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Abstract

Approximate dynamic programming approaches to the reinforcement learning
problem are often categorized into greedy value function methods and value-based
policy gradient methods. As our first main result, we show that an important subset
of the latter methodology is, in fact, a limiting special case of a general formula-
tion of the former methodology; optimistic policy iteration encompasses not only
most of the greedy value function methods but also natural actor-critic methods,
and permits one to directly interpolate between them. The resulting continuum ad-
justs the strength of the Markov assumption in policy improvement and, as such,
can be seen as dual in spirit to the continuum in TD(λ)-style algorithms in policy
evaluation. As our second main result, we show for a substantial subset of soft-
greedy value function approaches that, while having the potential to avoid policy
oscillation and policy chattering, this subset can never converge toward an opti-
mal policy, except in a certain pathological case. Consequently, in the context of
approximations (either in state estimation or in value function representation), the
majority of greedy value function methods seem to be deemed to suffer either from
the risk of oscillation/chattering or from the presence of systematic sub-optimality.

1 Introduction

We consider the reinforcement learning problem in which one attempts to find an approximately
optimal policy for controlling a stochastic nonlinear dynamical system. We focus on the setting in
which the target system is actively sampled during the learning process. Here the sampling policy
changes during the learning process in a manner that depends on the main policy being optimized.
This learning setting is often called interactive learning [e.g., 25, §3]. Many approaches to the
problem are value-based and build on the methodology of simulation-based approximate dynamic
programming [25, 4, 9, 21, 8, 23]. The majority of these methods are often categorized into greedy
value function methods (critic-only) and value-based policy gradient methods (actor-critic) [e.g.,
25, 15].

Within this interactive setting, the policy gradient approach has better convergence guarantees, with
the strongest case being for Monte Carlo evaluation with ‘compatible’ value function approximation.
In this case, convergence with probability one (w.p.1) to a local optimum can be established for
arbitrary differentiable policy classes under mild assumptions [24, 15, 21]. On the other hand, while
the greedy value function approach is often considered to possess practical advantages in terms of
convergence speed and representational flexibility, its behavior in the proximity of an optimum is
currently not well understood. It is well known that interactively operated approximate hard-greedy
value function methods can fail to converge to any single policy and instead become trapped in
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sustained policy oscillation or policy chattering, which is currently a poorly understood phenomenon
[6, 7]. This applies to both non-optimistic and optimistic policy iteration (value iteration being a
special case of the latter). In general, the best guarantees for this methodology exist in the form of
sub-optimality bounds [6, 7]. The practical value of these bounds, however, is under question (e.g.,
[2; 7, §6.2.2]), as they can permit very bad solutions. Furthermore, it has been shown that these
bounds are tight [7, §6.2.3; 14, §3.2].

A hard-greedy policy is a discontinuous function of its parameters, which has been identified as a
key source of problems [20, 11, 19, 24]. In addition to the observation that the class of stochastic
policies may often permit much simpler solutions [cf. 22], it is known that continuously stochastic
policies can also re-gain convergence: both non-optimistic and optimistic soft-greedy approximate
policy iteration using, for example, the Gibbs/Boltzmann policy class, is known to converge with
enough softness, ‘enough’ being problem-specific. This has been shown by Perkins & Precup [20]
and Melo et al. [16], respectively, although with no consideration of the quality of the obtained
solutions nor with an interpretation of how ‘enough’ relates to the problem at hand. Unfortunately,
the aforementioned sub-optimality bounds are also lost in this case (consider temperature τ → ∞);
while convergence is re-gained, the properties of the obtained solutions are rather unknown.

To summarize, there are considerable shortcomings in the current understanding of the learning
dynamics at the very heart of the approximate dynamic programming methodology. We share the
belief of Bertsekas [5, 6], expressed in the context of the policy oscillation phenomenon, that a
better understanding of these issues “has the potential to alter in fundamental ways our thinking
about approximate DP.”

In this paper, we provide insight into the convergence behavior and optimality of the generalized
optimistic form of the greedy value function methodology by reflecting it against the policy gradient
approach. While these two approaches are considered in the literature mostly separately, we are
motivated by the belief that it is eventually possible to fully unify them, so as to have the benefits and
insights from both in a single framework with no artificial (or historical) boundaries, and that such a
unification can eventually resolve the issues outlined above. These issues revolve mainly around the
greedy methodology, while at the same time, solid convergence results exist for the policy gradient
methodology; connecting these methodologies more firmly might well lead to a fuller understanding
of both.

After providing background in Section 2, we take the following steps in this direction. First, we
show that natural actor-critic methods from the policy gradient side are, in fact, a limiting special
case of optimistic policy iteration (Sec. 3). Second, we show that while having the potential to avoid
policy oscillation and chattering, a substantial subset of soft-greedy value function approaches can
never converge to an optimal policy, except in a certain pathological case (Sec. 4). We then conclude
with a discussion in a broader context and use the results to complete a high-level convergence and
optimality property map of the variants of the considered methodology (Sec. 5).

