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Abstract

Given their pervasive use, social media, such as Twitter, have become a lead-
ing source of breaking news. A key task in the automated identification of such
news is the detection of novel documents from a voluminous stream of text docu-
ments in a robust and scalable manner. Motivated by this challenge, we introduce
the problem of online `1-dictionary learning where unlike traditional dictionary
learning, which uses squared loss, the `1-penalty is used for measuring the recon-
struction error. We present an efficient online algorithm for this problem based on
alternating directions method of multipliers, and establish a sublinear regret bound
for this algorithm. Empirical results on news-stream and Twitter data, shows that
this online `1-dictionary learning algorithm for novel document detection gives
more than an order of magnitude speedup over the previously known batch algo-
rithm, without any significant loss in quality of results. Our algorithm for online
`1-dictionary learning could be of independent interest.

1 Introduction

The high volume and velocity of social media, such as blogs and Twitter, have propelled them to
the forefront as sources of breaking news. On Twitter, it is possible to find the latest updates on
diverse topics, from natural disasters to celebrity deaths; and identifying such emerging topics has
many practical applications, such as in marketing, disease control, and national security [18]. The
key challenge in automatic detection of breaking news, is being able to detect novel documents in
a stream of text; where a document is considered novel if it is “unlike” documents seen in the past.
Recently, this has been made possible by dictionary learning, which has emerged as a powerful data
representation framework. In dictionary learning each data point y is represented as a sparse linear
combination Ax of dictionary atoms, where A is the dictionary and x is a sparse vector [1, 16]. A
dictionary learning approach can be easily converted into a novel document detection method: let A
be a dictionary representing all documents till time t−1, for a new data document y arriving at time
t, if one does not find a sparse combination x of the dictionary atoms, and the best reconstruction
Ax yields a large loss, then y clearly is not well represented by the dictionary A, and is hence novel
compared to documents in the past. At the end of timestep t, the dictionary is updated to represent
all the documents till time t.

∗Part of this wok was done while the author was a postdoc at the IBM T.J. Watson Research Center.
†H. Wang and A. Banerjee was supported in part by NSF CAREER grant IIS-0953274, NSF grants IIS-
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Kasiviswanathan et al. [14] presented such a (batch) dictionary learning approach for detecting novel
documents/topics. They used an `1-penalty on the reconstruction error (instead of squared loss com-
monly used in the dictionary learning literature) as the `1-penalty has been found to be more effective
for text analysis (see Section 3). They also showed this approach outperforms other techniques, such
as a nearest-neighbor approach popular in the related area of First Story Detection [20]. We build
upon this work, by proposing an efficient algorithm for online dictionary learning with `1-penalty.
Our online dictionary learning algorithm is based on the online alternating directions method which
was recently proposed by Wang and Banerjee [26] to solve online composite optimization problems
with additional linear equality constraints. Traditional online convex optimization methods such
as [32, 11, 7, 8, 29] require explicit computation of the subgradient making them computationally
expensive to be applied in our high volume text setting, whereas in our algorithm the subgradients
are computed implicitly. The algorithm has simple closed form updates for all steps yielding a fast
and scalable algorithm for updating the dictionary. Under suitable assumptions (to cope with the
non-convexity of the dictionary learning problem), we establish an O(

√
T ) regret bound for the ob-

jective, matching the regret bounds of existing methods [32, 7, 8, 29]. Using this online algorithm
for `1-dictionary learning, we obtain an online algorithm for novel document detection, which we
empirically validate on traditional news-streams as well as streaming data from Twitter. Experi-
mental results show a substantial speedup over the batch `1-dictionary learning based approach of
Kasiviswanathan et al. [14], without a loss of performance in detecting novel documents.

Related Work. Online convex optimization is an area of active research and for a detailed survey
on the literature we refer the reader to [24]. Online dictionary learning was recently introduced
by Mairal et al. [16] who showed that it provides a scalable approach for handling large dynamic
datasets. They considered an `2-penalty and showed that their online algorithm converges to the
minimum objective value in the stochastic case (i.e., with distributional assumptions on the data).
However, the ideas proposed in [16] do not translate to the `1-penalty. The problem of novel docu-
ment/topics detection was also addressed by a recent work of Saha et al. [22], where they proposed a
non-negative matrix factorization based approach for capturing evolving and novel topics. However,
their algorithm operates over a sliding time window (does not have online regret guarantees) and
works only for `2-penalty.

2 Preliminaries

Notation. Vectors are always column vectors and are denoted by boldface letters. For a matrix Z
its norm, ‖Z‖1 =

∑
i,j |zij | and ‖Z‖2F =

∑
ij z

2
ij . For arbitrary real matrices the standard inner

product is defined as 〈Y,Z〉 = Tr(Y >Z). We use Ψmax(Z) to denote the largest eigenvalue of
Z>Z. For a scalar r ∈ R, let sign(r) = 1 if r > 0, −1 if r < 0, and 0 if r = 0. Define
soft(r, T ) = sign(r) · max{|r| − T, 0}. The operators sign and soft are extended to a matrix by
applying it to every entry in the matrix. 0m×n denotes a matrix of all zeros of size m × n and the
subscript is omitted when the dimension of the represented matrix is clear from the context.

