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Here we give proofs of the theorems and lemmas, as well as a description of the sparse grids algo-
rithm.

A Proof of Theorem 3.1

Proof of Theorem 3.1. We prove the four results separately.

1) The summary is a td-dimensional vector with sensitivity td

n . By the standard argument for Laplace
mechanism, adding td i.i.d. Laplace noise Lap( t

d

nε ) preserves ε-differential privacy.

2) The error of the answer to each query consists of two parts: the approximation error and the noise
error. Setting the approximation error γ in Theorem 3.2 as γ = n−

K
2d+K . Then the degree of each

variable in g(θ) is t(γ) =
(

1
γ

)1/K
= n

1
2d+K , which is the same as t given in Algorithm 1. Now

consider the error induced by the Laplace noise. The noise error is simply the inner product of the
td linear coefficients cl1,...,ld and td i.i.d. Lap( t

d

nε ). Since the coefficients are uniformly bounded by
a constant, the noise error is bounded by the sum of td independent and exponentially distributed
random variables (i.e., |Lap( t

d

nε )|). The following lemma gives it an upper bound.

Lemma A.1. Let X1, . . . , XN be i.i.d. random variables with p.d.f. P(Xi = x) = 1
σ e
−x/σ for

x ≥ 0. Then

P(
N∑
i=1

Xi ≥ 2Nσ) ≤ 10 · e−N5 .

Proof. Let Y =
∑N
i=1Xi. It is well-known that Y satisfies the gamma distribution, and for ∀u > 0

P(Y ≥ u) ≤ e−uσ
N−1∑
n=0

1

n!

(u
σ

)n
.

Thus

P(Y ≥ 2Nσ) ≤ e−2N
N−1∑
n=0

1

n!
(2N)n.

1



Note that for n < N

1
n! (2N)n

e2N
≤

1
N ! (2N)N

1
(2N)! (2N)2N

≤
N−1∏
n=1

(1− n

2N
) ≤ e−

N−1
4 .

Thus
P(Y ≥ 2Nσ) ≤ e−2N

(
e2NNe−

N−1
4

)
≤ 10 · e−N5 .

Part 2) of Theorem 3.1 then follows from Lemma A.1.

3) This is straightforward since the summary is a td-dimensional vector and for each item the running
time is O(n).

4) According to our setting of t, it is easy to check that the error induced by Laplace noise and that
of approximation have the same order. Then by the third part of Theorem 3.2 we have the running

time for computing the coefficients of the trigonometric polynomial is O
(
n
d+2+2d

K
2d+K · polylog(n)

)
.

The result follows since computing the inner product has running time O(n
d

2d+K ), which is much
less than computing the coefficients.

B Proof of Lemma 4.3

We first give a simple lemma.

Lemma B.1. Let

Ht,r(s) =

t∑
l=0

al cos ls. (1)

Then for all l = 0, 1, . . . , t
|al| ≤ 1/π.

Proof. For any l ∈ {0, 1, . . . , t}, multiplying cos ls on both sides of (1) and integrating from −π to
π, we obtain that for some ξ ∈ [−π, π],

al =
1

π

∫ π

−π
Ht,r(s) cos lsds =

cos lξ

π

∫ π

−π
Ht,r(s)ds =

cos lξ

π
.

where in the last equation we use the identity∫ π

−π
Ht,r(s)ds = 1.

This completes the proof.

Proof of Lemma 4.3. We first bound ml1,k1,...,ld,kd . Recall that (see also (5) in Fact 4.2)

ml1,k1,...,ld,kd =

d∏
i=1

(−1)kiali
(
K + 1

ki

)(∫
[−π,π]d

d∏
i=1

cos

(
li
ki
θi

)
gf (θ)dθ

)
.

It is not difficult to see that |ml1,k1,...,ld,kd | can be upper bounded by a constant depending only on
d,K and B, but independent of t. This is because that the previous lemma shows |ali | ≤ 1

π and gf
is upper bounded by a constant.
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Now consider cn1,...,nd . Recall that

cn1,...,nd = (−1)d
∑

1≤k1,...,kd≤K+1
0≤l1,...,ld≤t
li=ki·ni∀i∈[d]

ml1,k1,...,ld,kd .

We need to show that all |cn1,...,nd | are upper bounded by a constant independent of t. Note that
although each li takes t+1 values, li and ki must satisfy the constraint li/ki = ni. Since ki can take
at most K +1 values, the number of ml1,k1,...,ld,kd appeared in the summation is at most (K +1)d.
Therefore all cn1,...,nd are bounded by a constant depending only on d,K andB, and is independent
of t.