2 Background

A Markov decision process (MDP) is defined by a tuple M = (S,A,P, r), where S and A denote
the state and action spaces. St ∈ S and At ∈ A denote random variables at time t. s, s′ ∈ S
and a, b ∈ A denote state and action instances. P(s, a, s′) = P(St+1 = s′|St = s,At = a)
defines the transition dynamics and r(s, a) ∈ R defines the expected immediate reward function.
Non-Markovian aggregate states, i.e., subsets of S, are denoted by y. A policy π(a|s, θk) ∈ Π is
a stochastic mapping from states to actions, parameterized by θk ∈ Θ. Improvement is performed
with respect to the performance metric J(θ) = 1/H

∑H
t E[r(St, At)|π(θ)]. ∇θJ(θk) ∈ Θ denotes

a parameter gradient at θk. ∇πJ(θk) ∈ Π denotes the corresponding policy gradient in the selected
policy space. We define the policy distance ‖πu − πv‖ as some p-norm of the action probability
differences (

∑
s

∑
a |πu(a|s)−πv(a|s)|p)1/p. Action value functions Q̄(s, a, ŵk) and Q(s, a, ŵk),

parameterized by ŵk, are estimators of the γ-discounted cumulative reward
∑

t γ
tE[r(St, At)|S0 =

s,A0 = a, π(θk)] for some (s, a) when following some policy π(θk). The state value function
V (s, ŵk) is an estimator of such cumulative reward that follows some s. We use ε to denote a small
positive infinitesimal quantity.
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We focus on the Gibbs (Boltzmann) policy class with a linear combination of basis functions φ:

π(a|s, θk) =
eθ

>
k φ(s,a)∑

b e
θ>
k φ(s,b)

. (1)

We shall use the term ‘semi-uniformly stochastic policy’ for referring to a policy for which π(a|s) =
cs ∨ π(a|s) = 0, ∀s, a, ∀s ∃cs ∈ [0, 1]. Note that both the uniformly stochastic policy and all
deterministic policies are special cases of semi-uniformly stochastic policies.

For the value function, we focus on least-squares linear-in-parameters approximation with the same
basis φ as in (1). We consider both advantage values [see 24, 21]

Q̄k(s, a, ŵk) = ŵ>
k

(
φ(s, a)−

∑
b

π(b|s, θk)φ(s, b)

)
(2)

and absolute action values
Qk(s, a, ŵk) = ŵ>

k φ(s, a) . (3)

Evaluation can be based on either Monte Carlo or temporal difference estimation. We focus on
optimistic policy iteration, which contains both non-optimistic policy iteration and value iteration as
special cases, and on the policy gradient counterparts of these.

In the general form of optimistic approximate policy iteration (e.g., [7, §6.4]; see also [6, §3.3]), a
value function parameter vector w is gradually interpolated toward the most recent evaluation ŵ:

wk+1 = wk + κk(ŵk − wk) , κk ∈ (0, 1] . (4)

Non-optimistic policy iteration is obtained with κk = 1, ∀k and ‘complete’ evaluations ŵk (see
below). The corresponding Gibbs soft-greedy policy is obtained by combining (1) and a temperature
(softness) parameter τ with

θk+1 = wk+1/τk , τk ∈ (0,∞) . (5)

Hard-greedy iteration is obtained in the limit as τ → 0.

In optimistic policy iteration, policy improvement is based on an incomplete evaluation. We distin-
guish between two dimensions of completeness, which are evaluation depth and evaluation accu-
racy. By evaluation depth, we refer to the look-ahead depth after which truncation with the previous
value function estimate occurs. For example, LSPE(0) and LSTD(0) [e.g., 17] implement shallow
and deep evaluation, respectively. With shallow evaluation, the current value function parameter
vector wk is required for look-ahead truncation when computing ŵk+1. Inaccurate (noisy) evalua-
tion necessitates additional caution in the policy improvement process and is the usual motivation
for using (4) with κ < 1.

It is well known that greedy policy iteration can be non-convergent under approximations [4]. The
widely used projected equation approach can manifest convergence behavior that is complex and
not well understood, including bounded but potentially severe sustained policy oscillations [6, 7].
Similar consequences arise in the context of partial observability for approximate or incomplete state
estimation [e.g., 22, 18]. A detailed description of the oscillation phenomenon can be found in [7,
§6.4; 6, §3.5], where it is described in terms of cyclic sequences on the so-called greedy partition
of the value function parameter space. It is also noted that the properties of the policy evaluation
method (including properties that affect evaluation depth) do not seem to affect the ultimate cycles
of policies. It is possible to obtain asymptotic parameter convergence by employing an optimistic
policy iteration scheme, but even then the corresponding policy can continue oscillating. This is
known as policy chattering. In such cases, the value function parameters spiral toward an attractor
on a boundary of the greedy partition, and the obtained value function can fail to meaningfully
represent the expected returns of any of the involved policies [6, §3.5]. A novel explanation to the
phenomenon in the non-optimistic case was recently proposed in [26, 27], where policy oscillation
was re-cast as sustained overshooting over an attractive stochastic policy.

Policy convergence can be established under various restrictions. A common approach is to use
θ-independent sampling (non-interactivity), which enables convergence for a well-studied family
of approximators (for reviews of this methodology, see [28, §2] and [9]). Interestingly, with the
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θ-independent aggregation approach introduced in [6, 5], convergence is obtained without com-
pletely sacrificing interactivity. However, the approach is based on a θ-independent projection map-
ping, which effectively causes representational resources to be allocated in a fixed manner instead
of according to the on-policy distribution; one of the natural benefits of interactivity becomes lost,
although whether this has practical implications remains to be seen. In the case of Monte Carlo
estimation of action values, it is also possible to establish convergence by solely modifying the ex-
ploration scheme [e.g., 10]. Importantly to this paper, convergence can be established also with
continuously soft-greedy action selection [20, 16], in which case, however, the quality of the ob-
tained solutions is unknown. Finally, the analysis in [12] bears some resemblance to our first main
result. The key to seeing the relation is in noting that their main update rule (their Eq. (4.1)) is equiv-
alent to our Eq. (4), except for being defined in the policy space. While they establish convergence
up to a “breaking point” under relatively restrictive assumptions, we proceed by directly connecting
to stronger and more generic results from the policy gradient literature.