Dictionary Learning Background. Dictionary learning is the problem of estimating a collection
of basis vectors over which a given data collection can be accurately reconstructed, often with sparse
encodings. It falls into a general category of techniques known as matrix factorization. Classic dic-
tionary learning techniques for sparse representation (see [1, 19, 16] and references therein) consider
a finite training set of signals P = [p1, . . . ,pn] ∈ Rm×n and optimize the empirical cost function
which is defined as f(A) =

∑n
i=1 l(pi, A), where l(·, ·) is a loss function such that l(pi, A) should

be small ifA is “good” at representing the signal pi in a sparse fashion. Here,A ∈ Rm×k is referred
to as the dictionary. In this paper, we use a `1-loss function with an `1-regularization term, and our

l(pi, A) = min
x
‖pi −Ax‖1 + λ‖x‖1, where λ is the regularization parameter.

We define the problem of dictionary learning as that of minimizing the empirical cost f(A). In other
words, the dictionary learning is the following optimization problem

min
A
f(A) = f(A,X)

def
= min

A,X

n∑
i=1

l(pi, A) = min
A,X

‖P −AX‖1 + λ‖X‖1.

For maintaining interpretability of the results, we would additionally require that the A and X ma-
trices be non-negative. To prevent A from being arbitrarily large (which would lead to arbitrarily
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small values of X), we add a scaling constant on A as follows. Let A be the convex set of matrices
defined as

A = {A ∈ Rm×k : A ≥ 0m×k ∀j = 1, . . . , k , ‖Aj‖1 ≤ 1}, where Aj is the jth column in A.

We use ΠA to denote the Euclidean projection onto the nearest point in the convex set A. The
resulting optimization problem can be written as

min
A∈A,X≥0

‖P −AX‖1 + λ‖X‖1 (1)

The optimization problem (1) is in general non-convex. But if one of the variables, either A or X is
known, the objective function with respect to the other variable becomes a convex function (in fact,
can be transformed into a linear program).

3 Novel Document Detection Using Dictionary Learning

In this section, we describe the problem of novel document detection and explain how dictionary
learning could be used to tackle this problem. Our problem setup is similar to [14].

Novel Document Detection Task. We assume documents arrive in streams. Let {Pt : Pt ∈
Rmt×nt , t = 1, 2, 3, . . . } denote a sequence of streaming matrices where each column of Pt repre-
sents a document arriving at time t. Here, Pt represents the term-document matrix observed at time
t. Each document is represented is some conventional vector space model such as TF-IDF [17].
The t could be at any granularity, e.g., it could be the day that the document arrives. We use nt to
represent the number of documents arriving at time t. We normalize Pt such that each column (doc-
ument) in Pt has a unit `1-norm. For simplicity in exposition, we will assume that mt = m for all
t.1 We use the notation P[t] to denote the term-document matrix obtained by vertically concatenating
the matrices P1, . . . , Pt, i.e., P[t] = [P1|P2| . . . |Pt]. Let Nt be the number of documents arriving at
time ≤ t, then P[t] ∈ Rm×Nt . Under this setup, the goal of novel document detection is to identify
documents in Pt that are “dissimilar” to the documents in P[t−1].

Sparse Coding to Detect Novel Documents. Let At ∈ Rm×k represent the dictionary matrix after
time t−1; where dictionaryAt is a good basis to represent of all the documents in P[t−1]. The exact
construction of the dictionary is described later. Now, consider a document y ∈ Rm appearing at
time t. We say that it admits a sparse representation over At, if y could be “well” approximated as
a linear combination of few columns from At. Modeling a vector with such a sparse decomposition
is known as sparse coding. In most practical situations it may not be possible to represent y as Atx,
e.g., if y has new words which are absent in At. In such cases, one could represent y = Atx + e
where e is an unknown noise vector. We consider the following sparse coding formulation

l(y, At) = min
x≥0

‖y −Atx‖1 + λ‖x‖1. (2)

The formulation (2) naturally takes into account both the reconstruction error (with the ‖y−Atx‖1
term) and the complexity of the sparse decomposition (with the ‖x‖1 term). The reconstruction
error measures the quality of the approximation while the complexity is measured by the `1-norm of
the optimal x. It is quite easy to transform (2) into a linear program. Hence, it can be solved using
a variety of methods. In our experiments, we use the alternating directions method of multipliers
(ADMM) [3] to solve (2). ADMM has recently gathered significant attention in the machine learning
community due to its wide applicability to a range of learning problems with complex objective
functions [3] (see Appendix A for a brief background on ADMM).

We can use sparse coding to detect novel documents as follows. For each document y arriving at
time t, we do the following. First, we solve (2) to check whether y could be well approximated as a
sparse linear combination of the atoms of At. If the objective value l(y, At) is “big” then we mark
the document as novel, otherwise we mark the document as non-novel. Since, we have normalized
all documents in Pt to unit `1-length, the objective values are in the same scale.

Choice of the Error Function. A very common choice of reconstruction error is the `2-penalty. In
fact, in the presence of isotopic Gaussian noise the `2-penalty on e = y − Atx gives the maximum

1As new documents come in and new terms are identified, we expand the vocabulary and zero-pad the
previous matrices so that at the current time t, all previous and current documents have a representation over
the same vocabulary space.
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likelihood estimate of x [28, 30]. However, for text documents, the noise vector e rarely satisfies the
Gaussian assumption, as some of its coefficients contain large, impulsive values. For example, in
fields such as politics and sports, a certain term may become suddenly dominant in a discussion [14].
In such cases imposing an `1-penalty on the error is a better choice than imposing an `2-penalty
(e.g., recent research [28, 31, 27] have successfully shown the superiority of `1 over `2 penalty for a
different but related application domain of face recognition). We empirically validate the superiority
of using the `1-penalty for novel document detection in Section 5.

