons 42397 41892 34176
QP Reg add 8.7% cons 41863 41453 34285
QP Reg add 16.1% cons 40558 40799 32346
QP Reg add 29.7% cons 40173 39523 31998
QP Reg add 54.3% cons 40145 39032 30820
QP Reg add 100.0% cons 40145 39032 30818

Table 12: Best objective value in problem (1) for the true Markov chain ordering, the Fiedler vector,
the seriation QP in (6) and the semi-supervised seriation QP in (7) with varying numbers of pairwise
orders specified. We observe the (randomly ordered) model covariance matrix (no noise), the sample
covariance matrix with enough samples so the error is smaller than half of the spectral gap, then
much fewer samples (Large noise).

Kendall Fiedler QPReg

Figure 3: The Hodson’s Munsingen dataset: the first figure on the left has the order of the rows given
by Kendall, the middle figure is the Fiedler solution, the figure on the right is the best QP solution
from 100 experiments with different Y (based on combinatorial objective).

Ordered Fiedler QPReg

Figure 4: Markov Chain experiments: the first figure on the left has the true order of the Markov
chain, the middle figure is the Fiedler solution, the figure on the right is the best QP solution from
100 experiments with different Y (based on combinatorial objective).
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