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Abstract

In the setting of active learning for the multi-armed bandit, where the goal of a
learner is to estimate with equal precision the mean of a finite number of arms,
recent results show that it is possible to derive strategies based on finite-time con-
fidence bounds that are competitive with the best possible strategy. We here con-
sider an extension of this problem to the case when the arms are the cells of a
finite partition P of a continuous sampling space X ⊂ Rd. Our goal is now to
build a piecewise constant approximation of a noisy function (where each piece is
one region of P and P is fixed beforehand) in order to maintain the local quadratic
error of approximation on each cell equally low. Although this extension is not
trivial, we show that a simple algorithm based on upper confidence bounds can
be proved to be adaptive to the function itself in a near-optimal way, when |P| is
chosen to be of minimax-optimal order on the class of α−Hölder functions.

1 Setting and Previous work
Let us consider some space X ⊂ Rd, and Y ⊂ R. We call X the input space or sampling space, Y
the output space or value space. We consider the problem of estimating with uniform precision the
function f : X ⊂ Rd → Y ⊂ R. We assume that we can query n times the function f , anywhere in
the domain, and observe noisy samples of this function. These samples are collected sequentially,
and our aim is to design an adaptive procedure that selects wisely where on the domain to query the
function, according to the information provided by the previous samples. More formally:
Observed process We consider an unknown Y-valued process defined on X , written ν : X →
M+

1 (Y), where M+
1 (Y) refers to the set of all probability measures on Y , such that for all x ∈ X ,

the random variable Y (x) ∼ ν(x) has mean f(x)
def
= E[Y (x)|x] ∈ R. We write for convenience the

model in the following way
Y (x) = f(x) + noise(x) ,

where noise(x)
def
= Y (x) − E[Y (x)|x] is the centered random variable corresponding to the noise,

with unknown variance σ2(x). We assume throughout this paper that f is α-Hölder.
Partition We consider we can define a partition P of the input space X , with finitely many P
regions {Rp}1≤p≤P that are assumed to be convex and not degenerated, i.e. such that the interior
of each region Rp has positive Lebesgue volume vp. Moreover, with each region Rp is associated
a sampling distribution in that region, written µp ∈ M+

1 (Rp). Thus, when we decide to sample in
regionRp, a new sample X ∈ Rp is generated according to X ∼ µp.
Allocation. We consider that we have a finite budget of n ∈ N samples that we can use in order
to allocate samples as we wish among the regions {Rp}1≤p≤P . For illustration, let us assume that
we deterministically allocate Tp,n ∈ N samples in region Rp, with the constraint that the alloca-
tion {Tp,n}1≤p≤P must some to n. In region Rp, we thus sample points {Xp,i}1≤p≤P at random
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according to the sampling distribution µp, and then get the corresponding values {Yp,i}1≤i≤Tp,n ,
where Yp,i ∼ ν(Xp,i). In the sequel, the distribution µp is assumed to be the uniform distribution

over region Rp, i.e. the density of µp is
dλ(x)1x∈Rp

λ(Rp) where λ denotes the Lebesgue measure. Note
that this is not restrictive since we are in an active, not passive setting.

Piecewise constant mean-approximation. We use the collected samples in order to build a piece-
wise constant approximation f̂n of the mean f , and measure the accuracy of approximation on a
regionRp with the expected quadratic norm of the approximation error, namely

E
[ ∫
Rp

(f(x)− f̂n(x))2 λ(dx)

λ(Rp)

]
= Eµp,ν

[
(f(X)− m̂p,n)2

]
,

where m̂p,n is the constant value that takes f̂n on the region Rp. A natural choice for the estimator
m̂p,n is to use the empirical mean that is unbiased and asymptotically optimal for this criterion.
Thus we consider the following estimate (histogram)

f̂n(x) =

P∑
p=1

m̂p,nI{x ∈ Rp} where m̂p,n =
1

Tp,n

Tp,n∑
i=1

Yp,i .

Pseudo loss Note that, since the Tp,n are deterministic, the expected quadratic norm of the approxi-
mation error of this estimator can be written in the following form

Eµp,ν
[
(f(X)− m̂p,n)2

]
= Eµp,ν

[
(f(X)− Eµp [f(X)])2

]
+ Eµp,ν

[
(Eµp [f(X)]− m̂p,n)2

]
= Vµp

[
f(X)

]
+ Vµp,ν

[
m̂p,n

]
= Vµp

[
f(X)

]
+

1

Tp,n
Vµp,ν

[
Y (X)

]
.

Now, using the following immediate decomposition

Vµp,ν
[
Y (X)

]
= Vµp

[
f(X)

]
+

∫
Rp

σ2(x)µp(dx) ,

we deduce that the maximal expected quadratic norm of the approximation error over the regions
{Rp}1≤p≤P , that depends on the choice of the considered allocation strategy A def

= {Tp,n}1≤p≤P
is thus given by the following so-called pseudo-loss

Ln(A)
def
= max

1≤ p≤P

{
Tp,n + 1

Tp,n
Vµp

[
f(X)

]
+

1

Tp,n
Eµp

[
σ2(X)

]}
. (1)

Our goal is to minimize this pseudo-loss. Note that this is a local measure of performance, as
opposed to a more usual yet less challenging global quadratic error. Eventually, as the number of
cells tends to∞, this local measure of performance approaches supx∈X Eν

[(
f(x)− f̂n(x)

)2]
. At

this point, let us also introduce, for convenience, the notation Qp(Tp,n) that denotes the term inside
the max, in order to emphasize the dependency on the quadratic error with the allocation.

Previous work

There is a huge literature on the topic of functional estimation in batch setting. Since it is a rather
old and well studied question in statistics, many books have been written on this topic, such as Bosq
and Lecoutre [1987], Rosenblatt [1991], Györfi et al. [2002], where piecewise constant mean-
approximation are also called “partitioning estimate” or “regressogram” (first introduced by Tukey
[1947]). The minimax-optimal rate of approximation on the class of α-Hölder functions is known
to be in O(n−

2α
2α+d ) (see e.g. Ibragimov and Hasminski [1981], Stone [1980], Györfi et al. [2002]).

In such setting, a dataset {(Xi, Yi)}i≤n is given to the learner, and a typical question is thus to try
to find the best possible histogram in order to minimize a approximation error. Thus the dataset is
fixed and we typically resort to techniques such as model selection where each model corresponds
to one histogram (see Arlot [2007] for an extensive study of such).

However, we here ask a very different question, that is how to optimally sample in an online setting
in order to minimize the approximation error of some histogram. Thus we choose the histogram
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before we see any sample, then it is fixed and we need to decide which cell to sample from at
each time step. Motivation for this setting comes naturally from some recent works in the setting
of active learning for the multi-armed bandit problem Antos et al. [2010], Carpentier et al. [2011].
In these works, the objective is to estimate with equal precision the mean of a finite number of
distributions (arms), which would correspond to the special case when X = {1, . . . , P} is a finite
set in our setting. Intuitively, we reduce the problem to such bandit problem with finite set of arms
(regions), and our setting answers the question whether it is possible to extend those results to the
case when the arms do not correspond to a singleton, but rather to a continuous region. We show
that the answer is positive, yet non trivial. This is non trivial due to the variance estimation in
each region: points x in some region may have different means f(x), so that standard estimators for
the variance are biased, contrary to the point-wise case and thus finite-arm techniques may yield
disastrous results. (Estimating the variance of the distribution in a continuous region actually needs
to take into account not only the point-wise noise but also the variation of the function f and the
noise level σ2 in that region.) We describe a way, inspired from quasi Monte-Carlo techniques, to
correct this bias so that we can handle the additional error. Also, it is worth mentioning that this
setting can be informally linked to a notion of curiosity-driven learning (see Schmidhuber [2010],
Baranes and Oudeyer [2009]), since we want to decide in which region of the space to sample,
without explicit reward but optimizing the goal to understand the unknown environment.

Outline Section 2 provides more intuition about the pseudo-loss and a result about the optimal or-
acle strategy when the domain is partitioned in a minimax-optimal way on the class of α−Hölder
functions. Section 3 presents our assumptions, that are basically to have a sub-Gaussian noise and
smooth mean and variance functions, then our estimator of the pseudo-loss together with its con-
centration properties, before introducing our sampling procedure, called OAHPA-pcma. Finally, the
performance of this procedure is provided and discussed in Section 4.

2 The pseudo-loss: study and optimal strategies
2.1 More intuition on each term in the pseudo-loss
It is natural to look at what happens to each of the two terms that appear in equation 1 when one
makes Rp shrink towards a point. More precisely, let xp be the mean of X ∼ µp and let us look at
the limit of Vµp(f(X)) when vp goes to 0. Assuming that f is differentiable, we get

lim
vp→0

Vµp(f(X)) = lim
vp→0

Eµp
[(
f(X)− f(xp)− E[f(X)− f(xp)]

)2]
= lim

vp→0
Eµp

[(
〈X − xp,∇f(xp)〉 − E[〈X − xp,∇f(xp)〉]

)2]
= lim

vp→0
Eµp

[
〈X − xp,∇f(xp)〉2

]
= lim

vp→0
∇f(xp)

TEµp
[
(X − xp)(X − xp)T

]
∇f(xp) .

Therefore, if we introduce Σp to be the covariance matrix of the random variable X ∼ µp, then we
simply have lim

vp→0
Vµp(f(X)) = lim

vp→0
||∇f(xp)||2Σp .

Example with hyper-cubic regions An important example is when Rp is a hypercube with side
length v1/d

p and µp is the uniform distribution over the region Rp. In that case (see Lemma 1), we

have µp(dx) =
dx

vp
, and

||∇f(xp)||2Σp = ||∇f(xp)||2
v2/d
p

12
.