Size of the Dictionary. Ideally, in our application setting, changing the size of the dictionary (k)
dynamically with t would lead to a more efficient and effective sparse coding. However, in our
theoretical analysis, we make the simplifying assumption that k is a constant independent of t. In
our experiments, we allow for small increases in the size of the dictionary over time when required.
The problem of designing an adaptive dictionary whose size automatically increase or decrease over
time is an interesting open problem.

Batch Algorithm for Novel Document Detection. We now describe a simple batch algorithm
(slightly modified from [14]) for detecting novel documents. The Algorithm BATCH alternates be-
tween a novel document detection and a batch dictionary learning step.

Algorithm 1 : BATCH

Input: P[t−1] ∈ Rm×Nt−1 , Pt = [p1, . . . ,pnt ] ∈ Rm×nt , At ∈ Rm×k, λ ≥ 0, ζ ≥ 0
Novel Document Detection Step:
for j = 1 to nt do

Solve: xj = argminx≥0 ‖pj −Atx‖1 + λ‖x‖1
if ‖pj −Atxj‖1 + λ‖xj‖1 > ζ

Mark pj as novel
Batch Dictionary Learning Step:
Set P[t] ← [P[t−1] |p1, . . . ,pnt ]
Solve: [At+1, X[t]] = argminA∈A,X≥0 ‖P[t] −AX‖1 + λ‖X‖1

Batch Dictionary Learning. We now describe the batch dictionary learning step. At time t, the
dictionary learning step is2

[At+1, X[t]] = argminA∈A,X≥0 ‖P[t] −AX‖1 + λ‖X‖1. (3)

Even though conceptually simple, Algorithm BATCH is computationally inefficient. The bottleneck
comes in the dictionary learning step. As t increases, so does the size of P[t], so solving (3) becomes
prohibitive even with efficient optimization techniques. To achieve computational efficiency, in [14],
the authors solved an approximation of (3) where in the dictionary learning step they only update
the A’s and not the X’s.3 This leads to faster running times, but because of the approximation, the
quality of the dictionary degrades over time and the performance of the algorithm decreases. In this
paper, we propose an online learning algorithm for (3) and show that this online algorithm is both
computationally efficient and generates good quality dictionaries under reasonable assumptions.

4 Online `1-Dictionary Learning

In this section, we introduce the online `1-dictionary learning problem and propose an efficient al-
gorithm for it. The standard goal of online learning is to design algorithms whose regret is sublinear
in time T , since this implies that “on the average” the algorithm performs as well as the best fixed
strategy in hindsight [24]. Now consider the `1-dictionary learning problem defined in (3). Since
this problem is non-convex, it may not be possible to design efficient (i.e., polynomial running time)
algorithms that solves it without making any assumptions on either the dictionary (A) or the sparse
code (X). This also means that it may not be possible to design efficient online algorithm with

2In our algorithms, it is quite straightforward to replace the condition A ∈ A by some other condition
A ∈ C, where C is some closed non-empty convex set.

3In particular, define (recursively) X̃[t] = [X̃[t−1] |x1, . . . ,xnt ] where xj’s are coming from the novel
document detection step at time t. In [14], the dictionary learning step is At+1 = argminA∈A ‖P[t]−AX̃[t]‖1.
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sublinear regret without making any assumptions on either A or X because an efficient online al-
gorithm with sublinear regret would imply an efficient algorithm for solving (1) in the offline case.
Therefore, we focus on obtaining regret bounds for the dictionary update, assuming that the at each
timestep the sparse codes given to the batch and online algorithms are “close”. This motivates the
following problem.
Definition 4.1 (Online `1-Dictionary Learning Problem). At time t, the online algorithm picks
Ât+1 ∈ A. Then, the nature (adversary) reveals (Pt+1, X̂t+1) with Pt+1 ∈ Rm×n and X̂t+1 ∈
Rk×n. The problem is to pick the Ât+1 sequence such that the following regret function is mini-
mized4

R(T ) =

T∑
t=1

‖Pt − ÂtX̂t‖1 − min
A∈A

T∑
t=1

‖Pt −AXt‖1 ,

where X̂t = Xt + Et and Et is an error matrix dependent on t.

The regret defined above admits the discrepancy between the sparse coding matrices supplied to the
batch and online algorithms through the error matrix. The reason for this generality is because in
our application setting, the sparse coding matrices used for updating the dictionaries of the batch
and online algorithms could be different. We will later establish the conditions on Et’s under which
we can achieve sublinear regret.

4.1 Online `1-Dictionary Algorithm

In this section, we design an algorithm for the online `1-dictionary learning problem, which we
call Online Inexact ADMM (OIADMM)5 and bound its regret. Firstly note that because of the
non-smooth `1-norms involved it is computationally expensive to apply standard online learning
algorithms like online gradient descent [32, 11], COMID [8], FOBOS [7], and RDA [29], as they
require computing a costly subgradient at every iteration. The subgradient of ‖P −AX‖1 at A = Ā
is (X · sign(X>Ā> − P>))>.

Our algorithm for online `1-dictionary learning is based on the online alternating direction method
which was recently proposed by Wang et al. [26]. Our algorithm first performs a simple variable
substitution by introducing an equality constraint. The update for each of the resulting variable has
a closed-form solution without the need of estimating the subgradients explicitly.

