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1 The derivation of the AMP algorithm for low-rank matrix reconstruction

1.1 Message passing algorithm and Gaussian approximation

We derive the AMP algorithm for low-rank matrix reconstruction. More concretely, we derive the
AMP algorithm that approximates p̂i,j(ui,vj |A;β). We do not strive for mathematical rigor in the
derivation.

We use the belief propagation message passing algorithm on the factor graph shown in Fig. 1
to approximate p̂i,j(ui,vj |A;β). Every r̂-dimensional vector ui and vj is represented by
a variable node. Each factor node in Fig. 1 corresponds to p(Ai,j |ui,vj)β . The fac-
tor nodes corresponding to p̂(ui)

β and p̂(vj)
β are omitted. At each iteration in the be-

lief propagation message passing algorithm, the four types of probability density functions
{µ̂t(i,j)→i(ui), µ

t
i→(i,j)(ui), ν̂

t
(i,j)→j(vj), ν

t+1
j→(i,j)(vj)}, called messages, are updated as follows:

µ̂t(i,j)→i(ui) ∝
∫

exp
(
−β(Ai,j − u>i vj)

2

2mτ

)
νtj→(i,j)(vj)dvj , (1a)
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Figure 1: Factor graph for low-rank matrix reconstruction.
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µti→(i,j)(ui) ∝ p̂u(ui)
β
∏
l 6=j

µ̂t(i,l)→i(ui), (1b)

ν̂t(i,j)→j(vj) ∝
∫

exp
(
−β(Ai,j − u>i vj)

2

2mτ

)
µti→(i,j)(ui)dui, (1c)

νt+1
j→(i,j)(vj) ∝ p̂v(vj)

β
∏
k 6=i

ν̂t(k,j)→j(vj). (1d)

Since these messages are defined as functions of real numbers, it is hard to implement the algorithm
in the above form. A technique used in [1, 2] is to give an approximate representation of these
messages in terms of some real-valued parameters. This approximation has been proved exact in
the large system limit m → ∞ under certain conditions. We describe this approximation in this
subsection, and a further reduction in the number of parameters in the next subsection, yielding
Algorithm 2 of the main paper.

We assume that N goes to infinity in the same order as m, when we consider the limit m→∞. The
order-in-probability notation Op(·) is used to represent approximation errors for large m.

Definition 1. Let {Xm} be sequences of random variables taking values in Rd and {am} be a
sequence of positive reals. Then Xm = Op(am) if and only if for any ε > 0, there exists a constant
C(ε) and an integer M(ε) such that if m ≥M(ε), then

Pr

[
‖Xm‖
am

> C(ε)

]
≤ ε. (2)

We write Xi,j,m = Op(am) for random variables Xi,j,m, i = 1, . . . ,m, j = 1, . . . , Nm, if
Xim,jm,m = Op(am) for an arbitrary sequence {(im, jm)} that satisfies 1 ≤ im ≤ m and
1 ≤ jm ≤ Nm. We assume that µti→(i,j) and νtj→(i,j) have finite moments of sufficiently high
orders. We also assume that these moments are Op(1) and follow distributions with finite moments
of sufficiently high orders. (Here, randomness is with respect to A). We further assume that ev-
ery row of U0 and V0 follows a distribution with finite moments of sufficiently high orders. The
equations Ai,j = Wi,j + u>0,iv0,j = Op(m

1/2) and A2
i,j = Op(m) are used in the following.

By substituting (1a) into the product on the right-hand side of (1b), one obtains∏
l 6=j

µ̂t(i,l)→i(ui) ∝
∫

exp
(
−
β
∑
l 6=j(Ai,l − u>i vl)

2

2mτ

)∏
l 6=j

νtl→(i,l)(vl)dvl. (3)

The right-hand side is the expectation of exp
(
−(2mτ)−1β

∑
l 6=j(Ai,l − u>i vl)

2
)

with respect to
the independent random variables vl ∼ νtl→(i,l)(vl), l = 1, . . . , N . Since z :=