More generally, when f is α−differentiable, i.e. that ∀a ∈ X ,∃∇αf(a, ·) ∈ Sd(0, 1)R such that
∀x ∈ Sd(0, 1), limh→0

f(a+hx)−f(a)
hα = ∇αf(a, x), then it is not too difficult to show that for such

hyper-cubic regions, we have

Vµp
[
f(X)

]
= O

(
v

2α
d
p sup

S(0,1)

|∇αf(xp, u)|2
)
.

On the other hand, by direct computation, the second term is such that limvp→0 Eµp
[
σ2(X)

]
=

σ2(xp). Thus, while Vµp
[
f(X)

]
vanishes, Eµp

[
σ2(X)

]
stays bounded away from 0 (unless ν is

deterministic).
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2.2 Oracle allocation and homogeneous partitioning for piecewise constant
mean-approximation.

We now assume that we are allowed to choose the partition P depending on n, thus P = Pn,
amongst all homogeneous partitions of the space, i.e. partitions such that all cells have the same
volume, and come from a regular grid of the space. Thus the only free parameter is the number of
cells Pn of the partition.

An exact yet not explicit oracle algorithm. The minimization of the pseudo-loss (1) does not yield
to a closed-form solution in general. However, we can still derive the order of the optimal loss (see
Lemma 2 in the appendix for an example of minimax yet non adaptive oracle algorithm given in
closed-form solution):
Lemma 1 In the case when Vµp

[
f(X)

]
= Ω

(
P−α

′

n

)
and

∫
Rp σ

2(x)µp(dx) = Ω
(
P−β

′

n

)
, then an

optimal allocation and partitioning strategy A?n satisfies that

P ?n = Ω(n
1

max(1+α′−β′,1) ) and T ?p,n
def
=

Vµp
[
f(X)

]
+ Eµp

[
σ2(X)

]
L− Vµp

[
f(X)

] ,

as soon as there exists, for such range of P ?n , a constant L such that

P?n∑
p=1

Vµp
[
f(X)

]
+ Eµp

[
σ2(X)

]
L− Vµp

[
f(X)

] = n .

The pseudo-loss of such an algorithm A?n, optimal amongst the allocations strategies that use the
partition Pn in P ?n regions, is then given by

Ln(A?n) = Ω
(
nγ
)

where γ
def
=

max(1− β′, 1− α′)
max(1 + α′ − β′, 1)

− 1 .

The condition involving the constant L is here to ensure that the partition is not degenerate. It is
morally satisfied as soon as the variance of f and the noise are bounded and n is large enough.

This Lemma applies to the important classW1,2(R) of functions that admit a weak derivative that
belongs to L2(R). Indeed these functions are Hölder with coefficient α = 1/2, i.e. we have
W1,2(R) ⊂ C0,1/2(R). The standard Brownian motion is an example of function that is 1/2-Hölder.
More generally, for k = d

2 + α with α = 1/2 when d is odd and α = 1 when d is even, we have the
inclusion

Wk,2(Rd) ⊂ C0,α(Rd) ,
whereWk,2(Rd) is the set of functions that admit a kth weak derivative belonging to L2(Rd). Thus
the previous Lemma applies to sufficiently smooth functions with smoothness linearly increasing
with the dimension d of the input space X .

Important remark Note that this Lemma gives us a choice of the partition that is minimax-optimal,
and an allocation strategy on that partition that is not only minimax-optimal but also adaptive to the
function f itself. Thus it provides a way to decide in a minimax way what is the good number of
regions, and then to provide the best oracle way to allocate the budget.

We can deduce the following immediate corollary on the class of α−Hölder functions observed in a
non-negligible noise of bounded variance (i.e. in the setting β′ = 0 and α′ = 2α

d ).

Corollary 1 Consider that f is α−Hölder and the noise is of bounded variance. Then a minimax-
optimal partition satisfies P ?n = Ω(n

d
d+2α ) and an optimal allocation achieves the rate Ln(A?n) =

Ω
(
n
−2α
d+2α

)
. Moreover, the strategy of Lemma 1 is optimal amongst the allocations strategies that

use the partition Pn in P ?n regions.

The rate Ω
(
n
−2α
d+2α

)
is minimax-optimal on the class of α−Hölder functions (see Györfi et al. [2002],

Ibragimov and Hasminski [1981], Stone [1980]), and it is thus interesting to consider an initial num-
ber of regions P ?n that is of order P ?n = Ω(n

d
d+2α ). After having built the partition, if the quantities{

Vµp
[
f
]}
p≤P and

{
Eµp

[
σ2
]}
p≤P are known to the learner, it is optimal, in the aim of minimizing

the pseudo-loss, to allocate to each region the number of samples T ?p,n provided in Lemma 1. Our
objective in this paper is, after having chosen beforehand a minimax-optimal partition, to allocate
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the samples properly in the regions, without having any access to those quantities. It is then neces-
sary to balance between exploration, i.e. allocating the samples in order to estimate

{
Vµp

[
f
]}
p≤P

and
{
Eµp

[
σ2
]}
p≤P , and exploitation, i.e. use the estimates to target the optimal allocation.

3 Online algorithms for allocation and homogeneous partitioning for
piecewise constant mean-approximation

In this section, we now turn to the design of algorithms that are fully online, with the goal to be
competitive against the kind of oracle algorithms considered in Section 2.2. We now assume that the
space X = [0, 1]d is divided in Pn hyper-cubic regions of same measure (the Lebesgue measure on
[0, 1]d) vp = v = 1

Pn
. The goal of an algorithm is to minimize the quadratic error of approximation

of f by a constant over each cell, in expectation, which we write as

max
1≤p≤Pn

E
[ ∫
Rp

(f(x)− f̂n(x))2 λ(dx)

λ(Rp)

]
= max

1≤p≤Pn
E
[ ∫
Rp

(f(x)− m̂p,n)2 λ(dx)

λ(Rp)

]
,

where f̂n is the histogram estimate of the function f on the partition P and m̂p,n is the empirical
mean defined on regionRp with the samples (Xi, Yi) such that Xi ∈ Rp. To do so, an algorithm is
only allowed to specify at each time step t, the next point Xt where to sample, based on all the past
samples {(Xs, Ys)}s<t. The total budget n is known at the beginning as well as Pn and the regions
{Rp}1≤p≤Pn .

We want to compare the strategy of an online learning algorithm to the strategy of an oracle that
perfectly knows the law ν. We however restrict the power of the oracle by forcing it to only sample
uniformly inside a regionRp. Thus the oracle is only allowed to choose at each time step t in which
cell Rp to sample, but is not allowed to decide which point in the cell it can sample. The point Xt

has to be sampled uniformly inRp.

Now, since a learning algorithm has no access to the true distribution ν, we give slightly more power
to the learning algorithm by allowing it to resort to a refined partition. We allow it to divide each
region Rp for p ∈ {1, . . . , Pn} into K hyper-cubic sub-regions {Rp,k}1≤k≤K of same Lebesgue

measure, resulting in a total number P+
n

def
= KPn of hyper-cubic regions of same measure vp,k =

1
KPn

. Equivalently, this can be seen as letting the player use a refined partition with P+
n cells.

However, instead of sampling one point in Rp,k, the algorithm is only allowed to sample all the K
points in region in the chosen Rp at the same time, one uniformly in each sub-region Rp,k, still
using of course the same total budget of n points (and not nK). Thus the algorithm is free to choose
K, but once a regionRp is chosen at time t, it can not choose moreover which point to sample inside
that region but only sample a set of points in one shot. The reason to do so is that this will allow
us to estimate the unknown quantities such as the quadratic variation of f on each region, but we
do not want to give the learner too much power. This one shot restriction is also for clarity purpose,
as otherwise one has to consider technical details and perform nasty computations that in the end
only affects second order terms. The effect of the factor K on the performance bound can be seen in
Section 4. For Pn of minimax order, our result shows that K can be chosen to be a (large) constant.

3.1 Assumptions
In order to derive performance bounds for a learning algorithm that does not know the noise and
the local variance of the function, we now need some assumptions on the data. These are here to
ensure that concentration properties apply and that empirical moments are close to true moments
with high probability depending on the number of samples. These add to the two other assumptions
on the structure of the histograms (uniformed grid partitions) and on the active scheme (that is we
can choose a bean but only get a random sample uniformly distributed in that bean).

We assume that ν is exactly sub-Gaussian, meaning that for all x ∈ X , the variance of the noise(x),
written σ2(x) <∞ satisfies that

∀λ ∈ R+ logE exp[λnoise(x)] ≤ λ2σ2(x)

2
,

and we further assume that it satisfies the following slightly stronger second property (that is for
instance exactly verified for a Gaussian variable, looking at the moment generating function):

∀λ, γ ∈ R+ logE exp
[
λnoise(x) + γnoise(x)2

]
≤ λ2σ2(x)

2(1− 2γσ2(x))
− 1

2
log
(

1− 2γσ2(x)
)
.
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The function f is assumed to be (L,α)-Hölder, meaning that it satifies
∀x, x′ ∈ X f(x)− f(x′) ≤ L||x− x′||α .

Similarly, the function σ2 is assumed to be (M,β)-Hölder i.e. it satisfies
∀x, x′ ∈ X σ2(x)− σ2(x′) ≤M ||x− x′||β .

We assume that Y is a convex and compact subset of R, thus w.l.g. that it is [0, 1], and that it is
known that ||σ2||∞, which is thus finite, is bounded by the constant 1.