Algorithm 2 : OIADMM

Input: Pt ∈ Rm×n, Ât ∈ Rm×k, ∆t ∈ Rm×n, X̂t ∈ Rk×n, βt ≥ 0, τt ≥ 0

Γ̃t ←− Pt − ÂtX̂t

Γt+1 = argminΓ ‖Γ‖1 + 〈∆t, Γ̃t − Γ〉+ (βt/2)‖Γ̃t − Γ‖2F
(⇒ Γt+1 = soft(Γ̃t + ∆t/βt, 1/βt))

Gt+1 ←− −(∆t/βt + Γ̃t − Γt+1)X̂>t
Ât+1 = argminA∈A βt(〈Gt+1, A− Ât〉+ (1/2τt)‖A− Ât‖2F )

(⇒ Ât+1 = ΠA(max{0, Ât − τtGt+1}))
∆t+1 = ∆t + βt(Pt − Ât+1X̂t − Γt+1)

Return Ât+1 and ∆t+1

The Algorithm OIADMM is simple. Consider the following minimization problem at time t

min
A∈A

‖Pt −AX̂t‖1.

We can rewrite this above minimization problem as:

min
A∈A,Γ

‖Γ‖1 such that Pt −AX̂t = Γ. (4)

4For ease of presentation and analysis, we will assume that m and n don’t vary with time. One could allow
for changing m and n by carefully adjusting the size of the matrices by zero-padding.

5The reason for naming it OIADMM is because the algorithm is based on alternating directions method of
multipliers (ADMM) procedure. See Appendix A for a brief background on ADMM.
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The augmented Lagrangian of (4) is:

L(A,Γ,∆) = min
A∈A,Γ

‖Γ‖1 + 〈∆, Pt − AX̂t − Γ〉 +
βt
2

∥∥∥Pt −AX̂t − Γ
∥∥∥2

F
, (5)

where ∆ ∈ Rm×n is a multiplier and βt > 0 is a penalty parameter.

OIADMM is summarized in Algorithm 2. The algorithm generates a sequence of iterates
{Γt, At,∆t}∞t=1. At each time t, instead of solving (4) completely, it only runs one step ADMM
update of the variables (Γt, At,∆t). Let Γ̃t = Pt − ÂtX̂t. The update steps are as follows.

i. First for a fixed A = Ât and ∆t, Γ that minimizes (5) could be obtained by solving

argminΓ ‖Γ‖1 + 〈∆t, Γ̃t − Γ〉+ (βt/2)‖Γ̃t − Γ‖2F .

The Γ that minimizes this optimization problem is set as Γt+1.
ii. Using Γ = Γt+1 and ∆t, a simple manipulation shows that we can obtain the A that mini-

mizes (5) by solving

min
A∈A

βt
2

∥∥∥∥Pt −AX̂t − Γt+1 +
∆t

βt

∥∥∥∥2

F

. (6)

Instead of solving (6) exactly, we approximate it by

min
A∈A

βt(〈Gt+1, A− Ât〉+ 1/(2τt)‖A− Ât‖2F ),

where τt > 0 is a proximal parameter and Gt+1 is the gradient of ‖Pt−AX̂t−Γt+1 + ∆t/βt‖2F
at A = Ât. The above approach belongs to the class of proximal gradient methods in optimiza-
tion [25, 31]. The A that minimizes this optimization problem is set as Ât+1.

iii. Update ∆ as ∆t+1 = ∆t + βt(Pt − Ât+1X̂t − Γt+1).

Equality Constraint Violation. OIADMM could temporary violate the equality constraint in (4),
but satisfies the constraint on average in the long run. More formally, at each time t it could happen
that Ât+1 and Γt+1 produced by OIADMM is such that Pt − Ât+1X̂t 6= Γt+1. However, we show
(see Theorem 4.7) that the algorithm has the property that

T∑
t=1

‖Γt+1 − Pt + Ât+1X̂t‖22 = O(
√
T ),

which implies that over time, on average, the equality constraint (4) gets satisfied.

4.2 Analysis of OIADMM

First, Let us recap the OIADMM update rules.

Γt+1 = argmin
Γ

‖Γ‖1 + 〈∆t, Γ̃t − Γ〉+
βt
2
‖Γ̃t − Γ‖2F . (7)

Ât+1 = argmin
A∈A

βt(〈Gt+1, A− Ât〉+
1

2τt
‖A− Ât‖2F ), (8)

∆t+1 = ∆t + βt(Pt − Ât+1Xt − Γt+1). (9)

Let Aopt be the optimum solution to (the batch problem)

min
A∈A

T∑
t=1

‖Pt −AXt‖1.

Let Γ̃t = Pt − ÂtX̂t and Γ̂t = Pt − Ât+1X̂t. For any, A? ∈ A, let Γ?t = Pt −A?X̂t. The lemmas
below hold for any A? ∈ A so in particular it holds for A? set as Aopt.
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Proof Flow. Although the algorithm is relatively simple, the analysis is somewhat involved. Define,
Γ

opt

t = Pt −AoptXt. Then the regret of the OIADMM is

R(T ) =

T∑
t=1

‖Γ̃t‖1 − ‖Γ
opt

t ‖1.

We split the proof into three technical lemmas. We first upper bound 〈∆t, Γ̂t − Γ?t 〉 (Lemma 4.3),
and use it to bound ‖Γt+1‖1 − ‖Γ?t ‖1 (Lemma 4.4). In the proof of Lemma 4.5, we bound ‖Γ̃t‖1 −
‖Γt+1‖1 and this when added to the bound on ‖Γt+1‖1 − ‖Γ?t ‖1 (from Lemma 4.4) gives a bound
on ‖Γ̃t‖1−‖Γ?t ‖1. The proof of the regret bound uses a canceling telescoping sum on the bound on
‖Γ̃t‖1 − ‖Γ?t ‖1.