∑
l 6=j

β
2mτ (Ai,l −

u>i vl)
2 is a sum of (N − 1) independent random variables β

2mτ (Ai,l −u>i vl)
2, l 6= j, for given A,

it can be approximated by a Gaussian random variable for large N due to the central limit theorem.
The mean and variance of z are

z̄ =
β

2mτ

∑
l 6=j

(
A2
i,l − 2Ai,lu

>
i E[vl] + u>i E[vlv

>
l ]ui

)
, (4)

and
β2

m2τ2

∑
l 6=j

(
A2
i,lu
>
i

(
E[vlv

>
l ]− E[vl]E[v>l ]

)
ui

−Ai,l(E[(u>i vl)
3]− E[u>i vl]E[(u>i vl)

2]) +
1

4
(E[(u>i vl)

4]− E[(u>i vl)
2]2)
)
, (5)

respectively. Each summand in

β2

m2τ2

∑
l 6=j

(
−Ai,l(E[(u>i vl)

3]− E[u>i vl]E[(u>i vl)
2]) +

1

4
(E[(u>i vl)

4]− E[(u>i vl)
2]2)
)

(6)

is Op(m
1/2) and therefore (6) is Op(m

−1/2). (In fact, one can conclude that (6) is Op(m
−1) if

one assumes that the dependence among the summands is weak.) We define σ2 on the basis of this
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observation by

σ2 :=
β2

m2τ2

∑
l 6=j

A2
i,lu
>
i

(
E[vlv

>
l ]− E[vl]E[v>l ]

)
ui, (7)

and suppose z ∼ N(z̄, σ2). Replacing the integral on the right-hand side of (3) by the expectation
with respect to z, one obtains∏

l 6=j

µ̂t(i,l)→i(ui) ∝
1√

2πσ2

∫
exp(−z) exp

(
− (z − z̄)2

2σ2

)
dz (8)

= exp
(
−z̄ +

σ2

2

)
, (9)

where the last equation is derived by performing the Gaussian integral in (8). Let the mean and
covariance matrix of vj ∼ νtj→(i,j)(vj) be vtj→(i,j) and β−1T tj→(i,j), respectively. Then (9) is
rewritten as ∏

l 6=j

µ̂t(i,l)→i(ui) ∝ exp
(
−β

2
u>i Λtu,i→(i,j)ui + βu>i b

t
u,i→(i,j)

)
, (10)

where btu,i→(i,j) and Λtu,i→(i,j) are defined by

btu,i→(i,j) :=
1

mτ

∑
l 6=j

Ai,lv
t
l→(i,l), (11)

and

Λtu,i→(i,j) :=
1

mτ

∑
l 6=j

(
vtl→(i,l)(v

t
l→(i,l))

> +
1

β
T tl→(i,l) −

A2
i,l

mτ
T tl→(i,l)

)
, (12)

respectively. It follows from (10) and (1b) that
µti→(i,j)(ui) = q̂(ui; b

t
u,i→(i,j),Λ

t
u,i→(i,j), p̂u), (13)

where q̂ is defined in (11) of the main paper. From (11)–(13), one can see that µti→(i,j) depends on
the p.d.f. νtl→(i,l) only through its mean vtl→(i,l) and covariance β−1T tl→(i,l). Via a similar argument,
one can represent the p.d.f. νt+1

j→(i,j) with the mean uti→(i,j) and the covariance β−1Sti→(i,j) of
µti→(i,j):

btv,j→(i,j) :=
1

mτ

∑
k 6=i

Ak,ju
t
k→(k,j), (14)

Λtv,j→(i,j) :=
1

mτ

∑
k 6=i

(
utk→(k,j)(u

t
k→(k,j))

> +
1

β
Stk→(k,j) −

A2
k,j

mτ
Stk→(k,j)

)
, (15)

νt+1
j→(i,j)(vj) = q̂(vj ; b

t
v,j→(i,j),Λ

t
v,j→(i,j), p̂v). (16)

The variables uti→(i,j), S
t
i→(i,j), v

t+1
j→(i,j), and T t+1

j→(i,j) are calculated by

uti→(i,j) = f
(
btu,i→(i,j),Λ

t
u,i→(i,j); p̂u

)
, (17a)

Sti→(i,j) = G
(
btu,i→(i,j), Λtu,i→(i,j); p̂u

)
, (17b)

vt+1
j→(i,j) = f

(
btv,j→(i,j), Λtv,j→(i,j); p̂v

)
, (17c)

T t+1
j→(i,j) = G

(
btv,j→(i,j), Λtv,j→(i,j); p̂v

)
, (17d)

where f and G are defined in (10) of the main paper. We recall that f(b,Λ; p̂) is the mean of the
p.d.f. q̂(u; b,Λ, p̂) and that G(b,Λ; p̂) is its covariance matrix scaled by β. Thus (1a)–(1d), which
are equations for updating p.d.f.s, are reduced to ones for updating their means and covariances.