In policy gradient reinforcement learning [24, 15, 21, 8], improvement is obtained via stochastic
gradient ascent:

θk+1 = θk + αkG(θk)
−1 ∂J(θk)

∂θ
= θk + αkηk , (6)

where αk ∈ (0,∞), G is a Riemannian metric tensor that ideally encodes the curvature of the
policy parameterization, and ηk is some estimate of the gradient. With value-based policy gradient
methods, using (1) together with either (2) or (3) fulfills the ‘compatibility condition’ [24, 15]. With
(2), the value function parameter vector ŵk becomes the natural gradient estimate for the evaluated
policy π(θk), leading to natural actor-critic algorithms [13, 21], for which

ηk = ŵk . (7)

For policy gradient learning with a ‘compatible’ value function and Monte Carlo evaluation, con-
vergence w.p.1 to a local optimum is established under standard assumptions [24, 15]. Temporal
difference evaluation can lead to sub-optimal results with a known sub-optimality bound [15, 8].

3 Forgetful natural actor-critic

In this section, we show that an important subset of natural actor-critic algorithms is a limiting
special case of optimistic policy iteration. A related connection was recently shown in [26, 27],
where a modified form of the natural actor-critic algorithm by Peters & Schaal [21] was shown
to correspond to non-optimistic policy iteration. In the following, we generalize and simplify this
result: by starting from the more general setting of optimistic policy iteration, we arrive at a unifying
view that both encompasses a broader range of greedy methods and permits interpolation between
the approaches directly with existing (unmodified) methodology.

We consider the Gibbs policy class from (1) and the linear-in-parameters advantage function from
(2), which form a ‘compatible’ actor-critic setup. We assume deep policy evaluation (cf. Section 2).
We begin with the natural actor-critic (NAC) algorithm by Peters & Schaal [21] (cf. (6) and (7)) and
generalize it by adding a forgetting term:

θk+1 = θk + αkηk − κkθk , (8)

where αk ∈ (0,∞), κk ∈ (0, 1]. We refer to this generalized algorithm as the forgetful natural
actor-critic algorithm, or NAC(κ). In the following, we show that this algorithm is, within the
discussed context, equivalent to the general form of optimistic policy iteration in (4) and (5), with
the following translation of the parameterization:

τk =
κk

αk
, or αk =

κk

τk
. (9)

Taking the forgetting factor κ in (8) toward zero leads back toward the original natural actor-critic
algorithm, with the implication that the original algorithm is a limiting special case of optimistic
policy iteration.
Theorem 1. For the case of deep policy evaluation (Section 2), the natural actor-critic algorithm
for the Gibbs policy class ((6), (7), (1), (2)) is a limiting special case of Gibbs soft-greedy optimistic
policy iteration ((4), (5), (1), (2)).
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Proof. The update rule for Gibbs soft-greedy optimistic policy iteration is given in (4) and (5). By
moving the temperature to scale ŵ (assume w0 to be scaled accordingly), we obtain{

w′
k+1 = w′

k + κk(ŵk/τk − w′
k)

θk+1 = w′
k+1 ,

(10)

again with κk ∈ (0, 1], τk ∈ (0,∞). Such a re-formulation effectively re-scales w and is possible
only with deep policy evaluation (cf. Section 2), with which the non-scaled w is not needed by the
policy evaluation process. We can now remove the redundant second line and rename w′ to θ:

θk+1 = θk + κk(ŵk/τk − θk) . (11)
Finally, we open up the last term and encapsulate κ/τ into α:

θk+1 = θk + κk(ŵk/τk)− κkθk (12)
= θk + αkŵk − κkθk , (13)

with αk = κk/τk. Based on (7), we observe that (13) is equivalent to (8). The original natural
actor-critic algorithm is obtained in the limit as κk → 0, which causes the forgetting term κkθk to
vanish (the effective step size α can still be controlled with τ ).

This result has some interesting implications. First, it becomes apparent that the implicit effective
step size in optimistic policy iteration is, in fact, α = κ/τ , i.e., it is inversely related to the tem-
perature τ . If the interpolation factor κ is held fixed, a low temperature, which can lead to policy
oscillation, equals a long effective step size. This agrees with the interpretation of policy oscillation
as overshooting in [26, 27]. Likewise, a high temperature equals a short effective step size. In [20],
convergence is established for a high enough constant temperature. This result now becomes trans-
lated to showing that convergence is established with a short enough constant effective step size,1
which creates an interesting and more direct connection to convergence results for (batch) steepest
descent methods with a constant step size [e.g., 1, 3]. In addition, this connection might permit the
application of the results in the aforementioned literature to establish, in the considered context, a
constant step size convergence result for the natural actor-critic methodology.

Second, we see that the interpolation scheme in optimistic policy iteration, while originally intro-
duced for the sake of countering an inaccurate value function estimate, actually goes in the direction
of the policy gradient methodology. Smooth interpolation between policy gradient and greedy value
function learning turns out to be possible by simply adjusting the interpolation factor κ while treat-
ing the temperature τ as an inverse of the step size (we return to provide an interpretation of the role
of κ at a later point). Contrary to the related result in [26], no modifications to existing algorithms
are needed. This connection also allows the convergence results from the policy gradient literature
to be brought in (see Section 2): convergence w.p.1, under standard assumptions from the referred
literature, to an optimal solution is established in the limit for this class of approximate optimistic
policy iteration as the interpolation factor κ is taken toward zero and the step size requirements are
inversely enforced on the temperature τ .