We use the following simple inequality in our proofs.
Lemma 4.2. For matrices M1,M2,M3,M4 ∈ Rm×n, we have the following

2〈M1 −M2,M3 −M4〉 = ‖M1 −M4‖2F + ‖M2 −M3‖2F − ‖M1 −M3‖2F − ‖M2 −M4‖2F .

Lemma 4.3. Let {Γt, Ât,∆t} be the sequences generated by the OIADMM procedure. For any
A? ∈ A, we have

〈∆t, Γ̂t − Γ?t 〉 ≤
βt
2τt

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F

)
+
βt
2

(
‖Γ?t − Γt+1‖2F − ‖Γt+1 − Γ̂t‖2F − ‖Γ?t − Γ̃t‖2F

)
−βt

2

(
1

τt
−Ψmax(X̂t)

)
‖Ât+1−Ât‖2F .

Proof. For any A? ∈ A, (8) is equivalent to the following variational inequality [21]:

βt〈Gt+1 +
1

τt
(Ât+1 − Ât), A? − Ât+1〉 ≥ 0. (10)

Using Γ̂t = Pt − Ât+1X̂t and substituting for Gt+1, we have

βt〈Gt+1, A
? − Ât+1〉 = −βt〈(∆t/βt + Γ̃t − Γt+1)X̂>t , A

? − Ât+1〉
= βt〈∆t/βt + Γ̃t − Γt+1, Ât+1X̂t −A?X̂t〉
= βt〈∆t/βt + Γ̃t − Γt+1, Pt −A?X̂t − (Pt − Ât+1X̂t)〉
= 〈∆t,Γ

?
t − Γ̂t〉+ βt〈Γ̃t − Γt+1,Γ

?
t − Γ̂t〉. (11)

Substituting (11) into (10) and rearranging the terms yield

〈∆t, Γ̂t − Γ?t 〉 ≤ βt〈Γ̃t − Γt+1,Γ
?
t − Γ̂t〉+

βt
τt
〈Ât+1 − Ât, A? − Ât+1〉. (12)

By using Lemma 4.2, the first term on the right side can be rewritten as

〈Γ̃t − Γt+1,Γ
?
t − Γ̂t〉 =

1

2

(
‖Γ̃t − Γ̂t‖2F + ‖Γ?t − Γt+1‖2F − ‖Γt+1 − Γ̂t‖2F − ‖Γ?t − Γ̃t‖2F

)
.

(13)

Substituting the definitions of Γ̂t and Γ̃t, we have

‖Γ̃t − Γ̂t‖2F = ‖Pt − ÂtX̂t − (Pt − Ât+1X̂t)‖2F = ‖(Ât+1 − Ât)X̂t‖2F ≤ Ψmax(X̂t)‖Ât+1 − Ât‖2F ,
(14)

Remember that Ψmax(X̂t) is the maximum eigenvalue of X>X . Using Lemma 4.2, we get that the
second term in the right hand side of (12) is equivalent to

〈Ât+1 − Ât, A? − Ât+1〉 =
1

2

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F − ‖Ât+1 − Ât‖2F

)
. (15)

Combining results in (12), (13), (14), and (15), we get the desired bound.
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Lemma 4.4. Let {Γt, Ât,∆t} be the sequences generated by the OIADMM procedure. For any
A? ∈ A, we have

‖Γt+1‖1 − ‖Γ?t ‖1 ≤
1

2βt

(
‖∆t‖2F − ‖∆t+1‖2F

)
+

βt
2τt

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F

)
− βt

2

(
1

τt
−Ψmax(X̂t)

)
‖Ât+1 − Ât‖2F −

βt
2
‖Γt+1 − Γ̃t‖2F .

Proof. Let ∂‖Γt+1‖1 denote the subgradient of ‖Γt+1‖1. Now Γt+1 is a minimizer of (7). There-
fore, 0m×n ∈ ∂‖Γt+1‖1−∆t−βt(Γ̃t−Γt+1). Rearranging the terms gives ∆t+βt(Γ̃t−Γt+1) ∈
∂‖Γt+1‖1. Since ‖Γt+1‖1 is a convex function, we have

‖Γt+1‖1 − ‖Γ?t ‖1 ≤ 〈∆t + βt(Γ̃t − Γt+1),Γt+1 − Γ?t 〉
≤ 〈∆t,Γt+1 − Γ̂t〉+ 〈∆t, Γ̂t − Γ?t 〉+ βt〈Γ̃t − Γt+1,Γt+1 − Γ?t 〉. (16)

Using Lemma 4.2, the last term can be rewritten as

βt〈Γ̃t − Γt+1,Γt+1 − Γ?t 〉 =
βt
2

(
‖Γ?t − Γ̃t‖2F − ‖Γ?t − Γt+1‖2F − ‖Γt+1 − Γ̃t‖2F

)
(17)

Combining the inequality of Lemma 4.3 with (17) gives

〈∆t, Γ̂t − Γ?t 〉+ βt〈Γ̃t − Γt+1,Γt+1 − Γ?t 〉 ≤
βt
2τt

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F

)
− βt

2

(
1

τt
−Ψmax(X̂t)

)
‖Ât+1 − Ât‖2F −

βt
2

(‖Γt+1 − Γ̃t‖2F − ‖Γt+1 − Γ̂t‖2F ). (18)

Since Γt+1 − Γ̂t = (∆t −∆t+1)/βt, we have

〈∆t,Γt+1 − Γ̂t〉 −
βt
2
‖Γt+1 − Γ̂t‖2F =

1

2βt

(
2〈∆t,∆t −∆t+1〉 − ‖∆t −∆t+1‖2F

)
=

1

2βt

(
‖∆t‖2F − ‖∆t+1‖2F

)
. (19)

Plugging (18) and (19) into (16) yields the result.