3.2 Empirical estimation of the quadratic approximation error on each cell
We define the sampling distribution µ̃p in the regionRp for each p ∈ {1, . . . , Pn} as a quasi-uniform
sampling scheme using the uniform distribution over the sub-regions. More precisely at time t ≤ n,
if we decide to sample in the region Rp according to µ̃p, we sample uniformly in each sub-region
one sample, resulting in a new batch of samples {(Xt,k, Yt,k)}1≤k≤K , whereXt,k ∼ µp,k. Note that
due to this sampling process, the number of points Tp,t sampled in sub-regionRp at time t is always
a multiple of K and that moreover for all k, k′ ∈ {1, . . . ,K} we have that Tp,k,t = Tp,k′,t =

Tp,t
K .

Now this specific sampling is used in order to be able to estimate the variances Vµpf and Eµpσ2,
so that the best proportions T ?p,n can be computed as accurately as possible. Indeed, as explained in
Lemma 1, we have that

T ?p,n
def
=

Vµp
[
f(X)

]
+ Eµp

[
σ2(X)

]
L− Vµp

[
f(X)

] .

Variance estimation We now introduce two estimators. The first estimator is written V̂p,t and is

built in the following way. First,let us introduce the empirical estimate f̂p,k,t of the mean fp,k
def
=

Eµp,k
[
f(X)

]
of f in sub-regionRp,k. Similarly, to avoid some cumbersome notations, we introduce

fp
def
= Eµp

[
f(X)

]
and vp,k

def
= Vµp,k

[
f(X)

]
for the function f , and then σ2

p,k
def
= Eµp,k

[
σ2(X)

]
for the variance of the noise σ2. We now define the empirical variance estimator to be

V̂p,t =
1

K − 1

K∑
k=1

(f̂p,k,t − m̂p,t)
2 ,

that is a biased estimator. Indeed, for a deterministic Tp,t, it is not difficult to show that we have

E
[
V̂p,t

]
=

1

K − 1

K∑
k=1

(
Eµp,k

[
f
]
− Eµp

[
f
])2

+
1

Tp,t

K∑
k=1

(
Vµp,k

[
f
]

+ Eµp,k
[
σ2
])
.

The leading term in this decomposition, that is given by the first sum, is closed to Vµp
[
f
]

since, by
using the assumption that f is (L,α)−Hölder, we have the following inequality∣∣∣∣ 1

K

K∑
k=1

(
Eµp,k

[
f
]
− Eµp

[
f
])2

− Vµp
[
f(X)

]∣∣∣∣ ≤ 2L2dα

(KPn)2α/d
,

where we also used that the diameter of a sub-region Rp,k is given by diam(Rp,k) = d1/2

(KPn)1/d
.

Then, the second term also contributes to the bias, essentially due to the fact that V[f̂p,k,t] =
1

Tp,k,t
(vp,k + σ2

p,k) and not 1
Tp,t

(vk + σ2
k) (with vp

def
= Vµp

[
f(X)

]
and σ2

p
def
= Eµp

[
σ2(X)

]
).

In order to correct this term, we now introduce the second estimator σ̂2
p,k,t that estimates the variance

of the outputs in a regionRp,k, i.e. Vµp,k,ν
[
Y (X)

]
= Vµp,k

[
f(X)

]
+ Eµp,k

[
σ2
]
. It is defined as

σ̂2
p,k,t

def
=

1

Tp,k,t − 1

t∑
i=1

(
Yi −

1

Tp,k,t

t∑
j=1

YjI{Xj ∈ Rp,k}
)2

I{Xi ∈ Rp,k} .

Now, we combine the two previous estimators to form the following estimator

Q̂p,t = V̂p,t −
1

K

K∑
k=1

( 1

Tp,k,t
− 1

Tp,t

)
σ̂2
p,k,t .

The following proposition provides a high-probability bound on the difference between Q̂p,t and
the quantity we want to estimate. As the proof is a bit technical, we report it to the appendix.
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Proposition 1 By the assumption that f is (L,α)-Hölder, the bias of the estimator Q̂p,t, and for
deterministic Tp,t, is given by

E
[
Q̂p,t −Qp(Tp,t)

]
=

1

K

K∑
k=1

(
Eµp,k

[
f
]
− Eµp

[
f
])2

− Vµp
[
f(X)

]
≤ 2L2dα

(KPn)2α/d
.

Moreover, it satisfies that for all δ ∈ [0, 1], there exists an event of probability higher than 1−δ such
that on this event, we have∣∣∣∣ Q̂p,t − E

[
Q̂p,t

] ∣∣∣∣ ≤
√√√√8 log(4/δ)

(K − 1)2

K∑
k=1

σ̂2
p,k,t

T 2
p,k,t

+ o

(
1

Tp,k,t
√
K

√√√√ 1

K

K∑
k=1

σ2
p,k

)
.

We also state the following Lemma that we are going to use in the analysis, and that takes into
account randomness of the stopping times Tp,k,t.
Lemma 2 Let {Xp,k,u}p≤P, k≤K,u≤n be samples potentially sampled in regionRp,k. We introduce
qp,u to be the equivalent of Qp(Tp,t) with explicitly fixed value of Tp,t = u. Let also q̂p,u be the

estimate of E
[
qp,u

]
, that is to say the equivalent of Q̂p,t but computed with the first u samples in

each regionRp,k (i.e. Tp,t = u). Let us define the event

ξn,P,K(δ) =
⋂
p≤P

⋂
u≤n

{
ω :
∣∣∣ q̂p,u(ω)− E

[
qp,u

] ∣∣∣ ≤ AK

u

√
log(4nP/δ)V̂p,t

K − 1
+

2L2dα

(KPn)2α/d

}
,

where V̂p,t = V̂p(Tp,t) = 1
K−1

∑K
k=1 σ̂

2
p,k,t and where A ≤ 4 is a numerical constant. Then it

holds that

P
(
ξn,P,K(δ)

)
≥ 1− δ .

Note that, with the notations of this Lemma, Proposition 1 above is thus about q̂p,u.

3.3 The Online allocation and homogeneous partitioning algorithm for piecewise constant
mean-approximation (OAHPA-pcma)

We are now ready to state the algorithm that we propose for minimizing the quadratic error of ap-
proximation of f . The algorithm is described in Figure 1. Although it looks similar, this algorithm is
quite different from a normal UCB algorithm since Q̂p,t decreases in expectation with Tp,t. Indeed,

its expectation is close to Vµp
[
f
]

+ 1
KTp,t

∑K
k=1

(
Vµp,k

[
f
]

+ Eµp,k
[
σ2
])

.

Algorithm 1 OAHPA-pcma.
1: Input: A, L, α, Horizon n; Partition {Rp}p≤P , with sub-partitions {Rp,k}k≤K .
2: Initialization: Sample K points in every sub-region {Rp,k}p≤P,k≤K
3: for t = K2P + 1; t ≤ n; t = t+K do
4: Compute ∀p, Q̂p,t.

5: Compute ∀p,Bp,t = Q̂p,t + AK
Tp,t

√
log(4nP/δ)V̂p,t

K−1 + 2L2dα

(KPn)2α/d
.

6: Select the region pt = argmax1≤p≤Pn Bp,t where to sample.
7: Sample K samples in regionRpt one per sub-regionRpt,k according to µpt,k.
8: end for

4 Performance of the allocation strategy and discussion
Here is the main result of the paper, the proof of which can be found in the supplementary material.
We remind that the objective is to minimize for an algorithm A the pseudo-loss Ln(A).

Theorem 1 (Main result) Let γ =
maxp T

?
p,n

minp T?p,n
be the distortion factor of the optimal allocation strat-

egy, and let ε > 0. Then with the choice of the number of regions Pn
def
= n

d
2α+d ε2+ d

2α , and of the
number of sub-regionsK def

= C
2d

4α+d ε−2− d
α , whereC def

= 8L2α
Ad1−α then the pseudo-loss of the OAHPA-

pcma algorithm satisfies, under the assumptions of Section 3.1 and on an event of probability higher
than 1− δ,

Ln(A) ≤
(

1 + εγC ′
√

log(1/δ)
)
Ln(A?n) + o

(
n−

2α
2α+d

)
,

for some numerical constant C ′ not depending on n, where A?n is the oracle of Lemma 1.

7



Minimax-optimal partitioning and ε-adaptive performance Theorem 1 provides a high proba-
bility bound on the performance of the OAHPA-pcma allocation strategy. It shows that this perfor-
mance is competitive with that of an optimal (i.e. adaptive to the function f , see Lemma 1) allocation
A? on a partition with a number of cells Pn chosen to be of minimax order n

d
2α+d for the class of

α-Hölder functions. In particular, since Ln(A?n) = O(n
2α
d+2α ) on that class, we recover the same

minimax order as what is obtained in the batch learning setting, when using for instance wavelets,
or Kernel estimates (see e.g. Stone [1980], Ibragimov and Hasminski [1981]). But moreover, due to
the adaptivity of A?n to the function itself, this procedure is also ε-adaptive to the function and not
only minimax-optimal on the class, on that partition (see Section 2.2). Naturally, the performance of
the method increases, in the same way than for any classical functional estimation method, when the
smoothness of the function increases. Similarly, in agreement with the classical curse of dimension,
the higher the dimension of the domain, the less efficient the method.

Limitations In this work, we assume that the smoothness α of the function is available to the
learner, which enables her to calibrate Pn properly. Now it makes sense to combine the OAHPA-
pcma procedure with existing methods that enable to estimate this smoothness online (under a
slightly stronger assumption than Hölder, such as Hölder functions that attain their exponents,
see Giné and Nickl [2010]). It is thus interesting, when no preliminary knowledge on the smoothness
of f is available, to spend some of the initial budget in order to estimate α.