Third, we observe that in non-optimistic policy iteration (κ = 1), the forgetting term resets the
parameter vector to the origin at the beginning of every iteration, with the implication that solutions
that are not within the range of a single step from the origin in the direction of the natural gradient
cannot be reached in any number of iterations. The choice of the effective step size, which is
inversely controlled by the temperature, becomes again decisive: a step size that is too short (the
temperature is too high) will cause the algorithm to permanently undershoot the desired optimum,
thus trapping it in sustained sub-optimality, while a step size that is too long (the temperature is too
low) will cause it to overshoot, which can additionally trap it in sustained oscillation. Unfortunately,
even hitting the target exactly with a perfect step size will fail to lead to convergence and optimality
at the same time. Our next section examines these issues more closely.

4 Systematic non-optimality of soft-greedy methods

For greedy value function methods, using the hard-greedy policy class trivially prevents conver-
gence to other than deterministic policies. Furthermore, the proximity of an attractive stochastic

1Note that the diminishing step size αt in [20, Fig. 1] concerns policy evaluation, not policy improvement.
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policy can prevent convergence altogether and trap the process in oscillation (cf. Section 2). The
Gibbs soft-greedy policy class, on the other hand, can represent stochastic policies, fixed points do
exist [11, 19], and convergence toward some policy is guaranteed with sufficient softness [20, 16].
While convergence toward deterministic optimal decisions is trivially lost as soon as any softness
is introduced (τ 6→ 0, and assuming a bounded value function), one might hope that convergence
toward stochastic optimal decisions could still occur in some cases. Unfortunately, as we show in
the following, this is not the case: in the presence of any softness, this approach can never converge
toward any optimal policy (i.e., convergence and optimality become mutually exclusive), except in
a certain pathological case.

At this point, we wish to make clear that we are not arguing against the practical value of the greedy
value function methodology in (interactively) approximated problems; the methodology has some
clear merits, and the sub-optimality and oscillations could well be negligible in a given task. Instead,
we take the following result, together with existing literature on policy oscillations, as an indication
of a fundamental theoretical incompatibility of this methodology to this context: the way by which
this methodology deals with stochastic optima seems to be fundamentally flawed, and we believe
that a thorough understanding of this flaw will have, in addition to facilitating sound theoretical
advances, also immediate practical value by permitting correctly informed trade-off decisions.

Lemma 1. Consider the Gibbs/Boltzmann distribution P(i|ω) = eω
>I(i)/

∑
z e

ω>I(z), where
ω ∈ Rn, and I(i) ∈ Rn is the indicator function that picks the ith element of its multiplier. This
distribution is invariant to, and only to, uniform translations of its argument vector ω:

e(ω+c)>I(i)∑
z e

(ω+c)>I(z) =
eω

>I(i)∑
z e

ω>I(z) , ∀i , (14)

where c ∈ Rn, if and only if
c>I(i) = c>I(z) , ∀i, z . (15)

Furthermore, the Gibbs policy class in (1) is invariant to, and only to, per-state uniform transla-
tions of the term θ>φ(s, a), and if some translation of the parameter vector θ operates within this
invariance for some θx, then it does so for all θ.

Proof. Consider some translation c of the argument vector ω of the Gibbs/Boltzmann distribution
P(i|ω) = eω

>I(i)/
∑

z e
ω>I(z), with ω, c ∈ Rn, and I(i) ∈ Rn as the indicator function that picks

the ith element of its multiplier:

e(ω+c)>I(i)∑
z e

(ω+c)>I(z) =
eω

>I(i)+c>I(i)∑
z e

ω>I(z)+c>I(z) =
eω

>I(i)ec
>I(i)∑

z e
ω>I(z)ec>I(z) =

eω
>I(i)∑

z e
ω>I(z) , ∀i , (16)

if and only if
c>I(i) = c>I(z) , ∀i, z . (17)

Importantly to us, whether translating by some c affects the distribution or not, does not depend on
the value of ω, as ω does not appear in (17): if a given c is neutral for some ω, then it is neutral for
all ω.

We note that the condition (17) only requires c>I(i) to evaluate to the same value for all i, but this
condition does not take a stance on what happens inside this term. Thus, we can replace, without
modifying the form of the requirement, the indicator function I(i) with a function f( ·) ∈ Rn that
picks an arbitrary linear combination of elements from its multiplier:

c>f(i) = c>f(z) , ∀i, z . (18)

Finally, we can extend f to accept an additional argument k, with the consequence that (18) must
hold simultaneously for all k to permit the last step in (16):

e(ω+c)>f(k,i)∑
z e

(ω+c)>f(k,z)
=

eω
>f(k,i)∑

z e
ω>f(k,z)

, ∀k, i (19)

⇔ c>f(k, i) = c>f(k, z) , ∀k, i, z . (20)
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(19) and (20) now apply to (1), stating that (1) is invariant to, and only to, per-state uniform transla-
tions of the term θ>φ(s, a), and that if some translation c of the parameter vector θ operates within
this invariance for some θx, then it does so for all θ:

π(a|s, θx + c) = π(a|s, θx) ∀s, a
⇔ π(a|s, θ + c) = π(a|s, θ) ∀s, a, θ .

(21)

Theorem 2. Assume an unbiased value function estimator (e.g., Monte Carlo evaluation). Now,
for Gibbs soft-greedy policy iteration ((1), (4) and (5)) using a linear-in-parameters value function
approximator ((2) or (3)), including optimistic and non-optimistic variants (any κ in (4)), there
cannot exist a fixed point at an optimum, except for the uniformly stochastic policy.