Lemma 4.5. Let {Γt, Ât,∆t} be the sequences generated by the OIADMM procedure. If τt satisfies
1
τt
≥ 2Ψmax(X̂t). Then

‖Γ̃t‖1−‖Γ?t ‖1 ≤
1

2βt
‖Λt‖2F+

1

2βt

(
‖∆t‖2F − ‖∆t+1‖2F

)
+
βt
2τt

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F

)
,

where Λt ∈ ∂‖Γ̃t‖1.

Proof. Let Λt ∈ ∂‖Γ̃t‖1. Therefore, ‖Γ̃t‖1 − ‖Γt+1‖1 ≤ 〈Λt, Γ̃t − Γt+1〉. Now,

〈Λt, Γ̃t − Γt+1〉 = 〈Λt/
√
βt,
√
βt(Γ̃t − Γt+1)〉 ≤ 1

2βt
‖Λt‖2F +

βt
2
‖Γ̃t − Γt+1‖2F

Therefore,

‖Γ̃t‖1 − ‖Γt+1‖1 ≤
1

2βt
‖Λt‖2F +

βt
2
‖Γ̃t − Γt+1‖2F . (20)

Adding (20) and the inequality of Lemma 4.4 together we get

‖Γ̃t‖1−‖Γ?t ‖1 ≤
1

2βt
‖Λt‖2F+

1

2βt
(‖∆t‖2F−‖∆t+1‖2F )+

βt
2τt

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F

)
− βt

2

(
1

τt
−Ψmax(X̂t)

)
‖Ât+1 − Ât‖2F .
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Setting 1/τt ≥ 2Ψmax(X̂t) means that (−βt/2)( 1
τt
−Ψmax(X̂t))‖Ât+1 − Ât‖2F ≤ 0, Therefore,

‖Γ̃t‖1−‖Γ?t ‖1 ≤
1

2βt
‖Λt‖2F+

1

2βt

(
‖∆t‖2F − ‖∆t+1‖2F

)
+
βt
2τt

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F

)
,

Theorem 4.6. Let {Γt, Ât,∆t} be the sequences generated by the OIADMM procedure and R(T )
be the regret as defined above. Assume the following conditions hold: (i) ∀t, the Frobenius norm
of ∂‖Γt‖1 is upper bounded by Φ, (ii) Â1 = 0m×k, ‖Aopt‖F ≤ D, (iii) ∆1 = 0m×n, and (iv) ∀t,
1/τt ≥ 2Ψmax(X̂t). Setting ∀t, βt = Φ

D

√
τmT where τm = maxt {1/τt}, we have

R(T ) ≤ ΦD
√
T

√
τm

+

T∑
t=1

‖AoptEt‖1.

Proof. Substituting, Γopt
t = Pt−AoptX̂t for Γ?t andAopt forA? in Lemma 4.5. Set βt = Φ

D

√
τmT .

T∑
t=1

‖Γ̃t‖1 − ‖Γopt
t ‖1

≤
T∑
t=1

(
1

2βt
‖Λt‖2F +

1

2βt

(
‖∆t‖2F − ‖∆t+1‖2F

)
+

βt
2τt

(
‖Aopt − Ât‖2F − ‖Aopt − Ât+1‖2F

))

≤ D

2Φ
√
τmT

T∑
t=1

‖Λt‖2F +
D

2Φ
√
τmT

T∑
t=1

(‖∆t‖2F − ‖∆t+1‖2F ) +
Φ
√
T

2D
√
τm

T∑
t=1

(‖Aopt − Ât‖2F − ‖Aopt − Ât+1‖2F )

≤ D

2Φ
√
τmT

· (TΦ2) +
D

2Φ
√
τmT

· (‖∆1‖2F ) +
Φ
√
T

2D
√
τm
· ‖Aopt − Â1‖2F

≤ D
√
TΦ

2
√
τm

+ 0 +
D
√
TΦ

2
√
τm

=
D
√
TΦ

√
τm

.

Since
Γ

opt

t = Pt −AoptXt = Pt −Aopt(X̂t + Et) = Γopt
t −AoptEt,

we have then ‖Γopt

t ‖1 + ‖AoptEt‖1 ≥ ‖Γopt
t ‖1. The regret is bounded as follows:

R(T ) =

T∑
t=1

‖Γ̃t‖1 − ‖Γ
opt

t ‖1 ≤
ΦD
√
T

√
τm

+

T∑
t=1

‖AoptEt‖1.

Remark. In the above theorem one could replace τm by any upper bound on it (i.e., we don’t need
to know τm exactly).

As mentioned in Section 4.1, OIADMM can violate the equality constraint at each t (i.e., Pt −
Ât+1X̂t 6= Γt+1). However, we show in Theorem 4.7 that the accumulated loss caused by the
violation of equality constraint is sublinear in T , i.e., the equality constraint is satisfied on average
in the long run.

Theorem 4.7. Let {Γt, Ât,∆t} be the sequences generated by the OIADMM procedure. Assume the
following conditions hold: (i) ∀t, the Frobenius norm of ∂‖Γt‖1 is upper bounded by Φ, (ii) Â1 =

0m×k, ‖Aopt‖F ≤ D, (iii) ∆1 = 0m×n, and (iv) ∀t, 1/τt ≥ 2Ψmax(X̂t). Setting ∀t, βt = Φ
D

√
τmT

where τm = maxt {1/τt}, we have
T∑
t=1

‖Γt+1 − Pt + Ât+1X̂t‖22 ≤
2D2

τm
+

4ΥD
√
T

Φ
√
τm

.
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Proof. Let Γ̂t = Pt − Ât+1X̂t. Let us look at ‖Γt+1 − Γ̂t‖2F .