C The sparse grids algorithm

In this section we briefly describe the sparse grids numerical integration algorithm due to Gerstner
and Griebel. (Please refer to [2] for a complete introduction.) We also specify a subroutine used by
this algorithm, which is important for proving the running time.

Numerical integration algorithms dicretize the space and use weighted sum to approximate the in-
tegration. Traditional methods for the multidimensional case usually discretize each dimension to
the same precision level. In contrast, the sparse grids methods, first proposed by Smolyaks [3],
discretize each dimension to carefully chosen and possibly different precision levels, and finally
combine many such discretization results. When the integrand has bounded mixed derivatives, as in
our case that the integrand is in CKB , one can use very few grids in most dimension and still achieve
high accuracy.

The sparse grids method is based on one dimensional quadrature (i.e., numerical integration). There
are many candidates for one dimensional quadrature. In order to prove an upper bound for the
running time, we choose the Clenshaw-Curtis rule [1] as the subroutine. This also makes the analysis
simpler.

Let h : [−1, 1]d → R be the integrand. Let SG(h) be the output of the sparse grids algorithm. Let l
be the level parameter of the algorithm.

Let k = (k1, . . . , kd) and j = (j1, . . . , jd) be d-tuples of positive integers. Then SG(h) is given as
a combination of weighted sum:

SG(h) :=
∑

|k|≤l+d−1

m(k1)∑
j1=1

· · ·
m(kd)∑
jd=1

uk,jf(xk,j). (2)

Below we describe m(ki), xk,j and uk,j respectively.

1) For any k ∈ N, m(k) := 2k.

2) For each k = (k1, . . . , kd) and j = (j1, . . . , jd), define xk,j := (xk1,j1 , . . . , xkd,jd), and xki,ji
is the jith zero of the Chebyshev polynomial with degree m(ki). Denote by Tm(ki) the Chebyshev
polynomial. Its zeros are given by the following formula.

xki,ji = cos

(
(2ji − 1)π

2m(ki)

)
, ji = 1, 2, . . . ,m(ki). (3)

3) Now we define the weights uk,j. First let wk,j be the weight of xk,j in the one-dimensional
Clenshaw-Curtis quadrature rule given by

wk,1 =
1

(m(k) + 1)(m(k)− 1)
,

wk,j =
2

m(k)

1 + 2

m(k)/2∑
r=1

′ 1

1− 4r2
cos

(
2π(j − 1)r

m(k)

) , for 2 ≤ j ≤ m(k), (4)
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where
∑′ means that the last term of the summation is halved.

Next, for any fixed k and j, define

v(k+q),j =

{
wk,j if q = 1 ,
w(k+q−1),r − w(k+q−2),s if q > 1, and for r, s satisfying xk,j = x(k+q−1),r = x(k+q−2),s ,

where xk,j is the zero of Chebyshev polynomial defined above.

Finally, the weight uk,j is given by

uk,j =
∑

|k+q|≤l+2d−1

v(k1+q1),j1 . . . v(kd+qd),jd ,

where k = (k1, . . . , kd) and q = (q1, · · · , qd). This completes the description of the sparse grids
algorithm.

D Proof of Lemma 4.4

We first give the result that characterizes the running time of the Gerstner-Griebel sparse grids algo-
rithm in order to achieve a given accuracy.
Lemma D.1. Let h ∈ CKB ([−π, π]d) for some constants K and B. Let SG(h) be the numerical
integration of h using the sparse grids algorithm described in the previous section. Given any
desired accuracy parameter τ > 0, the algorithm achieves

∣∣∣∫[π,π]d h(θ)dθ − SG(h)
∣∣∣ ≤ τ , with

running time at most O
((

1
τ

) 2
K (log 1

τ )
3d+ 2d

K +1
)

.

Proof of Lemma D.1. LetL = 2l+1−2, where l is the level parameter of the sparse grids algorithm.
l and L will be determined by the desired accuracy τ later. In fact, L is the maximum number of
grid points of one dimension. By (2) it is easy to see that the total number of grid points, denoted by
Nd
l , is given by

Nd
l =

∑
|k|≤l+d−1

m(k1) · · ·m(kd)

= O(ld−1L)

= O(L(log2 L)
d−1). (5)

In [2] it is shown that the approximation error τ can be bounded by the maximal number of grid
points per dimension as follows.