Proof outline. A fixed point of the update rule (4) must satisfy

ŵk = wk , (22)

i.e., at a fixed point, the policy evaluation step ŵk := eval(π(wk/τk)) for the current parameter
vector must yield the same parameter vector as its result:

eval (π (wk/τk)) = wk . (23)

By applying (22) and (7), we have

wk = ŵk = ηk = G(θk)
−1∇θJ(θk) , (24)

which shows that the fixed-point policy π(wk/τk) in (23) is defined solely by its own (scaled)
performance gradient.

For an optimal policy and an unbiased estimator, this parameter gradient must, by definition, map to
the zero policy gradient, i.e., to ∇πJ(θk) = 0. Consequently, an optimal policy at a fixed point is
defined solely by the zero policy gradient, making the policy equal to π(0), which is the uniformly
stochastic policy.

Proof. By definition, when the policy defined by some θx ∈ Θ is locally optimal, the parameter
gradient vector ηx,0 = G(θx)

−1∇θJ(θx) estimated by an unbiased estimator must be such that it
maps to the zero policy gradient ∇πJ(θx) = 0 at θx, i.e., it does not change π at θx:

π(θx + αηx,0) = π(θx) , ∀α , (25)

with π( ·) from (1). For this to be possible, ηx,0 must fulfill (20) (in the role of c), which allows us
to apply (21) and extend (25) from θx to all θ:

π(θx + αηx,0) = π(θx) , ∀α
⇔ π(θ + αηx,0) = π(θ) , ∀α, θ .

(26)

Most importantly, (26) implies the following:

π(θx + αηx,0) = π(θx) , ∀α
⇔ π(αηx,0) = π(0 + αηx,0) = π(0) , ∀α ,

(27)

where π(0) is the uniformly stochastic policy. In words, whenever the evaluated policy is locally
optimal, an unbiased gradient estimator must produce such a parameter gradient vector ηx,0 that
when added to any policy parameter vector θ, including the zero parameter vector, does not change
the resulting policy.

A fixed point of the update rule (4) must satisfy

ŵk = wk , (28)

regardless of the value of κ. By applying (5), we see that the limiting policy at a fixed point is

π(ŵk/τk) . (29)
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For the case of (2), we can apply (7) and re-write this policy as

π(αkηk) , (30)

with αk = 1/τk. Also, the combination of (1) and (2) forms a ‘compatible’ actor-critic setup,
implying that with an unbiased value function estimator, ηk is an unbiased gradient estimate (Sec-
tion 2). Consequently, for a locally optimal policy, ηk must fulfill (27), with the implication that
(30) is the uniformly stochastic policy. Thus, under the given assumptions, whenever the policy is
simultaneously locally optimal and a fixed point of (4), it must be the uniformly stochastic policy.

Extension from (2) to (3) follows by noting that the definitions of Q̄ and Q differ only by a per-state
uniform translation: Q(s, a) = Q̄(s, a) + V (s). As observed in [24], such a translation does not
break the compatibility condition, i.e., it does not affect the biasedness of the corresponding gradient.
This can be seen also by noting that the translation in Q(s, a) = ŵ>φ(s, a) is carried, via (29), to
a per-state uniform translation of the term θ>φ(s, a) in (1), to which the policy class was shown in
(19) and (20) to be invariant. Consequently, ŵk/τk in (29) still defines an unbiased gradient estimate
and, for a locally optimal policy, (27) stays in effect.

This result still leaves open the possibility of a fixed point residing vanishingly close to an optimum,
in which case asymptotic convergence toward such a fixed point would mean asymptotic conver-
gence toward the adjacent optimum. This possibility is ruled out with the following theorem that
shows, assuming a smooth gradient field and τ 6→ 0, that the distance between a fixed point and
an optimum cannot be vanishingly small, with the exception of an optimum that is semi-uniformly
stochastic (assuming unbounded returns) or uniformly stochastic (assuming bounded returns).

Lemma 2. For the Gibbs/Boltzmann distribution P(i|ω) = e(ω/τ)>I(i)/
∑

z e
(ω/τ)>I(z), any finite

decrease of the temperature τ has a vanishingly small effect on the distribution if and only if the
initial distribution is vanishingly close to being semi-uniformly stochastic (we simplify our notation
by noting that decreasing the temperature is equivalent to upscaling the parameter vector):∣∣∣∣∣ eω

>I(i)∑
z e

ω>I(z) −
e(αω)>I(i)∑
z e

(αω)>I(z)

∣∣∣∣∣ < ε , ∀i, ∀α > 1, α 6→ ∞ (31)

⇔

∣∣∣∣∣ eω
>I(i)∑

z e
ω>I(z) − c

∣∣∣∣∣ < ε ∨ eω
>I(i)∑

z e
ω>I(z) < ε , ∀i, ∃c ∈ [0, 1] . (32)

Proof. Informally, this holds because decreasing the temperature makes the distribution more de-
terministic by amplifying the probability differences present. For this to have no non-vanishing
effect on the distribution for any finite decrease of the temperature, it must be that there are no non-
vanishing probability differences in non-vanishingly weak dimensions to be amplified, i.e., for all
dimensions for which the distribution is not close to zero it must be close to some common constant.