We have seen that the OAHPA-pcma procedure, although very simple, manages to get minimax
optimal results. Now the downside of the simplicity of the OAHPA-pcma strategy is two-fold.
The first limitation is that the factor (1 + εγC ′

√
log(1/δ)) = (1 + O(ε)) appearing in the bound

before Ln(A?) is not 1, but higher than 1. Of course it is generally difficult to get a constant 1 in
the batch setting (see Arlot [2007]), and similarly this is a difficult task in our online setting too: If
ε is chosen to be small, then the error with respect to the optimal allocation is small. However, since
Pn is expressed as an increasing function of ε, this implies that the minimax bound on the loss for
partition P increases also with ε. That said, in the view of the work on active learning multi-armed
bandit that we extend, we would still prefer to get the optimal constant 1.
The second limitation is more problematic: since K is chosen irrespective of the region Rp, this
causes the presence of the factor γ. Thus the algorithm will essentially no longer enjoy near-optimal
performance guarantees when the optimal allocation strategy is highly not homogeneous.

Conclusion and future work In this paper, we considered online regression with histograms in an
active setting (we select in which bean to sample), and when we can choose the histogram in a class
of uniform histograms. Since the (unknown) noise is heteroscedastic and we compete not only with
the minimax allocation oracle on α-Hölder functions but with the adaptive oracle that uses a mini-
max optimal histogram and allocates samples adaptively to the target function, this is an extremely
challenging (and very practical) setting. Our contribution can be seen as a non trivial extension of
the setting of active learning for multi-armed bandits to the case when each arm corresponds to one
continuous region of a sampling space, as opposed to a singleton, which can also be seen as a prob-
lem of non parametric function approximation. This new setting offers interesting challenges: We
provided a simple procedure, based on the computation of upper confidence bounds of the estima-
tion of the local quadratic error of approximation, and provided a performance analysis that shows
that OAHPA-pcma is first order ε-optimal with respect to the function, for a partition chosen to be
minimax-optimal on the class of α-Hölder functions. However, this simplicity also has a drawback
if one is interested in building exactly first order optimal procedure, and going beyond these limita-
tions is definitely not trivial: A more optimal but much more complex algorithm would indeed need
to tune a different factor Kp in each cell in an online way, i.e. define some Kp,t that evolves with
time, and redefine sub-regions accordingly. Now, the analysis of the OAHPA-pcma already makes
use of powerful tools such as empirical-Bernstein bounds for variance estimation (and not only for
mean estimation), which make it non trivial; in order to handle possibly evolving sub-regions and
deal with the progressive refinement of the regions, we would need even more intricate analysis, due
to the fact that we are online and active. This interesting next step is postponed to future work.

Acknowledgements This research was partially supported by Nord-Pas-de-Calais Regional Coun-
cil, French ANR EXPLO-RA (ANR-08-COSI-004), the European Communitys Seventh Framework
Programme (FP7/2007-2013) under grant agreement no 270327 (CompLACS) and no 216886 (PAS-
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A Preliminary Results

Lemma 1 Assume that Rp is a hypercube with side length v1/d
p and µp is the uniform distribution

over the regionRp. In that case, we have µp(dx) =
dx

vp
, and

||∇f(xp)||2Σp = ||∇f(xp)||2
v2/d
p

12
.

Proof: Indeed since µp is the uniform distribution, the component X1, . . . , Xd ∈ R of the random
variable X ∈ Rd are independent from each other, thus Σp is diagonal. Now its ith diagonal value
is given by

Eµp

[
(Xi − xip)2

]
=

∫ v1/dp /2

−v1/dp /2

x2 dx

v1/d
p

=
v2/d
p

12
.

�

Quadratic mean error Let us look at the precise quadratic mean error of approximation of m̂p,t

when we use the previous sampling scheme. We have by definition of µp being the uniform distri-
bution overRp that

E
[
Qp,t

]
def
= E

[ ∫
Rp

(f(x)− m̂p,t)
2 λ(dx)

λ(Rp)

]
= Vµp

[
f
]

+ E
[(

Eµp
[
f
]
− m̂p,t

)2 ]
,

where we introduced for convenience the notation Qp,t and where Eµp
[
f
]

is the expectation with
respect to the uniform distribution µp, over Rp, not to be confused with the distribution µ̃p used by
the algorithm. Now, introducing ps to be the region Rp chosen at time t by the algorithm, we also
have by definition that

Tp,t
def
=

t∑
s=1

I{ps = p}K and for all k, Tp,k,t
def
=

t∑
s=1

I{ps = p} .

Let us look at the expectation in the second term of the sum. Introducing the sub-regions
{Rp,k}1≤k≤K , and using the fact that Tp,t = KTp,k,t for all 1 ≤ k ≤ K, we have

E
[
T 2
p,t

(
Eµp

[
f
]
− m̂p,t

)2 ]
= E

[
T 2
p,t

(
1

K

K∑
k=1

Eµp,k
[
f
]
−

K∑
k=1

1

KTp,k,t

t∑
s=1

Ys,kI{ps = p}
)2 ]

= E
[
T 2
p,t

( K∑
k=1

1

Tp,k,t

t∑
s=1

(
Eµp,k

[
f
]
− Ys,k

)
I{ps = p}

)2 ]
.

Now, let us remark that the term in the square is a martingale difference sequence. Thus, this leads
to the following expression for the quadratic error term

E
[
T 2
p,t

∫
Rp

(f(x)− m̂p,n)2 λ(dx)

λ(Rp)

]
= E

[
T 2
p,t

]
Vµp

[
f
]

+ E
[ t∑
s=1

K∑
k=1

(
Eµp,k

[
f
]
− Yk,s

)2I{ps = p}
]

= E
[
T 2
p,t

]
Vµp

[
f
]

+

K∑
k=1

(
Vµp,k

[
f
]

+ Eµp,k
[
σ2
])

E
[
Tp,k,t

]
.

Thus, forgetting about the randomness of the stopping time Tp,t, the quadratic mean error of ap-
proximation of m̂p,t is morally of order

E
[ ∫
Rp

(f(x)− m̂p,n)2 λ(dx)

λ(Rp)

]
≈ Qp(Tp,t) = Vµp

[
f
]

+
1

K

K∑
k=1

(
Vµp,k

[
f
]

+ Eµp,k
[
σ2
]) 1

Tp,t
.
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B Oracles

Lemma 2 Let us consider that f ∈ C0,α(Rd), i.e. that f is Hölder smooth with exponent α and
some constant L, and let us consider that X = [0, 1]d, thus since Pn is uniform partition built from
a regular grid of X = [0, 1]d, the regions are hypercubes of equal volume vp = v = 1

P . Finally let
us assume that µp is the uniform distribution over the regionRp. Then, an explicit oracle algorithm
An is given by

∀p ∈ {1, . . . , Pn} T p,n =

∫
Rp σ

2(x)µp(dx) + L2dαP
−2α/d
n

Pn
∫

[0,1]d
σ2(x)µ(dx) + L2dαP

1−2α/d
n

n and Pn = (Cn)
d

2α+d ,

where C is an explicit constant. The performance of the corresponding oracle satisfies

Ln(An) ≤ Ω
(
n−

2α
2α+d

)
.

Proof of Lemma 2 By convexity of the region Rp and continuity of the function f , then there
exists (at least) one point xp,f ∈ Rp that satisfies f(xp,f ) = Eµp [f(X)]. Thus, using the assumption
that the function f is (L,α)-Hölder, we deduce that

Vµp(f(X)) = EX∼µp
[(
f(X)− EU∼µp [f(U)]

)2]
= EX∼µp

[(
f(X)− f(xp,f )

)2]
≤ EX∼µp

[(
L||X − xp,f ||α

)2]
.

For a general sampling distribution µp (not necessarily being the uniform one), we can now introduce
the Euclidean diameter of the regionRp, defined by

diam(Rp)
def
= max

x,x′∈Rp
||x− x′|| ,

and deduce that we have in that case the inequality Vµp(f(X)) ≤ L2diam(Rp)2α . Note that by
using the hypothesis that the regions are hypercubes of equal volume vp = v = 1

Pn
, we have the

equality diam(Rp) = d1/2v1/d, thus, combining this remark with the previous result, we deduce
that

Vµp(f(X)) ≤ L2dαP−2α/d
n .

Note that this upper bound do not depend on the partitionRp. Plugging this bound in the optimiza-
tion problem (1), we deduce that for each n, for all deterministic allocation An, we have

Ln(An) ≤ max
1≤ p≤Pn

{(
1 +

1

Tp,n

)
L2dαP−2α/d

n +
1

Tp,n

∫
Rp

σ2(x)µp(dx)

}
.

The condition Pn ≤ n insures that there exists at least one point sampled in each regionRp.

Thus, from this initial remark, we deduce that the best allocation {T p,n}1≤p≤Pn corresponding to
the optimization of the previous upper bound must satisfy (up to rounding factors) the following
constraints

∀p ∈ {1, . . . , Pn} T p,n =

∫
Rp σ

2(x)µp(dx) + L2dαP
−2α/d
n

Pn
∫

[0,1]d
σ2(x)µ(dx) + L2dαP

1−2α/d
n

n and
Pn∑
p=1

T p,n = n , (2)

where we used in the denominator the fact that µp = Pnµ by definition of the uniform distribution
and of Pn. This finally leads to the following upper bound for an oracle algorithmAn that now only
depends on Pn

Ln(An) ≤ L2dαP−2α/d
n +

Pn
n

(∫
[0,1]d

σ2(x)µ(dx) + L2dαP−2α/d
n

)
.
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After optimization of this term with respect to Pn, we find that the optimal value is given by

Pn = (Cn)
d

2α+d where C =
d1−α

2αL2

∫
[0,1]d

σ2(x)µ(dx) .

