Efficient Monte Carlo Counterfactual Regret Minimization in Games with Many Player Actions

Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)

Bibtex »Metadata »Paper »Supplemental »


Neil Burch, Marc Lanctot, Duane Szafron, Richard Gibson


Counterfactual Regret Minimization (CFR) is a popular, iterative algorithm for computing strategies in extensive-form games. The Monte Carlo CFR (MCCFR) variants reduce the per iteration time cost of CFR by traversing a sampled portion of the tree. The previous most effective instances of MCCFR can still be very slow in games with many player actions since they sample every action for a given player. In this paper, we present a new MCCFR algorithm, Average Strategy Sampling (AS), that samples a subset of the player's actions according to the player's average strategy. Our new algorithm is inspired by a new, tighter bound on the number of iterations required by CFR to converge to a given solution quality. In addition, we prove a similar, tighter bound for AS and other popular MCCFR variants. Finally, we validate our work by demonstrating that AS converges faster than previous MCCFR algorithms in both no-limit poker and Bluff.