Our algorithm, as said above, updates only some real-valued parameters and this is common to the
expectation propagation algorithm [3]. The ideas behind these algorithms, however, are different.
The expectation propagation algorithm assumes that messages are in the exponential family and that
they have specified parametric forms. In the derivation of our algorithm, we do not assume any
parametric form of the messages and have deduced that the mean and covariance are sufficient to
update the messages by assuming the large system limitm→∞ and using the central limit theorem.
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1.2 Reducing the number of the messages

The message passing algorithm (17a)–(17d) involves 4mN messages. In this section, using another
technique introduced in [1, 2], we reduce the number of the messages to 2(m + N). From (14)
and (15), one can see that the dependence of btv,j→(i,j) and Λtv,j→(i,j) on i is weak. In fact, the
variables defined by

btv,j :=
1

mτ

m∑
k=1

Ak,ju
t
k→(k,j), (18)

Λtv,j :=
1

mτ

m∑
k=1

(
utk→(k,j)(u

t
k→(k,j))

> +
1

β
Stk→(k,j) −

A2
k,j

mτ
Stk→(k,j)

)
, (19)

vt+1
j := f

(
btv,j ,Λ

t
v,j ; p̂v

)
, T t+1

j := G
(
btv,j ,Λ

t
v,j ; p̂v

)
, (20)

which are independent of i, satisfy the following equations:

btv,j→(i,j) = btv,j −
1

mτ
Ai,ju

t
i→(i,j)

= btv,j + Op(m
−1/2), (21)

Λtv,j→(i,j) = Λtv,j −
1

mτ

(
uti→(i,j)(u

t
i→(i,j))

> +
1

β
Sti→(i,j) −

A2
i,j

mτ
Sti→(i,j)

)
= Λtv,j + Op(m

−1), (22)

vt+1
j→(i,j) = vt+1

j + Op(m
−1/2), (23)

T t+1
j→(i,j) = T t+1

j + Op(m
−1/2), (24)

where the last two equations hold under an appropriate assumption of smoothness of f(b,Λ; p̂v)
and G(b,Λ; p̂v). We define btu,i, Λtu,i, u

t
i and Sti via equations analogous to (18)–(20). As shown

by (21)–(24), the variables defined here, said to be singly-indexed, approximate the doubly-indexed
variables such as btv,j→(i,j) with negligible errors for large m. The number of the singly-indexed
variables is O(m) and it is less than that of the doubly-indexed ones, which is O(m2). The goal in
the following is to derive equations that updates the singly-indexed variables without using doubly-
indexed ones.

Equations (20) involves only variables independent of i and have the same form as (9d) of the main
paper. In the following, we represent the right-hand sides of (18) and (19) in terms of utk, Stk,
and vtj , which will turn out to be necessary, instead of utk→(k,j) and Stk→(k,j). This representation
should be exact in non-vanishing order. Our desired representation of the right-hand side of (19) is
obtained simply by replacing utk→(k,j) and Stk→(k,j) with utk and Stk, respectively:

Λtv,j =
1

mτ

m∑
k=1

(
utk(utk)> +

1

β
Stk −

A2
k,j

mτ
Stk

)
+ Op(m

−1/2), (25)

where we used the equations utk→(k,j) = utk + Op(m
−1/2) and Stk→(k,j) = Stk + Op(m

−1/2).
This simple replacement does not work for (18) because the terms of the order Op(m

−1/2) in
utk→(k,j) can contribute to the summation in (18) in non-vanishing order. One, therefore, has
to evaluate utk→(k,j) exactly in up to Op(m

−1/2). For this evaluation, we use the Taylor ex-
pansion of f

(
b,Λ; p̂u

)
with respect to (btu,i→(i,j),Λ

t
u,i→(i,j)) around (btu,i,Λ

t
u,i). Noting that

btu,i→(i,j) = btu,i − (mτ)−1Ai,jv
t
j→(i,j) and Λtu,i→(i,j) = Λu,i + Op(m

−1), one obtains

uti→(i,j) = f
(
btu,i,Λ

t
u,i; p̂u

)
− Ai,j
mτ

∂f

∂btu,i

(
btu,i, Λtu,i; p̂u

)
vtj→(i,j) + Op(m

−1)

= uti −
Ai,j
mτ

Stiv
t
j + Op(m

−1). (26)

Substituting (26) into (18) gives

btv,j =
1

mτ

m∑
k=1

Ak,ju
t
k −

1

m2τ2

m∑
k=1

A2
k,jS

t
kv

t
j + Op(m

−1/2), (27)
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which is our desired representation.