Note that this leads to an algorithm An that is still an oracle since the optimal number of partitions
Pn as well as the optimal allocation {Tp,n}1≤p≤Pn both depend on the variance σ2 that is assumed
to be unknown. The performance of this oracle is upper bounded by

Ln(An) ≤ n−
2α

2α+d c(α, d, L,

∫
[0,1]d

σ2(x)µ(dx)) ,

where c is an explicit constant that only depends on the values put inside the parenthesis.

C Upper-bound confidence

Proposition 1 The bias of the estimator Q̂p,t is given by

E
[
Q̂p,t −Qp

]
=

1

K

K∑
k=1

(
Eµp,k

[
f
]
− Eµp

[
f
])2

− Vµp
[
f(X)

]
.

Moreover, it satisfies that for all δ ∈ [0, 1], there exists an event of probability higher than 1−δ such
that on this event, we have∣∣∣∣ Q̂p,t − E

[
Q̂p,t

] ∣∣∣∣ ≤
√√√√8 log(4/δ)

(K − 1)2

K∑
k=1

σ̂2
p,k,t

T 2
p,k,t

+ o

(
1

Tp,k,t
√
K

√√√√ 1

K

K∑
k=1

σ2
p,k

)
.

Proof: As the proof is a bit technical, it is divided in several steps that are gathered in the following
subsections. First, by construction, we have the following expression

Q̂p,t = V̂p,t −
1

K

K∑
k=1

( K

Tp,t
− 1

Tp,t

)
σ̂2
p,k,t

=
1

K − 1

K∑
k=1

(
f̂p,k,t −

1

K

K∑
k′=1

f̂p,k′,t

)2

− K − 1

Tp,t

(
1

K

K∑
k=1

1

Tp,k,t − 1

t∑
s=1

(
Yi,k − f̂p,k,t)2I{ps = p}

)
.

Step 1. Study of σ̂2
p,k,t.

By application of Lemma 4 for the centered variable Zi,k
def
= Yi,k − Eµp,k

[
f
]
, we first have

E+
µp,k,ν

[
λZi,k

]
≤ λ2

2

(
2Eµp,k

[
σ2
]

+ 2Vµp,k
[
f
]

+
λ2

2
Vµp,k

[
σ2
])
.

Similarly, by application of Lemma 5, we also know that

E+
µp,k,ν

[
λ
(
Z2
i,k − σ2

p,k

)]
≤ λ2Eµp,k

[
σ2
]
Ω

(
1 +M2diam(Rp,k)2β + L2diam(Rp,k)2α

)
≤ Cλ2Eµp,k

[
σ2
]
.

where C ≈ 16 is a numerical constant. Thus, by application of Lemma 8, we deduce that there
exists an event of probability higher than 1− δ such that on this event, we have∣∣∣∣K − 1

Tp,t

1

K

K∑
k=1

(
σ̂2
p,k,t − σ2

p,k

)∣∣∣∣ ≤ K − 1

Tp,t

√
8 log(4/δ)CV̂

Tp,t
+

(K − 1)8 log(4K/δ)

Tp,t(Tp,t −K)

(
KV̂ +

√
CKV̂

)
+ o
(
KT−2

p,t

)
.
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where we introduced σ2
p,k

def
= σ2

p,k + vp,k = Eµp,k
[
σ2
]

+ Vµp,k
[
f
]
, and where V̂

def
=

1
K

∑K
k=1 σ̂

2
p,k,t.

Step 2. Study of V̂p,t. In order to control that term, we take a look at the tail behavior of the random

variable f̂p,k,t, that satisfies E
[
f̂p,k,t

]
= fp,k and V

[
f̂p,k,t

]
=

σ2
p,k

Tp,k,t
.

By application of Lemma 4, we know that for the centered variables Zi,k
def
= Yi,k − Eµp,kf , since

they are independent

E+
µp,k,ν

[
λ
(
f̂p,k,t − fp,k

)]
= E+

µp,k,ν

[ λ

Tp,k,t

Tp,k,t∑
i=1

Zi,k

]
≤ λ2

2Tp,k,t

(
2σ2

p,k +
λ2

2T 2
p,k,t

Vµp,k
[
σ2
])
.

Thus f̂p,k,t is approximately sub-Gaussian. On the other hand, by application of Lemma 5, we also
have

E+
µp,k,ν

[
λ
[(
f̂p,k,t − fp,k

)2 − σ2
p,k

Tp,k,t

]]
= E+

µp,k,ν

[
λ
[( 1

Tp,k,t

Tp,k,t∑
i=1

Zi,k

)2

−
σ2
p,k

Tp,k,t

]]

≤ E+
µp,k,ν

[
λ

T 2
p,k,t

[ Tp,k,t∑
i=1

(
Z2
i,k − σ2

p,k

)
+

Tp,k,t∑
i=1

Tp,k,t∑
j 6=i=1

Zi,kZj,k

]]

≤ 1

2

(2λ)2

T 3
p,k,t

CEµp,k
[
σ2
]

+
1

2
E+
µp,k,ν

[
2λ

T 2
p,k,t

Tp,k,t∑
i=1

Tp,k,t∑
j 6=i=1

Zi,kZj,k

]
.

In order to control the sum appearing in the second term, we make use of the following Lemma

Lemma 3

E+
µp,k,ν

[
λ

nk∑
i=1

nk∑
j 6=i=1

ZiZj

]
≤ λ2nk(nk − 1)

(
Eµp,k

[
σ2
](

Eµp,k
[
σ2
]

+ Vµp,k
[
f
])

+ 2Vµp,k
[
f
]2)

+ o(λ2) .

Combining this result together with the previous bound gives that

E+
µp,k,ν

[
λ
[(
f̂p,k,t − fp,k

)2 − σ2
p,k

Tp,k,t

]]
≤ 2λ2

T 3
p,k,t

CEµp,k
[
σ2
]

+
2λ2

T 2
p,k,t

(
Eµp,k

[
σ2
]
σ2
p,k + 2Vµp,k

[
f
]2)

+ o(λ2) .

Thus, applying the result of Lemma 9, with σ2
k =

σ2
p,k

Tp,k,t
, vk =

Vµp,k

[
σ2

]
T 3
p,k,t

and c + υ ≈ 2
Tp,k,t

, and

since wk ≤ L2diam(Rp)2α by the Hölder assumption, we deduce that with probability higher than
1− δ, then

1

K − 1

K∑
k=1

(
f̂p,k,t −

1

K

K∑
k′=1

f̂p,k′,t

)2

− E
[
V̂p,t

]
≤

√√√√8 log(4/δ)

(K − 1)2

K∑
k=1

σ2
p,k

T 2
p,k,t

+ o

(
1

Tp,k,t
√
K

√√√√ 1

K

K∑
k=1

σ2
p,k

)
.

Step 3. Combining previous steps.

Thus, combining the result of the previous steps together, and also using the concentration results
on σ2

p,k
def
= σ2

p,k + vp,k = Eµp,k
[
σ2
]

+ Vµp,k
[
f
]

we deduce that,∣∣∣∣ Q̂p,t − E
[
Q̂p,t

] ∣∣∣∣ ≤
√√√√8 log(4/δ)

(K − 1)2

K∑
k=1

σ̂2
p,k,t

T 2
p,k,t

+ o

(
1

Tp,k,t
√
K

√√√√ 1

K

K∑
k=1

σ2
p,k

)
.

�
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D Empirical Bernstein bounds

D.1 Tail properties of the sample variables

Lemma 4

E+
µp,k,ν

[
λZi

]
≤ λ2

2

(
2σ2

p,k +
λ2

2
Vµp,k

[
σ2
])
,

where σ2
p,k = Eµp,k

[
σ2
]

+ Vµp,k
[
f
]
.

Proof of Lemma 4 We look at the following quantity

E+
µp,k,ν

[
λZi

]
= E+

µp,k,ν

[
λ
(
f(Xi,k)− Eµp,k

[
f
])

+ λnoise(Xi,k)
]

= E+
µp,k

[
λ
(
f(Xi,k)− Eµp,k

[
f
])

+ E+
ν

[
λnoise(Xi,k)

]]
≤ E+

µp,k

[
λ
(
f(Xi,k)− Eµp,k

[
f
])

+
λ2

2
σ2(Xi,k)

]
= E+

µp,k

[
λ
(
f(Xi,k)− Eµp,k

[
f
])

+
λ2

2

(
σ2(Xi,k)− Eµp,k

[
σ2
])]

+
λ2

2
Eµp,k

[
σ2
]
,

where we used in the second line the independence of the noise with the samples, in the third line
the fact that for all x ∈ X , noise(x) is a sub-Gaussian random variable, and finally in the last line
the fact that λ

2

2 Eµp,k
[
σ2
]

is a constant.

Now, we use the property that for any bounded and centered random variable X ≤ b, we have
E+
[
λX
]
≤ eλb−1−λb

b2 E
[
X2
]

so that for small enough λ we have E+
[
λX
]
≤ λ2

2

(
2E
[
X2
])

, to
deduce that we have in our case

E+
µp,k,ν

[
λZi

]
≤ λ2

2

(
Eµp,k

[
σ2
]

+ 2Vµp,k
[
f
]

+
λ2

2
Vµp,k

[
σ2
])

≤ λ2

2

(
2σ2

p,k +
λ2

2
Vµp,k

[
σ2
])
.

�

Lemma 5 Under the assumption that ||σ2||∞ ≤ 1, then

E+
µp,k,ν

[
λ
(
Z2
i − Vk

)]
≤ λ2Eµp,k

[
σ2
]
Ω

(
1 +M2diam(Rp,k)2β + L2diam(Rp,k)2α

)
.