Consider a parameter vector ω̄ that defines some initial Gibbs distribution. Let us choose one of the
maximizing dimensions of this distribution and denote it by i?:

eω̄
>I(i?)∑

z e
ω̄>I(z) ≥ eω̄

>I(j)∑
z e

ω̄>I(z) , ∀j . (33)

There might also exist some dimensions by which the distribution is non-vanishingly smaller than for
the maximizing dimension i?, in case that the distribution is not close to being uniformly stochastic.
Let us denote the (possibly empty) set of these dimensions by K:

K =

{
k

∣∣∣∣∣ eω̄
>I(i?)∑

z e
ω̄>I(z) � eω̄

>I(k)∑
z e

ω̄>I(z)

}
, (34)

where � is a shorthand for a non-vanishing inequality. We then de-normalize (33) and (34) into{
eω̄

>I(i?) ≥ eω̄
>I(j) , ∀j , (35a)

eω̄
>I(i?) � eω̄

>I(k) , ∀k ∈ K . (35b)
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We can see that for the near-equality in (31) to hold for the considered ω̄ and for the i? chosen, i.e.,∣∣∣∣∣ eω̄
>I(i?)∑

z e
ω̄>I(z) −

e(αω̄)>I(i?)∑
z e

(αω̄)>I(z)

∣∣∣∣∣ < ε , ∀α > 1, α 6→ ∞ , (36)

it must be that α makes both the numerator and the denominator of the affected fraction to grow (or
shrink for a negative ω̄>I(i?)) nearly exactly as fast, so that the effect of α nearly cancels out. Let
us use σi to denote the scaling factor by which α scales the terms e(αω̄)>I(i):

σi =
e(αω̄)>I(i)

eω̄>I(i) . (37)

We note that α affects the value of these terms via linear operations and an exponentiation with a
positive base, making the effect of α strictly monotone. By combining this monotonicity with (35a),
it follows that α can make no term of the affected denominator sum in (36) to grow faster (or shrink
slower) than the affected numerator, and, by furthermore combining this monotonicity with (35b),
it follows that α will make all terms of the affected denominator sum in (36) that correspond to the
dimensions in K to grow non-vanishingly slower (or to shrink non-vanishingly faster for a negative
ω̄>I(i?)) than the affected numerator:{

σi? ≥ σj , ∀j (38a)
σi? � σj , ∀j ∈ K . (38b)

We now see from (38) that for the affected fraction in (36) to stay nearly constant, it must be that
all of the terms in the denominator sum that correspond to the dimensions in K have a vanishingly
small effect on the sum: if any non-vanishingly contributing term is affected by (38b), there can be
no other term that would compensate for this change in the sum, due to (38a). In other words, for
the near-equality in (31) to hold for the considered ω̄ and for the maximizing i? chosen earlier, every
term in the denominator sum

∑
z e

ω̄>I(z) of the initial distribution must be either a) vanishingly
close to the term for i? (eω̄

>I(i?) 6� eω̄
>I(z), so that z 6∈ K), or b) have a vanishingly small effect

on the sum (eω̄
>I(z)/

∑
z′ eω̄

>I(z′) < ε):

eω̄
>I(i?) − eω̄

>I(z) < ε ∨ eω̄
>I(z)∑

z′ eω̄
>I(z′)

< ε , ∀z . (39)

By comparing to the semi-uniformity requirement in (32) while letting c = eω̄
>I(i?), it can be

seen that (39) now defines a policy that is vanishingly close to a semi-uniformly stochastic policy.
Extension to the Gibbs policy in (1) follows directly by replacing I(i) with f(k, i) as in Lemma 1.

Theorem 3. Consider the family of methods from Theorem 2. Assume a smooth policy gradient field
(‖∇πJ(πu)−∇πJ(πv)‖ → 0 as ‖πu − πv‖ → 0) and τ 6→ 0. First, the policy distance between a
fixed point policy πf and an optimal policy π? cannot be vanishingly small (

∥∥πf − π?
∥∥ 6< ε), except

if the optimal policy π? is a semi-uniformly stochastic policy. Second, for bounded returns (γ 6→ 1
and r(s, a) 6→ ±∞,∀s, a), the policy distance between a fixed point policy πf and an optimal policy
π? cannot be vanishingly small (

∥∥πf − π?
∥∥ 6< ε), except if the optimal policy π? is the uniformly

stochastic policy.

Proof outline. For a policy π̄ = π(wk/τk) that is vanishingly close to an optimum, an unbiased
parameter gradient ηk must, assuming a smooth gradient field, map to a policy gradient that is
vanishingly close to zero, i.e., ηk must have a vanishingly small effect on π̄ with any finite step size:

‖π(wk/τk + αηk)− π(wk/τk)‖ < ε , ∀α > 0, α 6→ ∞ . (40)

If π̄ is also a fixed point, then, by (24), we can substitute both wk and ηk in (40) with ŵk:

‖π(ŵk/τk + αŵk)− π(ŵk/τk)‖ < ε , ∀α > 0, α 6→ ∞
⇔ ‖π ((1/τk + α)ŵk)− π((1/τk)ŵk)‖ < ε , ∀α > 0, α 6→ ∞ .

(41)
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We now see that π̄ is defined solely by a temperature-scaled version of a vanishingly small policy
gradient, and that the condition in (40) is equivalent to stating that any finite decrease of the tem-
perature must not have a non-vanishing effect on π̄. As only semi-uniformly stochastic policies are
invariant to such temperature decreases, it follows that π̄ must be vanishingly close to such a policy.

Furthermore, if assuming bounded returns, then no dimension of the term ŵ>φ(s, a) can approach
positive or negative infinity when ŵ is estimated using (2) or (3). Consequently, for τ 6→ 0, the
uniformly stochastic policy π(0) becomes the only semi-uniformly stochastic policy that the Gibbs
policy class in (1) can approach, with the implication that π̄ must be vanishingly close to the uni-
formly stochastic policy.