‖Γt+1 − Γ̂t‖2F = ‖Γt+1 − Γ̃t + Γ̃t − Γ̂t‖2F ≤ 2
(
‖Γt+1 − Γ̃t‖2F + ‖Γ̃t − Γ̂t‖2F

)
≤ 2

(
‖Γt+1 − Γ̃t‖2F + Ψmax(X̂t)‖Ât+1 − Ât‖2F

)
. (21)

For the first inequality, we used the simple fact that for any two matricesM1 andM2 ‖M1−M2‖2F ≤
2(‖M1‖2F + ‖M2‖2F ). The second inequality is because of (14). Firstly, since ‖Γt+1‖1 ≥ 0

‖Γt+1‖1 − ‖Γopt
t ‖1 ≥ −‖Γ

opt
t ‖1 ≥ −Υ.

Using this and rearranging terms in the inequality of Lemma 4.4 (with Aopt instead of A?) gives

‖Γt+1 − Γ̃t‖2F ≤
1

β2
t

(
‖∆t‖2F − ‖∆t+1‖2F

)
+

1

τt

(
‖Aopt − Ât‖2F − ‖Aopt − Ât+1‖2F

)
−
(

1

τt
−Ψmax(X̂t)

)
‖Ât+1 − Ât‖2F +

2Υ

βt
,

Plugging this into (21) yields

‖Γt+1 − Γ̂t‖2F ≤
2

β2
t

(
‖∆t‖2F − ‖∆t+1‖2F

)
+

2

τt

(
‖Aopt − Ât‖2F − ‖Aopt − Ât+1‖2F

)
− 2

(
1

τt
− 2Ψmax(X̂t)

)
‖Ât+1 − Ât‖2F +

4Υ

βt
.

Letting 1/τt ≥ 2Ψmax(X̂t) and summing over t from 0 to T and simplifying the resulting equation
we get

T∑
t=1

‖Γt+1 − Γ̂t‖2F ≤
2D2

τm
+

4ΥD
√
T

Φ
√
τm

.

Again, as was the case with Theorem 4.6, we could replace τm in the above theorem by any upper
bound on it.

Condition on Et’s for Sublinear Regret. In a standard online learning setting, the (Pt, X̂t) made
available to the online learning algorithm will be the same as (Pt, Xt) made available to the batch
dictionary learning algorithm in hindsight, so that X̂t = Xt ⇒ Et = 0, yielding a O(

√
T ) regret.

More generally, as long as
T∑
t=1

‖Et‖p = o(T )

for some suitable p-norm, we get a sublinear regret bound.6 For example, if {Zt} is a sequence of
matrices such that for all t, ‖Zt‖p = O(1), then setting Et = t−εZt, ε > 0 yields a sublinear regret.
This gives a sufficient condition for sublinear regret7 and it is an interesting open problem to extend
the analysis to other cases.

Running Time. For the ith column in the dictionary matrix the projection onto A can be done in
O(si logm) time where si is the number of non-zero elements in the ith column using the projec-
tion onto `1-ball algorithm of Duchi et al. [6]. The simplest implementation of OIADMM takes
O(mnk) time at each timestep because of the matrix multiplications involved. However, in prac-
tice, we can exploit the sparsities of the matrices to make the algorithm run much faster. OIADMM
is also memory efficient, as at each time t, other than the current iterates, it only need Ât−1 from
previous timesteps.

6This follows from Hölder’s inequality which gives
∑T

t=1 ‖A
optEt‖1 ≤ ‖Aopt‖q(

∑T
t=1 ‖Et‖p) for 1 ≤

p, q ≤ ∞ and 1/p+1/q = 1, and by the assuming ‖Aopt‖q is bounded. Here, ‖ · ‖p denotes Schatten p-norm.
7In a different context, a similar assumption on the rate of error decay appeared in a recent paper by

Schmidt et al. [23] while analyzing the convergence rates of inexact proximal gradient methods.

10



5 Experimental Results

In this section, we present experiments to compare and contrast the performance of `1-batch and
`1-online dictionary learning algorithms for the task of novel document detection. We also present
results highlighting the superiority of using an `1- over an `2-penalty on the reconstruction error for
this task (validating the discussion in Section 3).

Implementation of BATCH. In our implementation, we grow the dictionary size by η in each
timestep. Growing the dictionary size is essential for the batch algorithm because as t increases
the number of columns of P[t] also increases, and therefore, a larger dictionary is required to com-
pactly represent all the documents in P[t]. For solving (3), we use alternative minimization over
the variables. The complete pseudo-code is given Algorithm BATCH-IMPL (see Appendix B). The
optimization problems arising in the sparse coding and dictionary learning steps are solved using
ADMM’s.

Online Algorithm for Novel Document Detection. Our online algorithm (Algorithm ONLINE)8

uses the same novel document detection step as Algorithm BATCH, but dictionary learning is done
using OIADMM.

