A Proof of Proposition 1

Proof of Proposition 1. This follows from the observation that
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B Generalized tensor power method

Normalization and deflation. By Proposition 2, the first for-loop iteration of Algorithm 2 recov-
ers u™¥) very close to 0;-a;- for some i* € [K], up to positive scaling s := || ATu(N)||. Because

1 = (0i- (@i, Maz))'/? = [{az-, Ma;)|"/?,

this scaling s is close to | (u™), MJu(¥))|1/2, which is the normalization used in Algorithm 2. Thus,

the estimates a1 and \; are close to o« a;+ and A;«, respectively. For the next for-loop iteration, we
want to execute the power iteration with a tensor close to 7" — \;«a;« ® a;+ ® a;+ in order to recover
a component different from a;~. Therefore we use

A

(the crucial detail is the absolute value on 5\1).
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Convergence analysis.

Proposition 5. Let u(?) € range(A), and consider the sequence determined by
uY = My(I, Mgu(i), Mgu(i)).

Define
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Proof. Define f; := <et,ATu(0)>, and without loss of generality, assume A1 f1]| > |Aafo| > -+ >

Mk fx|. Then, using the definition u(") = M;(T, Mgu(o), Mgu(o)) and the facts that A has full
column rank and X' is invertible, we have
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which implies (e;, ATu(®) = A, 2. By induction, (e;, Afu®) = A2 =1 f2'. Therefore

(e1, ATu()2 P
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Moreover, (e;, ATa()) = |)\1\2171f111/\/2f<:1 N2 =22 € [0,1], so {er, ATa®) >
(e1, AY()2, Therefore, using the fact that ||ATa(|| = ||Afa;|| = 1, we can bound || A (a® —
a1)|? as

IAT(@® — a1)|* = 2(1 — (ax, (AAT)TaM)) = 2(1 — (er, ATa™)) < 2(1 — (er, ATa)?) < 2e.

It remains to show that My (MJa®, MIa®, MIa®) is close to | A;|. We have that

K
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Since (1 + (e1, ATa@D)(1 — (ey, ATa)) = 1 — (ey, ATaD)2 < € and (ey, ATa®) € [0,1], it
follows that |1 — (e, ATa(")| = (1 — (ey, ATa™)) < /(1 + (e1, ATaM)) < . Furthermore, by
Holder’s inequality, the triangle inequality, and the fact that (3, [v,[3)'/? < (32, v?)1/2,
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Thus, again by the triangle inequality,
| Ms(MJaD, M3a®, MIa) — M| < |Asfe + max A ]e*2. O
C Moment estimators

In the proofs of Propositions 3 and 4, we let ,, 1,Zpn 2, ..., ZTn e, € [D] be the words in document

¢
n,80Cp 1=y " €p,

Proof of Proposition 3. For any i € [D],
2 ln
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For i # j,
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Proof of Proposition 4. For any i € [D],
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Algorithm 3 Asymmetric Generalized Tensor Power Method

input M, € RP*DPv; M, . € RP=*Pe; N, . € RP»*De; N,y . € RPaXPoxDe; target rank K;
number of iterations V.
output Estimates {(a, by, &, \;) : t € [K]}.

1: Let Mg , := Moore-Penrose pseudoinverse of rank K approximation to M,Lb; similarly define
M . and M ;let M}, := M] N M} .
: for t =1to K do

initialize T' := Mg p ..

3. Randomly draw u(?) € RP from any distribution with full support in the range of Ma be

4:  Repeat power iteration update N times: u(*t1) := T(1, M;bu(’), M(I7cu(’)).

50 4y = u(N)/|< MJr LU N)>|1/2; by = Mb,CM(J{,C&t; G = Mcbe;b&t; N =
T(M] ,a, M g, M} at) T:=T—|\a: @by @ ¢y

6: end for

where the third step uses the fact that x,, ,(4)2,, 4(j) = 0 for i # j, and the fourth step uses the fact
that @, ,(i)> = x,, ,(i). Finally, for i # j # k,

) ) )
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where we use the same two facts in the second step. O

E[cn(i)en(i)en (k)] = E

D Asymmetric generalized tensor power method

Let {a1,az,...,ax} C RPa, {by,by,... b} C RP* and {c1,ca,...,cx} C RP< be sets
of linearly independent vectors. Let M, , := Zf{zl oy for (u,v) € {a,b,c} x {a,b,c},
and Myp. = Zthl Atar ® by ® ¢, where o = sign(A;) € {£1}. Given (estimates of)
Myp, My e, My, Mgy, Algorithm 3 approximates {(as, by, ¢, Ay) : ¢ € [K]}. The proof of
convergence (assuming exact estimates of M, y,, M, ., My ., M, o) is very similar to Proposition 2
and is thus omitted.

E An alternative model of contrast

We consider a different generative model in which the topic of a document is a simple (fixed) mixture
of a foreground topic and a background topic (say, 0.9} +0.1 ui’, with probability wy 4/, fort € [K fl
and ¢t € [K®]). One can treat this using the previous model with K = K K® topics, but there are
really only K* + KP topics. Using auxiliary background data which is modeled by a topic model
over just the background topics {¢®, : t' € [K®]}, it is possible to determine an orthogonal projector
II € RP*P for the range of the second-order moments, which approximately captures the span of
the {,u?,}. Then, the projection I — II can be applied to the second- and third-order moments of
the foreground documents (Which is generated by mixed topics) to annihilate the background topic
contributions: (I —T1)(0.9uf +0.145) = 0.9(1 —1II)f. If, in addition, the support of the foreground
topics and background topics are disjoint (as in Brown clusters), then (I — II) ,ut = ut Therefore,
one can directly estimate the K foreground topics using the foreground data. Moreover, we do not
need to fully estimate the model for the background documents, as we only need the second-order
(but not third-order) moments to determine II.

We used this model to conduct experiments similar to those reported in Section 3.2 on the RCV1
dataset, and observed qualitatively similar results, but it was less numerically stable compared to
Algorithm 1. Developing better estimators for this model is a promising direction of future research.
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