Proof. Consider some policy π̄ = π(wk/τk) from the Gibbs policy class (1) that is vanishingly
close to a local optimum π?:

‖π(wk/τk)− π?‖ < ε . (42)
By definition, for a smooth policy gradient field, the parameter gradient vector ηk =
G(π̄)−1∇θJ(π̄) estimated for this policy by an unbiased value function estimator and approxi-
mator (e.g., Monte Carlo evaluation with (2)) must be such that it maps to a vanishingly small policy
gradient ‖∇πJ(π̄)‖ < ε, i.e., ηk has a vanishingly small effect on π̄ as long as the step size is finite:

‖π(wk/τk + αηk)− π(wk/τk)‖ < ε , ∀α > 0, α 6→ ∞ . (43)

Now assume that π̄ is a limiting fixed point policy of the update rule (4) when using the policy
mapping (5). It follows immediately from (4) that such a fixed point must satisfy

ŵk = wk , (44)

regardless of the value of κ. If the policy evaluation step ŵk := eval(π(wk/τk)) is performed using
(2), we can directly use (7), which leads to

ŵk = ηk . (45)

Also, the combination of (1) and (2) forms a ‘compatible’ actor-critic setup, implying that with an
unbiased value function estimator, ŵk = ηk is an unbiased gradient estimate (Section 2). Extension
from (2) to (3) follows as in Theorem 2, with the implication that ŵk is an unbiased gradient estimate
also when using (3). This now allows us to take (43) and apply (44) and (45), so as to substitute both
wk and ηk with ŵk:

‖π(ŵk/τk + αŵk)− π(ŵk/τk)‖ < ε , ∀α > 0, α 6→ ∞
⇔ ‖π ((1/τk + α)ŵk)− π((1/τk)ŵk)‖ < ε , ∀α > 0, α 6→ ∞ .

(46)

We observe that the sole effect of α in (46) is that it decreases the temperature of the policy,
i.e., it makes the policy more deterministic by amplifying the probability differences present in
π(ŵk/τk) = π(wk/τk) = π̄. At the same time, the inequality requirement in (46) states that such
amplification must have a vanishingly small effect on the policy for any finite α: even huge changes
in the policy temperature must have a vanishingly small effect on the policy. As shown by Lemma
2, this is possible only if π̄ is vanishingly close to a semi-uniformly stochastic policy, so that there
are no non-vanishing probability differences in non-vanishingly weak dimensions to be amplified:

|π̄(a|s)− cs| < ε ∨ π̄(a|s) < ε , ∀s, a, ∀s ∃cs ∈ [0, 1] . (47)

The latter case (π̄(a|s) < ε) is possible for the considered Gibbs policy class only if the term
θ>k φ(s, a) in (1) can approach negative infinity or some other term θ>k φ(s, z) can approach positive
infinity (assuming a finite action space). In our case, this translates to the following requirement:

(ŵk/τk)
>φ(s, a) → ±∞ , ∃s, a . (48)

We recall that with both (2) and (3), ŵ>
k φ(s, a) (without the temperature parameter) is a least-

squares fit to the estimated value function, possibly with a baseline shift toward centered values
when using (2). Consequently, ŵ>

k φ(s, a) can approach infinity only if the estimated value function
can approach infinity, which, for an unbiased value function estimator, is possible only if the returns
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∑
t γ

tE[r(St, At)] can approach infinity. This requires that either γ → 1 or r(s, a) → ±∞, ∃s, a.
This applies also to (ŵk/τk)

>φ(s, a) (with the temperature parameter) as long as τ 6→ 0.2 Thus, we
have for τ 6→ 0 that (48) and consequently the latter case in (47) can hold only if

γ → 1 ∨ r(s, a) → ±∞ , ∃s, a . (49)
In summary, a fixed point policy π̄ that is vanishingly close to a local optimum must fulfill (47), i.e.,
it must be vanishingly close to a semi-uniformly stochastic policy. Furthermore, if the conditions in
(49) are not allowed, then π̄ must be vanishingly close to the uniformly stochastic policy.

To interpret the preceding theorems, we observe that the gist of them is that, assuming a well-
behaved gradient field, the closer the evaluated policy is to an optimum, the closer the target point of
the next greedy update will be to the origin (in policy parameter space). At a fixed point, the policy
parameter vector must equal the target point of the next update, causing convergence to or toward a
policy that is exactly optimal but not at the origin to be a contradiction (Theorem 2). Convergence to
or toward a policy that is vanishingly close to an optimum is also impossible, except if the optimum
is (semi-)uniformly stochastic (Theorem 3).

In practical terms, Theorem 2 states that even if the task at hand and the chosen hyperparameters
would allow convergence to some policy in a finite number of iterations, the resulting policy can
never contain optimal decisions, except for uniformly stochastic ones. Theorem 3 generalizes this
result to the case of asymptotic convergence toward some limiting policy: for unbounded returns
and any τ 6→ 0, it is impossible to have asymptotic convergence toward any optimal decision in any
state, except for semi-uniformly stochastic decisions, and for bounded returns and any τ 6→ 0, it is
impossible to have asymptotic convergence toward any non-uniform optimal decision in any state.