For further simplification, we replace A2
k,j appearing in (25) and (27) with its expectation

E[(u>k vj +Wk,j)
2] = E[W 2

k,j ] + E[(u>k vj)
2]

= mτ + O(1). (28)

Since the variance of (mτ)−1A2
k,jS

t
k is O(1), the variance of the arithmetic mean

m−1
∑m
k=1(mτ)−1A2

k,jS
t
k is O(m−1) if we assume that the summands are weakly dependent with

each other. This observation justifies replacing A2
i,l with its expectation. This replacement results in

btv,j =
1

mτ

m∑
k=1

Ak,ju
t
k −

1

mτ

m∑
k=1

Stkv
t
j + Op(m

−1/2), (29)

and

Λtv,j = Λtv + Op(m
−1/2), (30)

Λtv :=
1

mτ

m∑
k=1

(
utk(utk)> +

1

β
Stk − Stk

)
. (31)

These are used to update btv,j and Λtv if terms of vanishing order in m→∞ are ignored, giving (9c)
of the main paper. One can calculate btu,i and Λtu in a similar way, yielding (9a) of the main paper.

Finally, we calculate the marginal distribution p̂i,j(ui, vj |A;β). When the iteration has converged,
the marginal distribution is calculated by

p̂i,j(ui, vj |A;β) ∝ exp
(
−β(Ai,j − u>i vj)

2

2mτ

)
µ∞i→(i,j)(ui)ν

∞
j→(i,j)(vj)

= exp
(
−β(Ai,j − u>i vj)

2

2mτ

)
q̂β(ui; b

∞
u,i, Λ∞u , p̂u)q̂β(vj ; b

∞
v,j , Λ∞v , p̂v). (32)

Because the first factor can be ignored in the limit m→∞, one obtains

p̂i,j(ui, vj |A;β) ∝ q̂β(ui; b
∞
u,i, Λ∞u , p̂u)q̂β(vj ; b

∞
v,j , Λ∞v , p̂v). (33)

2 The proof of Proposition 1

We give the proof of Proposition 1 of the main paper.

Proof. The update of U t in the AMP algorithm for the MAP problem is rewritten as

U t = arg min
U

[
m∑
i=1

(1

2
u>i Λtuui − u>i b

t
u,i − log p̂u(ui)

)]

= arg min
U

[
tr
(1

2
UΛtuU

> −BtuU>
)
−

m∑
i=1

log p̂u(ui)

]

= arg min
U

[
1

2mτ
tr
(
U(V t)>V tU> − U

N∑
j=1

T tjU
>
)

− 1

mτ
tr
(
AV tU> − U t−1

N∑
j=1

T tjU
>
)
−

m∑
i=1

log p̂u(ui)

]

= arg min
U

[
1

2mτ
‖A− U(V t)>‖2F − tr

(
(U − U t−1)(

1

2mτ

N∑
j=1

T tj )(U − U t−1)>
)

−
m∑
i=1

log p̂u(ui)

]
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= arg min
U

[
CMAP(U, V t)− tr

(
(U − U t−1)(

1

2mτ

N∑
j=1

T tj )(U − U t−1)>
)]
, (34)

where the third equation follows from (9a) of the main paper and the last equation follows from (5)
of the main paper. Therefore, the following inequality holds for any U ∈ Rm×r̂:

CMAP(U∞, V∞) ≤ CMAP(U, V∞)− tr
(

(U − U∞)(
1

2mτ

N∑
j=1

T tj )(U − U∞)>
)
. (35)

Since
∑N
j=1 T

∞
j is positive semidefinite, the right-hand side is bounded from above by

CMAP(U, V∞), proving the first half of the proposition. The second half can be proved simi-
larly.
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