τ = O(L−K(logL)(K+1)(d−1)). (6)

Next, let us consider the computational cost per grid point. Since we assume that h(x) can be
computed in unit time, and the zeros of Chebyshev polynomials can be computed according to (3),
then computing the weights uk,j dominates the running time. Fix k ∈ N, consider wk,j , 1 ≤ j ≤
m(k). From (4), it is not difficult to see that the set of wk,j can be computed by Fast Fourier
Transform (FFT). Therefore the computation cost is O(m(k) logm(k)). Some calculations yield
that for a fixed k, j, the computational cost for uk,j is O(dL logL). Combining this with (5) and (6)
the lemma follows.

Next we turn to prove Lemma 4.4. First, we need the following famous result.
Lemma D.2. Let m be a positive integer, let σ(m) denotes the number of divisors of m, then for
large t

t∑
m=1

σ(m) = t ln t+ (2c− 1)t+O(t1/2),

where c is Euler’s constant.
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To analyze the running time, we also need a result about the normalizing constant of the generalized
Jackson kernel [4].

Lemma D.3 ([4]). Let

Jt,r =
1

λt,r

(
sin(ts/2)

sin(s/2)

)2r

,

be the generalized Jackson kernel as given in Definition 4.1, and the normalizing constant λt,r is
determined by ∫ π

−π
Jt,r(s)ds = 1.

Then the following identity of the normalizing constant λt,r holds

λt,r = 2π

[r−r/t]∑
k=0

(−1)k
(
2r

k

)(
r(t+ 1)− tk − 1

r(t− 1)− tk

)
. (7)

Now we are ready to prove Lemma 4.4.

Proof of Lemma 4.4. Assume that the error induced by the sparse grids algorithm is at most τ per
integration. That is, for every k = (k1, . . . , kd), l = (l1, . . . , ld)∣∣∣∣∣

∫
[−π,π]d

d∏
i=1

cos

(
li
ki
θi

)
g(θ)dθ

∣∣∣∣∣ ≤ τ.
Then

sup
n1,...,nd

|cn1,...,nd − ĉn1,...,nd | ≤ sup
n1,...,nd

∣∣∣∣∣∣
∑

li/ki=ni

d∏
i=1

(−1)ki
(
K + 1

ki

)
ali

∣∣∣∣∣∣ · τ.
By Lemma B.1, |ali | ≤ 1

π . We obtain that

sup
n1,...,nd

|cn1,...,nd − ĉn1,...,nd | ≤M · τ, (8)

for some constant M independent of t.

Similarly, we have ∥∥∥Idt,K(g)− Îdt,K(g)
∥∥∥
∞
≤ O(tdτ). (9)

Since in the statement of the lemma the desired approximation error is O(t−K), we have

τ = t−(K+d). (10)

It is also clear that
max

n1,...,nd
|ĉn1,...,nd − cn1,...,nd | = o(1), as t→∞.

Now let us consider the computation cost. Recall that the kernel Ht,r is an even trigonometric of
degree at most t:

Ht,r(s) = a0 +

t∑
l=1

al cos ls, (11)

where Ht,r(s) = Jt′,r(s) and Jt′,r is the generalized Jackson kernel given in Definition 4.1. First
we need to compute the value of the linear coefficient al of Ht,r. By Lemma D.3, one can compute
the linear coefficients al by solving a system of t+1 linear equations. That is, we choose an arbitrary
t+ 1 points in [−π, π] and solve (11), since we can compute the value of Ht,r(s) directly based on
the value of λt,r. Clearly, the running time is O(t3).
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Having ali , let us consider the computational cost for calculating ĉn1,...,nd . According to
Lemma D.1, the running time for the sparse grids algorithm to compute one integration is
O
(
( 1τ )

2
K (log(1/τ))

3d+ 2d
K +1

)
= O

(
t
2(K+d)
K polylog(t)

)
.

Since we only need to compute the integration when li|ki for all i ∈ [d], by Lemma D.2 the number
of integrations to compute is at most

(K + 1 + σ(1) + . . .+ σ(t))
d
= O

(
(t log t)d

)
.

Thus the total time cost for all numerical integration is O
(
t(1+

2
K )d+2polylog(t)

)
. Since

(1 +
2

K
)d+ 2 ≥ 3,

the computation time for obtaining the coefficients al in Ht,r is dominated by the running time of
the sparse grids algorithm. It is also easy to see that all other computation costs are dominated by
that of the numerical integration. The lemma follows.
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