A Proofs of Section[3

Consider a basic full information problem with N experts. Let Ry (SD, i) be the regret of the SD
algorithm with respect to expert ¢ up to time 7. We have the following results for the SD algorithm.
Lemma 8. For any expert i € {1,...,N}, Rr(SD,i) < 4\/Tlog N + log N, and also for any
1<t <T, P(Switch at time t) < \/@.

Proof. The proof of the regret bound can be found in [17, Theorem 3]. The proof of the bound on
the probability of switch is similar to the proof of Lemma 2 in [17] and is as follows: As shown
in [17, Lemma 2], the probability of switch at time ¢ is oy = (Wy—1 — Wy)/Wy—1. Thus, W, =
(1 — a¢)Wi—1. Because the loss function is bounded in [0, 1], we have that

N N N
= szt = Zwi,t—l(l - ﬁ)ct(i) > Zwi,t—l(l - 77) = (1 - U)Wt—l :
i=1 i=1 i=1
Thus, 1 — oy > 1 — n, and thus, oy <1 < +/(log N)/T. O

A.1 Proof of Theorem[Il

In the rest of this section, we write A to denote the OMDP algorithm. For the proof we use the
regret decomposition (I):

RT(AaTr) = BT(A) + CT(AaTr) :
Lemma 9. For any policy m € 1],

T

E[Cr(A, )] th zgt, m) Z&(m?,ﬂ) < 4y/Tlog |II| + log II] .

Proof. Consider the following imaginary game between a learner and an adversary: we have a
set of experts (policies) II = {z*,..., 7™}, At round ¢, the adversary chooses a loss vector
c; € [0, 1)1, whose ith element determines the loss of expert 7 at this round. The learner chooses a
distribution over experts ¢; (defined by the SD algorithm), from which it draws an expert ;. Next,
the learner observes the loss function ¢;. From the regret bound for the SD algorithm (Lemmag)), it
is guaranteed that for any expert 7

T T
S leear) — D eul(m) < 4y/Tlog ] + log 1] .
t=1 t=1

Next, we determine how the adversary chooses the loss vector. At time ¢, the adversary chooses
a loss function /; and sets ci(7') = E {Et(xfﬂri)] Noting that {c;, q;) = E [l4(x]*, m;)] and
ci(m) = E [¢y(xT, )] finishes the proof. O

Lemma 10. We have that
T

T
=E | b ar) - Zet(xgt,m)] < 272\/log |TI|T .
t=1

E[Br(A

First, we state the following two lemmas.

Lemma 11 (Lemma 5.1 of Even-Dar et al. [[12]). For any state distribution d, any transition kernel
m, and any policies m and 7',

|dP(m,m) — dP(r", m)[l; < [lx = 7'l ; -
Note that matrix P (7, m) was defined for finite state spaces, but with appropriate modifications the

same argument works for continuous state spaces as well.
Lemma 12. Ler oy be the probability of a policy switch at time t. Then, oy < +/log [I1]/T.

10



Proof. Proof is identical to the proof of Lemma ] O

Proof of Lemma@ Let F; = o(m1, ..., ). Notice that the choice of policies are independent of
the state variables. We can write
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where u, = E [[{,4_,|Fr] is the distribution of z/ for s < t and v, ; = E [H (a7t =)

]-"T] is the

distribution of x7* for s < tE| Let E; be the event of a policy switch at time ¢. From inequality

t
17—t = Telloos < It = Temkstllon + o+ Imemt = mellor <2 Ly,
s=t—k+1

and Lemma([I2] we get that

log |IT
E ||| ﬂrtum} <2 %k. 3)

>Notice that Fr contains only policies, which are independent of the state variables.
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Let PT = P(m,m;). We have that
E [llus = vrell] = B [[Jus1 P27 = w1, P ]
=E [Hut_lPtﬂjIl — w1 P+ up P — vt_LtPtTElHJ
E [|Jue—1 P — w1 PR |||+ [Juem1 PRy — vem1,e PR ]
E |:||7Tt—1 = Ttll o + eV lug—y — Ut—l,tHJ

< ]E[||7rt,1 = Ttlfoo1 + e VT ([Ju—2 P57 — w2 P,

+ ||ut_2Pt7er - Ut—2,tPtﬂ;t2||1)}

SE[Imiot = milloey + e mis = mill oy +e”

t
<Y e MR [||7Tt | ]
k=0
t
<N 2e 7 IOgT|H|k+o By (3)
k=0
log |IT

where we have used the fact that [|ug — vo ||, = 0, because the initial distributions are identical. By

(@) and @), we get that
log |TT|
E[Br(A <2221/0g| VIog [T .

O

What makes the analysis possible is the fact that all policies mix no matter what transition kernel is
played by the adversary.

Proof of Theorem[l] The result is obvious by Lemmas [9]and [T0} O

A.2  Proof of Corollary 2]

Proof of Corollary[Z] Let Ly(r) = E [Zthl £ (2T, w)} be the value of policy 7. Let u, ((x) =

P («F = x). First, we prove that the value function is Lipschitz with Lipschitz constant 77". The
argument is similar to the argument in the proof of Lemma [0} For any 71 and 7o,

T
Zﬁt xpt,m) th(a??,ﬂg)]
t=1

|L7(m1) — Lr(m2)| = |E <2

T
D lum e = tm el el
t=1

= Unp,,

With an argument similar to the one in the proof of Lemma([10] we can show that [[ur, ¢ — tr, ¢, <
7|7 — m2|| ;- Thus, [Lp(m) — LT(ﬂ'Q)\ < 7T ||my — m2]|, ;- Given this and the fact that for

any policy ™ € H, there is a policy 7’ € C(¢) such that |7 — 7TI||oo, < e, we get that

E[R7(OMDP, 7)) < (4 + 272)/T log N'(¢) + log N (¢€) 4+ 7Te .
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B Proof of Theorem/[7|

Let x¢; and a;,; denote the state and the action at step [ of episode ¢. Let 27 ; denote the state at stage
I of round ¢ if we run policy 7. As ¢(x, a) = ¢(n(x), a), we can write that

T L
™) = cht(l"ffpﬂt) _cht Ty,

t=11=1 t=11=1
We have the following regret decomposition:
RT(TF) =Br+Cr,
where

T L T L
:zz<ct I“,Wt Qt(S,Wt)/L>7 CT:ZZ Qt S, Tt /L*Ct(zflv )) .

t=1 =1 t=1 =1
We bound these terms in the following sections.