Proof of Lemma 5

E+
µp,k,ν

[
λ
(
Z2
i − Vk

)]
= E+

µp,k,ν

[
λ

((
f(Xik)− Eµp,k

[
f
])2

− Vµp,k [f ]

)
+ λ

(
noise(Xi,k)2 − Eµp,k [σ2]

)
+2λ

(
f(Xik)− Eµp,k

[
f
])

noise(Xi,k)

]
≤ 1

2
E+
µp,k,ν

[
2λ

((
f(Xik)− Eµp,k

[
f
])2

− Vµp,k [f ]

)
+ 2λ

(
noise(Xi,k)2 − Eµp,k [σ2]

)]
+

1

2
E+
µp,k,ν

[
4λ
(
f(Xik)− Eµp,k

[
f
])

noise(Xi,k)

]
.

Now, we take care of each of the two terms on the right hand side of this inequality. By the sub-
Gaussianity of the noise and its independence with Xi,k, we get that

E+
µp,k,ν

[
4λ
(
f(Xik)− Eµp,k

[
f
])

noise(Xi,k)

]
≤ E+

µp,k

[
8λ2
(
f(Xik)− Eµp,k

[
f
])2

σ2(Xi, k)

]
≤ E+

µp,k

[
8λ2
(
f(Xik)− Eµp,k

[
f
])2
(
Eµp,k

[
σ2
]

+M2diam(Rp,k)2β

)]
≤ 8λ2Vµp,k

[
f
](

Eµp,k
[
σ2
]

+M2diam(Rp,k)2β

)
+ Ω(λ4) ,

14



where we used the fact that σ2 is (M,β)-Hölder in the second line. On the other hand, using
the second assumption on the noise variable (that is exactly verified for Gaussian, looking at the
characteristic function of the χ2) we have the property that

E+
ν

[
2λ

(
noise(Xi,k)2 − Eµp,k [σ2]

)]
≤ 2λ

(
σ2(Xi,k)− Eµp,k [σ2]

)
+ log

(
exp(−2λσ2(Xi,k))√

1− 4λσ2(Xi,k)

)
≤ 2λ

(
σ2(Xi,k)− Eµp,k [σ2]

)
+ 8λ2σ4(Xi,k) ,

where we used the fact that − log(1 − x) ≤ x + x2 for small enough x in the second line. Thus,
using again the Hölder assumption, this implies that we have the following upper bound

E+
µp,k,ν

[
2λ

(
noise(Xi,k)2 − Eµp,k [σ2]

)]
≤ 8λ2

(
Eµp,k [σ2] +M2diam(Rp,k)2β

)2

+ 4λ2Vµp,k [σ2] + Ω(λ3) .

Combining those results, so far, we have shown that we have the following bound

E+
µp,k,ν

[
λ
(
Z2
i − Vk

)]
≤ 1

4
E+
µp,k

[
4λ

((
f(Xik)− Eµp,k

[
f
])2

− Vµp,k [f ]

)]
+16λ2

(
Eµp,k [σ2] +M2diam(Rp,k)2β

)2

+ 8λ2Vµp,k [σ2]

+4λ2Vµp,k
[
f
](

Eµp,k
[
σ2
]

+M2diam(Rp,k)2β

)
+ Ω(λ3) .

Thus, if we now use the Hölder assumption on f , we deduce that

E+
µp,k,ν

[
λ
(
Z2
i − Vk

)]
≤ 16λ2

(
Eµp,k [σ2] +M2diam(Rp,k)2β

)2

+ 8λ2M2diam(Rp,k)2β

+4λ2L2diam(Rp,k)2α

(
L2diam(Rp,k)2α + Eµp,k

[
σ2
]

+M2diam(Rp,k)2β

)
+ Ω(λ3) .

Using the assumption that ||σ2||∞ ≤ 1, this finally leads to the following order

E+
µp,k,ν

[
λ
(
Z2
i − Vk

)]
≤ λ2Eµp,k

[
σ2
]
Ω

(
1 +M2diam(Rp,k)2β + L2diam(Rp,k)2α

)
.

�

Proof of Lemma 3 We look at the following quantity

E+
µp,k,ν

[
λZiZj

]
= E+

µp,k,ν

[
λ
(
f(Xi,k)− Eµp,k

[
f
]

+ noise(Xi,k)
)(
f(Xj,k)− Eµp,k

[
f
])

+ λ
(
f(Xi,k)− Eµp,k

[
f
]

+ noise(Xi,k)
)

noise(Xj,k)
]

≤ E+
µp,k,ν

[
λ
(
f(Xi,k)− Eµp,k

[
f
]

+ noise(Xi,k)
)(
f(Xj,k)− Eµp,k

[
f
])

+
λ2

2

(
f(Xi,k)− Eµp,k

[
f
]

+ noise(Xi,k)
)2

σ2(Xj,k)
]

= E+
µp,k

[
λ
(
f(Xi,k)− Eµp,k

[
f
])(

f(Xj,k)− Eµp,k
[
f
])

+
λ2

2

(
f(Xi,k)− Eµp,k

[
f
])2

σ2(Xj,k)

+ E+
ν

[(
λ
(
f(Xj,k)− Eµp,k

[
f
])

+ λ2σ2(Xj,k)
(
f(Xi,k)− Eµp,k

[
f
]))

noise(Xi,k)

+
λ2

2
σ2(Xj,k)noise(Xi,k)2

]]
.

Now in order to take care of the term noise(Xi,k), we make use of the property that for all λ, γ > 0,
we have, if we write σ2 = σ2(Xi,k), that

E+
ν

[
λnoise(Xi,k) + γnoise(Xi,k)2

]
≤ λ2σ2

2(1− 2σ2γ)
− 1

2
log(1− 2σ2γ)

≤ λ2σ2

2
+ λ2σ4γ + 2σ2γ + 4σ4γ2 ,
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where the second inequality holds for small enough γ. Thus, applying this result to the previous
equations, and neglecting the terms of high order in λ, we get

E+
µp,k,ν

[
λZiZj

]
≤ E+

µp,k

[
λ
(
f(Xi,k)− Eµp,k

[
f
])(

f(Xj,k)− Eµp,k
[
f
])

+
λ2

2

(
f(Xi,k)− Eµp,k

[
f
])2

σ2(Xj,k)

+
λ2

2

(
f(Xj,k)− Eµp,k

[
f
])2

σ2(Xi,k) + λ2σ2(Xj,k)σ2(Xi,k)

]
+ o(λ2) .

So far, we only have used the noise variables noise(Xi,k) that are independent for all Xi,k. In
particular, in the sum

∑nk
i=1

∑nk
j 6=i=1 ZiZj , all the terms involving noise are independent. Thus,

using a similar reasoning, we can show similarly that

E+
µp,k,ν

[
λ

nk∑
i=1

nk∑
j 6=i=1

ZiZj

]
≤ E+

µp,k

[
λ

nk∑
i=1

nk∑
j 6=i=1

(
f(Xi,k)− Eµp,k

[
f
])(

f(Xj,k)− Eµp,k
[
f
])

+
λ2

2

nk∑
i=1

nk∑
j 6=i=1

(
f(Xi,k)− Eµp,k

[
f
])2

σ2(Xj,k)

+
λ2

2

nk∑
i=1

nk∑
j 6=i=1

(
f(Xj,k)− Eµp,k

[
f
])2

σ2(Xi,k)

+ λ2
nk∑
i=1

nk∑
j 6=i=1

σ2(Xj,k)σ2(Xi,k)

]
+ o(λ2) .

Now, by the Hölder assumption the term in the brackets is bounded, thus we just have to com-
pute the mean and variance of the corresponding term. Since, by the independence of the samples
{Xi,k}i≤Tp,k,t we have

Vµp,k
[ nk∑
i=1

nk∑
j 6=i=1

(
f(Xi,k)− Eµp,k

[
f
])(

f(Xj,k)− Eµp,k
[
f
])]

= 2λ2nk(nk − 1)Vµp,k
[
f
]2
,

then computing the reminding terms and neglecting the high order terms in λ, we get that

E+
µp,k,ν

[
λ

nk∑
i=1

nk∑
j 6=i=1

ZiZj

]
≤ λ2nk(nk − 1)

(
Eµp,k

[
σ2
](

Eµp,k
[
σ2
]

+ Vµp,k
[
f
])

+ 2Vµp,k
[
f
]2)

+ o(λ2) .

D.2 Modified bernstein concentration inequalities for independent sub-Gaussian random
variables

Let us first remind the so-called Bernstein inequality for large deviations of independent sub-
Gaussian random variables around their mean.

Lemma 6 Let (X1, . . . , Xn) be n independent random variables of mean (µ1, . . . , µn) and of vari-

ance (σ2
1 , . . . , σ

2
n). Assume that for any λ < 1, for any i ≤ n, it holds that E

[
exp(λ(Xi − µi))

]
≤

exp
(
λ2σ2

i

2

)
. Then with probability 1− δ

| 1
n

n∑
i=1

Xi −
1

n

n∑
i=1

µi| ≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
.
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Proof: If the assumptions of Lemma 6 are verified, then

P
( n∑
i=1

Xi −
n∑
i=1

µi ≥ nε
)

= P

[
exp

(
λ(
∑n
i=1Xi −

∑n
i=1 µi)

)
≥ exp(nλε)

]

≤ E

[
exp

(
λ(

∑n
i=1Xi−

∑n
i=1 µi)

)
exp(nλε)

]

≤
∏n
i=1 E

[
exp

(
λ(Xi−µi)

)
exp(λε)

]
≤ exp(λ

2

2

∑n
i=1 σ

2
i − nλε).