If convergence is to occur, then the limiting policy must reside “between” the origin and an optimum,
i.e., the result must always undershoot the optimum that the learning process was influenced by.
However, we can see in (23) that by decreasing the temperature τ , it is possible to shift this point of
convergence further away from the origin and closer to the optimum: in the limit of τ → 0, (23) can
permit the parameter vector ŵ to converge toward a point that approaches the origin while, at the
same time, allowing the corresponding policy π(ŵ/τ) to converge toward a policy that is arbitrarily
close to a distant optimum (one can also see that with τ → 0, the inequality in (41) becomes satisfied
for any ŵk, due to α 6→ ∞). Unfortunately, as we already know, such manipulation of the distance of
the fixed point from an optimum by adjusting τ can ruin convergence altogether in non-Markovian
problems. Perkins & Precup [20] report negative convergence results for non-optimistic iteration
(κ = 1) with a too low τ , while for optimistic iteration (κ < 1), Melo et al. [16] report a lack
of positive results. Interestingly, this latter case is exactly what Theorem 1 addressed, showing
that there actually is a way out and that it is by moving toward natural policy gradient iteration:
decreasing the temperature τ toward zero causes the sub-optimality to vanish, while decreasing the
interpolation factor κ at the same rate prevents the effective step size from exploding.

Finally, we provide a brief discussion on some questions that may have occurred to the reader by
now. First, how does the preceding fit with the well-known soundness of greedy value function
methods in the Markovian case? The crucial difference between the Markovian case (fully observ-
able and tabular) and the non-Markovian case (partially observable or non-tabular) follows from the
standard result for MDPs that states that in the former, all optima must be deterministic (with the
possibility of redundant stochastic optima) [e.g., 25, §A.2]. For the Gibbs policy class, determin-
istic policies reside at infinity in some direction in the parameter space, with two implications for
the Markovian case. First, the distance to an optimum never decreases. Consequently, the value
function, being a correction toward an optimum, never vanishes toward a ‘neutral’ state. Second,
only the direction of an optimum is relevant, as the distance can be always assumed to be infinite.
This implies that in, and only in Markovian problems, the value function never ceases to retain all
necessary information about the current solution, while in non-Markovian problems, relying solely
on the value function can lead to losing track of the current solution.

Second, when moving toward an optimum at infinity, how can the value function / natural gradient
(encoded by ŵ = η) stay non-zero and continue to properly represent action values while the corre-

2With τk → 0, the sum 1/τk + α in (46) becomes dominated by the first term (due to α 6→ ∞) and the
inequality becomes satisfied for any ŵk. We return to this in the following discussion.
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Figure 1: The hyperparameter space of the general form of (approximate) optimistic policy
iteration in (4), with known convergence and optimality properties (see text for assumptions).
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Figure 2: Empirical illustration of the behavior of optimistic policy iteration ((1), (2), (4) and (5),
with tabular φ) in the proximity of a stochastic optimum. The problem is shown in Fig. 2a. In

Figures 2b and 2c, the optimum at θ(left) − θ(right) = log(2) is denoted by a solid green line. The
uniformly stochastic policy is denoted by a dashed red line.

sponding policy gradient ∇πJ(θ) must approach zero at the same time? We note that the equivalence
in (7) is between a value function and a natural gradient η. We then recall that the curvature of the
Gibbs policy class turns into a plateau at infinity, onto which the policy becomes pushed when mov-
ing toward a deterministic optimum. The increasing discrepancy between η = G(θ)−1∇θJ(θ) 6→ 0
and ∇πJ(θ) → 0 can be consumed by G(θ)−1 as it captures the curvature of this plateau.

5 Common ground

Figure 1 shows a map of relevant variants of optimistic policy iteration, parameterized as in (4). As
is well known, the hard-greedy variants of this methodology (seen on the left edge on the map) can
become trapped in non-converging cycles over potentially non-optimal policies (see Section 2 for
references and exceptions). For a continuously soft-greedy policy class (toward right on the map),
convergence can be established with enough softness [20, 16]. The natural actor-critic algorithm,
which is convergent and optimal, is placed to the lower left corner by Theorem 1, while the in-
evitable non-optimality of soft-greedy variants toward right follows from Theorems 2 and 3. The
exact (problem-dependent) place and shape of the line separating non-convergent and convergent
soft-greedy variants (dashed line on the map) remains an open problem.

The main value of Theorem 1 is in bringing the greedy value function and policy gradient method-
ologies closer to each other. In our context, the unifying NAC(κ) formulation in (8) permits interpo-
lation between the methodologies using the κ parameter. As discussed at the end of Section 4, the
policy-forgetting term requires a Markovian problem for being justified: a greedy update implicitly
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stands on a Markov assumption and the κ parameter in (8) can be interpreted as adjusting the strength
of this assumption. In this respect, the policy improvement parameter κ in NAC(κ) can be seen (in-
versely) as a dual in spirit to the policy evaluation parameter λ in TD(λ)-style algorithms. On the
policy evaluation side, having λ = 0 obtains variance reduction by assuming and exploiting Marko-
vianity of the problem, while λ = 1 obtains unbiased estimates also for non-Markovian problems.
On the policy improvement side, with κ = 1, we have strictly greedy updates that gain in speed as
the policy can respond instantly to new opportunities appearing in the value function (for empirical
observations of such a speed gain, see [13, 27]), and in representational flexibility due to the lack of
continuity constraints between successive policies (for a canonical example, consider fitted Q itera-
tion). This comes at the price of either oscillation or non-optimality if the Markov assumption fails
to hold, which is illustrated in Figure 2b for the problem in 2a. With κ → 0, we approach natural
gradient updates that remain sound also in non-Markovian settings, which is illustrated in Figure 2c.
The possibility to interpolate between the approaches might turn out useful in problems with partial
Markovianity: a large κ in the NAC(κ) formulation can be used to quickly find the rough direction of
the strongest attractors, after which gradually decreasing κ allows a convergent final ascent toward
an optimum.
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