B.1 Bounding E [C7]

First, we prove the following lemma.

Lemma 13. Ler 7 be a policy. Let © = (s,ag,n1,01,...,0—1,a1—1,n;). We have that
Z m(ag|s) ... m(aj—1|mi—1) <G| .
TEX]

Proof. For any graph g,
> wlaols) . w(slnig) = 1.

z:geC(x)
We get the result by summing over the graphs. O

Lemma 14. We have that

E[Cr] < L|G] Tlog +L\/8T10g @2r)+ L.

Proof. For any step | during an episode ¢, we have that Qi(zf;,7) = ci(zf;,m) +
E Qa1 m) |, |- Thus,

Qi(xfy,m) = ey, m) + E [Qt(le-&-lvﬂ-t) | x?l] —E [Qt(w?,um) |33Zr,1—1]
+E [Qu(2] ) me) | 2], 1] — Qu(aly,m) + Qula],m) .
For episode ¢,

L
Z Qt xtlv Qt xtlaﬂ—t th xtl?
=1 =1
+ Z (E [Qt(x?,mp ) sz] -E [Qt(fcﬁum) |»Tf71—1])
L
=+ Z (E [Qt(ﬂle, ) \xf,z_ﬂ - Qt(lea Wt))
=1

L
= —Q¢(s,m) + E Ct xtz’
=1

M=

Y (E[Qi(af,,m) | 2f, 1] — Qu(zFy,m)) -

=1
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Thus,

L
D> (Qu(afym) — Qulafy, )

=1

M=

T L
DD (Quls,m) /L= cilafy,m)) =

t=1 [=1 t

Il
-

Mh

+ ) (E[Qi(xfy,me) [2f, 1] — Qe(afy,m)) (5

=1

Let pr4:(.) be the state distribution at stage [ of round ¢ under policy m. For z =
(s,ap,n1,a1,...,n), we can write

Mﬂ',t,l(‘r) = 71—(a0|‘9) H{gt(s,ao):nl} R W(alfl|nl*1)H{gt(nl71111171):”1} .
Introduce the notation

m(ao...a-1)lr) = m(aols) ... m(ar—11ni-1) s Ligi(ny 112} = Lge(siao)=na} - - - Lge(ni_r.ar_1)=mi} -
‘We have that

T L T L
E Y Y (@i, m) = Quaf,m) | =D D Y pmaa(@)(Qu(w, m) — Qu(w, 7))

t=1 [=1 t=1 =1 z€X]

T
Z P, (2)(Qe (2, 7)) — Q(, 7))

1

I
M=

[
o
8
m
&
o
I

M=
M)~

7T'(aO...(lfl) |x)H{gt(n1_..z|x)}(Qt<-757 7Tt> - Qt(l'v 7T))
1

I
o
8
m
&
&~
[

T

m(@0...a-1)12) D Ligymr 1oy (Qe(@, m1) — Qulw, 7)),

t=1

[
M=

=1 ze

&

where the last step follows from the fact that 7(a...;—1)|2) does not depend on time. Thus, we can

write
T L [ |.A
E ZZ Qt xtl,m Qt 'rtla ]< Tlog—zz CLO (l 1|£I}

t=1 I=1 =1 zeX;

\AI

< L|G[y/Tlog == (6)

where the first step follows from the regret bound for the EWA algorithm [16]] and the second step
follows from Lemma I3

Finally, by an application of Azuma’s inequality, we obtain that

L
> (B [Qu(a]) m) [2f ] — Qu(a]) m)) < Ly/8T1og(2T) + L . 7)

=1

From @,@,, we obtain the desired result:

T L
E ZZ(Qt(SﬂTt)/L — ey, m))

t=1 =1

< L|G| Tlog +L\/8Tlog 2T+ L.

B.2 Bounding E [By]

Lemma 15. We have that E [Br] < L\/8T log(2T) + L.

14



Proof. We have that Q¢(zf, m) = E {ct(xffl, m) + Qe (41, )

Tt
xt,l}. Thus,

Quetym) — B [@u(af mlafi_a ] = E [l m) | a7y

+E[QuaTt s m)lafi] — E Qi) m)leTi | -

For episode t,

L L
> (Qt Ty me) [Qt(ﬂfztzvﬂt)WZ’z’_J) =Y E [Ct(xffz’vﬂt) x?z}
=1 =1
L
+ Z ( [Qt Ty, l+1a7Tt)|xt l] -E {Qt(ngl’”t”xztqu
=1
L
= ~Qu(s,m) + DB [eulaf,m) | o]
=1

Thus,

S (8 [ateiom |#71] ~ Quom/E) = 32 3 (@tazim) B [@tes ki) -

t=1 =1 t=1 =1

Thus, by an application of Azuma’s inequality, we obtain that

T L
E > (erzy,m) — Qu(s,m)/L) | < L\/8Tlog(2T) + L .

t=1 [=1

Proof of Theorem[7] The result is obvious by Lemmas[T4]and T3] O
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