By setting λ = nε∑n
i=1 σ

2
i

we obtain

P
( n∑
i=1

Xi −
n∑
i=1

µi ≥ nε
)
≤ exp(− n2ε2

2(
∑n
i=1 σ

2
i )

).

By an union bound we obtain

P
(
|
n∑
i=1

Xi −
n∑
i=1

µi| ≥ nε
)
≤ 2 exp(− n2ε2

2(
∑n
i=1 σ

2
i )

).

This means that with probability 1− δ,

| 1
n

n∑
i=1

Xi −
1

n

n∑
i=1

µi| ≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
.

�

The following Lemma is an adaptation of Bernstein’s inequality in the special case of a slightly
modified sub-Gaussian assumption. The assumption is actually natural in view of Lemma 4 above.

Lemma 7 Let (Z1, . . . , Zn) be n independent centered random variables, such that for any λ < 1,
for any i ≤ n, it holds that

E+
[
λZi

]
≤ λ2

2

(
2σ2

i +
λ2

2
v2
i

)
.

Then with probability 1− δ∣∣∣∣ n∑
i=1

Zi

∣∣∣∣ ≤
√√√√2 log(2/δ)

( n∑
i=1

2σ2
i +

log(2/δ)v2
i∑n

j=1 2σ2
j

)
.

Proof: Indeed, from the first step of the proof of Bernstein’s inequality, we get that for all λ > 0,

P
( n∑
i=1

Zi ≥ nε
)
≤ exp

(
λ2

2

n∑
i=1

2σ2
i +

λ4

4

n∑
i=1

v2
i − nλε

)
.

Now, if we use the special choice of parameter λ

λ
def
=

(
2 log(1/δ)∑n

i=1 2σ2
i +

log(1/δ)v2i∑n
j=1 2σ2

j

)1/2

,

and if we express ε as a function of δ as

ε
def
=

√√√√2 log(1/δ)

( n∑
i=1

2σ2
i +

log(1/δ)v2
i∑n

j=1 2σ2
j

)
,
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we deduce by replacing these two expressions in the concentration inequality above that we have

P
( n∑
i=1

Zi ≥ nε
)
≤ exp

(
log(1/δ)

∑n
i=1 2σ2

i∑n
i=1 2σ2

i +
log(1/δ)v2i∑n

j=1 2σ2
j

+ log(1/δ)2

∑n
i=1 v

2
i(∑n

i=1 2σ2
i +

log(1/δ)v2i∑n
j=1 2σ2

j

)2 − 2 log(1/δ)

)

≤ exp

(
log(1/δ)

1∑n
i=1 2σ2

i +
log(1/δ)v2i∑n

j=1 2σ2
j

( n∑
i=1

2σ2
i + log(1/δ)

∑n
i=1 v

2
i∑n

i=1 2σ2
i

)
− 2 log(1/δ)

)
= δ ,

where we used in the second line the fact that log(1/δ)v2i∑n
j=1 2σ2

j
≥ 0. This concludes the proof.

�

D.3 Empirical Bernstein bounds for variance estimation

The following Lemma is an adaptation of Bernstein’s inequality in the special case of a slightly
modified sub-Gaussian assumption. The assumption is actually natural in view of Lemma 4 above.

Lemma 8 Let {Yi,k}i≤nk,k≤K be n =
∑
k nk independent random variables, where nk = n

K such

that E
[
Yi,k

]
= fi,k, V

[
Yi,k

]
= σ2

i,k, and for any λ < 1, it holds that

E+
[
λ
(
Yi,k − fi,k

)]
≤ λ2

2

(
2σ2

i,k +
λ2

2
v2
i,k

)
and also that

E+
[
λ
(
(Yi,k − fi,k)2 − σ2

i,k

)]
≤ λ2σ2

i,k(c+ υ) ,

where υ = o(1). Moreover, let us assume that fi,k = fj,k for all k ≤ K, for all 1 ≤ i, j ≤ nk.

Let us introduce the following objects

σ̂2
k

def
=

1

nk − 1

nk∑
i=1

(
Yi,k −

1

nk

nk∑
j=1

Yj,k

)2

and V̂
def
=

1

K

K∑
k=1

σ̂2
k .

Then for all δ ∈ [0, 1], with probability 1− δ, we have∣∣∣∣ V̂ − 1

n

K∑
k=1

nk∑
i=1

σ2
i,k

∣∣∣∣ ≤
√

8 log(4/δ)cV̂

n
+

8 log(4K/δ)

n−K
(
KV̂ +

√
cKV̂

)
+ o
(
n−1

)
.

Proof: Let us first rewrite the term we want to control in terms of the centered variables Zi,k
def
=

Yi,k − fi,k, we have

1

K

K∑
k=1

σ̂2
k =

1

K

K∑
k=1

1

nk − 1

nk∑
i=1

(
Zi,k −

1

nk

nk∑
j=1

Zj,k + fi,k −
1

nk

nk∑
j=1

fj,k

)2

=
1

K

K∑
k=1

nk
nk − 1

(
1

nk

nk∑
i=1

(
Zi,k −

1

nk

nk∑
j=1

Zj,k

)2
)

+
1

K

K∑
k=1

vfk

+
2

n−K

K∑
k=1

nk∑
i=1

(
Zi,k −

1

nk

nk∑
j=1

Zj,k

)(
fi,k −

1

nk

nk∑
j=1

fj,k

)
,

where we introduced the notation

vfk
def
=

1

nk − 1

nk∑
i=1

(
fi,k −

1

nk

nk∑
j=1

fj,k

)2

.
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Now, in the case when fi,k = fj,k for all k ≤ K, for all 1 ≤ i, j ≤ nk, then we have

1

K

K∑
k=1

σ̂2
k −

1

n

K∑
k=1

nk∑
i=1

σ2
i,k =

1

n

K∑
k=1

nk∑
i=1

(
Z2
i,k − σ2

i,k

)
− 1

K

K∑
k=1

nk
nk − 1

(
1

nk

nk∑
i=1

Zi,k

)2

− K

n(n−K)

K∑
k=1

nk∑
i=1

Z2
i,k .

The second sum is controlled by an application of modified Bernstein inequality for almost sub-
Gaussian random variables (Lemma 7). Using a union bound over the K elements of the sum, we
get that with probability higher than 1− δ,

∣∣∣∣ 1

K

K∑
k=1

nk
nk − 1

(
1

nk

nk∑
i=1

Zi,k

)2 ∣∣∣∣ ≤ 1

K

K∑
k=1

nk
nk − 1

(
2 log(2K/δ)

n2
k

nk∑
i=1

2σ2
i,k + 2 log(2K/δ)2

nk∑
i=1

v2
i,k

n2
k

∑nk
j=1 2σ2

j,k

)

≤ 2K log(2K/δ)

n(n−K)

K∑
k=1

( nk∑
i=1

2σ2
i,k + log(2K/δ)

∑nk
i=1 v

2
i,k∑nk

j=1 2σ2
j,k

)
.

The first sum is a standard sum of sub-Gaussian random variables. We thus have with probability
higher than 1− δ,∣∣∣∣ 1

n

K∑
k=1

nk∑
i=1

(
Z2
i,k − σ2

i,k

) ∣∣∣∣ ≤ 1

n1/2

(
4 log(2/δ)

1

n

K∑
k=1

nk∑
i=1

σ2
i,k(c+ υ)

)1/2

.

Combining those results, and introducing the quantity V def
= 1

n

∑K
k=1

∑nk
i=1 σ

2
i,k, we deduce that∣∣∣∣ 1

K

K∑
k=1

σ̂2
k − V

∣∣∣∣ ≤
√

4 log(4/δ)(c+ υ)
V

n
+
K(4 log(4K/δ) + 1)

n−K
V + Ω

( K

n−K

√
V

n

)
+ Ω

( K2

n(n−K)

)
.

At this point, let us remark that this bound has the following form∣∣∣∣ V̂ − V ∣∣∣∣ ≤
√
CV

n
+

KC ′

n−K
V + o

(
n−1

)
,

for some numerical constant C and C ′. This implies that(√
V −

√
C

2n

)2

≤ V̂ +
C

2n
+

KC ′

n−K
V + o

(
n−1

)
i.e.

√
V ≤

√
V̂ +

√
2C

n
+

√
KC ′

n−K
V + o

(
n−1/2

)
,

and a similar bound for
√
V̂ . Thus, using this in order to substitute V with V̂ in the original bound,

and solving the corresponding fixed point equation, we get that∣∣∣∣ V̂ − V ∣∣∣∣ ≤
√
CV̂

n
+

KC ′

n−K
V̂ +

√
CKC ′V̂

n(n−K)
+ o
(
n−1

)
.

Thus, coming back to the terms we want to control, and using the crude upper bound c + υ ≤ 2c,
we finally get∣∣∣∣ 1

K

K∑
k=1

σ̂2
k − V

∣∣∣∣ ≤
√

8 log(4/δ)cV̂

n
+
K(4 log(4K/δ) + 1)

n−K
V̂ +

√
8 log(4/δ)cK(4 log(4K/δ) + 1)V̂

n(n−K)
+ o
(
n−1

)
,

which gives the final bound after cosmetic simplifications.

�

The following Lemma is an adaptation of Bernstein’s inequality in the special case of a slightly
modified sub-Gaussian assumption. The assumption is actually natural in view of Lemma 4 above.
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Lemma 9 Let {Yk}k≤K beK independent random variables, such that E
[
Yk

]
= fk, V

[
Yk

]
= σ2

k,
and for any λ < 1, it holds that

E+
[
λ
(
Yk − fk

)]
≤ λ2

2

(
2σ2

k +
λ2

2
v2
k

)
and also that

E+
[
λ
(
(Yk − fk)2 − σ2

i,k

)]
≤ λ2σ2

k(c+ υ) ,

where υ = o(1). Let us introduce the following object

V̂K
def
=

1

K − 1

K∑
k=1

(
Yk −

1

K

K∑
k′=1

Yk′
)2

and wk
def
=
(
fk −

1

K

K∑
k′=1

fk′
)2

.

Note that the estimator V̂n satisfies that E
[
V̂K

]
=

1

K − 1

K∑
k=1

wk +
1

K

K∑
k=1

σ2
k .

Then for all δ ∈ [0, 1], with probability 1− δ, we have∣∣∣∣ V̂K − E
[
V̂K

] ∣∣∣∣ ≤ (
4 log(4/δ)

1

(K − 1)2

K∑
k=1

σ2
k(c+ υ)

)1/2

+
1

K(K − 1)

K∑
k=1

σ2
k

+
2K

(K − 1)K1/2

(
2 log(4/δ)

1

K

K∑
k=1

(
2σ2

kwk +
log(4/δ)v2

kw
2
k∑K

k=1 2σ2
kwk

))1/2

+
1

K − 1

(
2 log(4/δ)

1

K

K∑
k=1

(
2σ2

k +
log(4/δ)v2

k∑K
k=1 2σ2

k

))
.

Proof: Indeed, we first use the following decomposition

V̂K =
K

K − 1

(
1

K

K∑
k=1

(Yk − fk)2 −
( 1

K

K∑
k=1

Yk − fk
)2
)

+
1

K − 1

K∑
k=1

(
fk −

1

K

K∑
k′=1

fk′
)

+
2

K − 1

K∑
k=1

(
Yk − fk

)(
fk −

1

K

K∑
k′=1

fk′
)
.

Thus, we deduce that

V̂K − Vk =
1

K

K∑
k=1

(
(Yk − fk)2 − σ2

k

)
− K

K − 1

( 1

K

K∑
k=1

Yk − fk
)2

− 1

K(K − 1)

K∑
k=1

(Yk − fk)2 +
2

K − 1

K∑
k=1

(
Yk − fk

)(
fk −

1

K

K∑
k′=1

fk′
)
.

The first and third sums are controlled by application of Bernstein inequality, we have that with
probability higher than 1− δ, then∣∣∣∣ 1

K

K∑
k=1

(
(Yk − fk)2 − σ2

k

) ∣∣∣∣ ≤ 1

K1/2

(
4 log(2/δ)

1

K

K∑
k=1

σ2
k(c+ υ)

)1/2

.

For the second and fourth sum, by application of Lemma 7 we have that with probability higher than
1− δ, then∣∣∣∣ 1

K

K∑
k=1

Yk − fk
∣∣∣∣ ≤ 1

K1/2

(
2 log(2/δ)

1

K

K∑
k=1

(
2σ2

k +
log(2/δ)v2

k∑K
k=1 2σ2

k

))1/2

.
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By a union bound, we deduce that with probability higher than 1− 2δ we have the following upper
bound∣∣∣∣ V̂K − Vk ∣∣∣∣ ≤ 1

K1/2

(
4 log(2/δ)

1

K

K∑
k=1

σ2
k(c+ υ)

)1/2(
1 +

1

K − 1

)
+

1

K(K − 1)

K∑
k=1

σ2
k

+
2K

(K − 1)K1/2

(
2 log(2/δ)

1

K

K∑
k=1

(
2σ2

kwk +
log(2/δ)v2

kw
2
k∑K

k=1 2σ2
kwk

))1/2

+
1

K − 1

(
2 log(2/δ)

1

K

K∑
k=1

(
2σ2

k +
log(2/δ)v2

k∑K
k=1 2σ2

k

))
,

where wk
def
=
(
fk − 1

K

∑K
k′=1 fk′

)2

.

�

E Performance analysis

Proof of Theorem 1 The proof is in tree steps. By definition, we have that

Ln(A)
def
= max

1≤ p≤P
Qp(Tp,n) ,

where we remind that

Qp(Tp,n) = Vµp
[
f
]

+
1

KTp,n

K∑
k=1

(
Vµp,k

[
f
]

+ Eµp,k
[
σ2
])
.

Thus, let pn ∈ argmax{Qp(Tp,n) ; 1 ≤ p ≤ Pn} be the indexRpnof a region of highest loss. Then,
either this region is over-pulled, or it is under-pulled.

Step 1. Case when Rpn is over-pulled. In that case, this means that Tpn,n ≥ T ?pn,n. Thus, since
Qp is a decreasing function of its argument, we deduce that

max
1≤ p≤P

Qp(Tp,n) = Qpn(Tpn,n) ≤ Qpn(T ?pn,n) ≤ max
1≤ p≤P

Qp(T
?
p,n) ,

which means, in that case, that the contribution to the loss is negative.

Step 2. Case whenRpn is under-pulled. We now consider that Tpn,n ≤ T
?
pn,n

, which implies that

Qpn(Tpn,n) ≥ Qpn(T ?pn,n) .

SinceRpn is under-pulled, from the constraint that
pn∑
p=1

Tp,n = n, we deduce that there exists a region

1 ≤ q ≤ Pn that is over-pulled, i.e. satisfies Tq,n > T ?q,n. Let τq + 1 ≤ n/K be the last round when
q was chosen to be pulled; we have precisely Tq,K(τq+1) = Tq,n and Tq,Kτq = Tq,n−K, since each
time a region is chosen, it is sampled K times.

Now at the end of round τ = n/K ≥ Pn, then all regions Rp have been chosen at least once
and thus satisfy K(τq + 1) ≥ K. In that case, in the corresponding round τq + 1 we have for all
1 ≤ p ≤ Pn, first by definition of the algorithm and then on the event ξ, that

Bq,τq ≥ Bp,τq ≥ Qp(Tp,Kτq ) .

In particular, this happens for p being the index pn. Using the fact that n ≥ Kτq , and thus that for
all region p, then Qp(Tp,Kτq ) ≤ Qp(Tp,n), we deduce that on ξ

Bq,τq ≥ Qpn(Tpn,n) .
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Now, on the other hand, on the event ξ and by definition of the upper bound, we have that

Bq,τq ≤ Qq(Tq,Kτq ) + 2
AK

Tq,Kτq

√
log(4nPn/δ)V̂q(Tq,Kτq )

K − 1
+

4L2dα

(KPn)2α/d

= Qq(Tq,n −K) +
2AK

Tq,n −K

√
log(4nPn/δ)V̂q(Tq,n −K)

K − 1
+

4L2dα

(KPn)2α/d

≤ Qq(T
?
q,n −K + 1) +

2AK

T ?q,n −K + 1

√
log(4nPn/δ)V̂q(T ?q,n −K + 1)

K − 1
+

4L2dα

(KPn)2α/d
.

Thus, combining this bound with the previous lower bound, we deduce that

max
1≤ p≤P

Qp(Tp,n) ≤ max
1≤q≤Pn

Qq(T
?
q,n −K + 1) +

min

{
2AK

T ?q,n −K + 1

√
log(4nPn/δ)V̂q(T ?q,n −K + 1)

K − 1
+

4L2dα

(KPn)2α/d
; q s.t. Tq,n > T ?q,n

}
.

Step 3. Putting previous steps together. Now, since actually on the event ξ, the empirical variance
V̂q(T

?
q,n −K + 1) in the bound can be replaced with the variance σ2

q,k (the proof actually first uses
the variance before moving to the empirical variance), we deduce that

Ln(A) ≤ Ln(A?) + min

{
2AK

T ?q,n −K + 1

√
log(4nPn/δ)

1
K−1

∑K
k=1 σ

2
q,k

K − 1
+

4L2dα

(KPn)2α/d
; q s.t. Tq,n > T ?q,n

}

+

(
max

1≤p≤Pn

1

T ?p,n(T ?p,n −K)

) K∑
k=1

σ2
p,k .

We can further simplify this bound. Let us consider that the partition P is well behaved, i.e. that the
distortion factor γ =

maxp T
?
p,n

minp T?p,n
is not too big. In that case, since for all p we must have T ?p,n ≥ n

γPn
,

then considering that we choose K small enough and using the assumption that σ2 is bounded by 1,
we deduce that

Ln(A) ≤ Ln(A?) +
γ2APn
n

√
K log(4nPn/δ) +

4L2dα

(KPn)2α/d
+ o
(Pn
n

)
.

Since we know that the minimax optimal value of Pn is of order n
d

2α+d , let us choose Pn
def
=

n
d

2α+d ε2+ d
2α for some ε to be chosen later. Then the value of K optimizing the previous bound (up

to γ and log(1/δ)) is of order

K =

[
C

n

P
2α+d
d

n

] 2d
4α+d

= C
2d

4α+d ε−
4α+d
2α

4α+2d
4α+d ,

where C = 8L2α
Ad1−α , with a corresponding value of the bound of

Ln(A) ≤ Ln(A?) + n−
2α

2α+d ε
(
C

d
4α+d γ2A

√
log(4nPn/δ) + C−

4α
4α+d 4L2dα

)
+ o
(
n−

2α
2α+d

)
.

Thus, since for this choice of Pn, the corresponding optimal allocation is such that Ln(A?) =

O
(
n−

2α
2α+d

)
, then we finally deduce that for some explicit constant C ′, the following bound holds

Ln(A) ≤
(

1 + εγC ′
√

log(1/δ)
)
Ln(A?) + o

(
n−

2α
2α+d

)
.
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