Algorithm 3 : ONLINE

Input: Pt = [p1, . . . ,pnt ] ∈ Rm×nt , Ât ∈ Rm×k, ∆t ∈ Rm×nt , λ ≥ 0, ζ ≥ 0, β ≥ 0, τ ≥ 0
Novel Document Detection Step:
for j = 1 to nt do

Solve: xj = argminx≥0 ‖pj − Âtx‖1 + λ‖x‖1
if ‖pj − Âtxj‖1 + λ‖xj‖1 > ζ

Mark pj as novel
Online Dictionary Learning Step:
Set X̂t ←− [x1, . . . ,xnt ]

(Ât+1,∆t+1)←− OIADMM(Pt, Ât,∆t, X̂t, β, τ)9

Notice that the sparse coding matrices of the Algorithm BATCH, X1, . . . , Xt could be different from
X̂1, . . . , X̂t. If these sequence of matrices are close to each other, then we have a sublinear regret
on the objective function.10

Evaluation of Novel Document Detection. For performance evaluation, we assume that documents
in the corpus have been manually identified with a set of topics. For simplicity, we assume that each
document is tagged with the single, most dominant topic that it associates with, which we call the
true topic of that document. We call a document y arriving at time t novel if the true topic of
y has not appeared before the time t. So at time t, given a set of documents, the task of novel
document detection is to classify each document as either novel (positive) or non-novel (negative).
For evaluating this classification task, we use the standard Area Under the ROC Curve (AUC) [17].

Performance Evaluation for `1-Dictionary Learning. We use a simple reconstruction error mea-
sure for comparing the dictionaries produced by our `1-batch and `1-online algorithms. We want the
dictionary at time t to be a good basis to represent all the documents in P[t] ∈ Rm×Nt . This leads
us to define the sparse reconstruction error (SRE) of a dictionary A at time t as

SRE(A)
def
=

1

Nt

(
min
X≥0

‖P[t] −AX‖1 + λ‖X‖1
)
.

A dictionary with a smaller SRE is better on average at sparsely representing the documents in P[t].

Novel Document Detection using `2-dictionary learning. To justify the choice of using an `1-
penalty (on the reconstruction error) for novel document detection, we performed experiments com-
paring `1- vs. `2-penalty for this task. In the `2-setting, for the sparse coding step we used a fast

8In our experiments, the number of documents introduced in each timestep is almost of the same order, and
hence there is no need to change the size of the dictionary across timesteps for the online algorithm.

9Before invoking Algorithm OIADMM we may have to zero-pad the matrices in the arguments appropri-
ately.

10As noted earlier, we can not do a comparison without making any assumptions.
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implementation of the LARS algorithm with positivity constraints [9] and the dictionary learning
was done by solving a non-negative matrix factorization problem with additional sparsity constraints
(also known as the non-negative sparse coding problem [13]). A pseudo-code description is given
in Appendix B.11

Experimental Setup. All reported results are based on a Matlab implementation running on a
quad-core 2.33 GHz Intel processor with 32GB RAM. The parameters to our `1-online dictionary
learning algorithm are: (i) initial size of dictionary, (ii) regularization parameter, (iii) parameters
to OIADMM (βt and τt), and (iv) ADMM parameters for sparse coding. The `1-batch and `2-batch
dictionary learning algorithm take an additional parameter η which describes the increase in the
batch dictionary size in each timestep. xThe regularization parameter λ is set to 0.1 which yields
reasonable sparsities in our experiments. OIADMM parameters τt is set 1/(2Ψmax(X̂t)) (chosen
according to Theorem 4.6) and βt is fixed to 5 (obtained through tuning). The ADMM parameters for
sparse coding and batch dictionary learning are set as suggested in [14] (see Appendix app:admm).
In the batch algorithms, we grow the dictionary sizes by η = 10 in each timestep. The threshold
value ζ is treated as a tunable parameter.

5.1 Experiments on News Streams

Our first dataset is drawn from the NIST Topic Detection and Tracking (TDT2) corpus which con-
sists of news stories in the first half of 1998. In our evaluation, we used a set of 9000 documents
represented over 19528 terms and distributed into the top 30 TDT2 human-labeled topics over a
period of 27 weeks. We introduce the documents in groups. At timestep 0, we introduce the first
1000 documents and these documents are used for initializing the dictionary. We use an alternative
minimization procedure over the variables of (1) to initialize the dictionary. In these experiments
the size of the initial dictionary k = 200. In each subsequent timestep t ∈ {1, . . . , 8}, we provide
the batch and online algorithms the same set of 1000 documents. In Figure 1, we present novel
document detection results for those timesteps where at least one novel document was introduced.
Table 1 shows the corresponding AUC numbers. The results show that using an `1-penalty on the
reconstruction error is better for novel document detection than using an `2-penalty.
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Figure 1: ROC curves for TDT2 for timesteps where novel documents were introduced.

Timestep No. of Novel Docs. No. of Nonnovel Docs. AUC `1-online AUC `1-batch AUC `2-batch
1 19 981 0.791 0.815 0.674
2 53 947 0.694 0.704 0.586
5 116 884 0.732 0.764 0.601
6 66 934 0.881 0.898 0.816
8 65 935 0.757 0.760 0.701

Avg. 0.771 0.788 0.676

Table 1: AUC Numbers for ROC Plots in Figure 1.

Comparison of the `1-online and `1-batch Algorithms. The `1-online and `1-batch algorithms
have almost identical performance in terms of detecting novel documents (see Table 1). However,
the online algorithm is much more computationally efficient. In Figure 2(a), we compare the running
times of these algorithms. As noted earlier, the running time of the batch algorithm goes up as
t increases (as it has to optimize over the entire past). However, the running time of the online
algorithm is independent of the past and only depends on the number of documents introduced
in each timestep (which in this case is always 1000). Therefore, the running time of the online
algorithm is almost the same across different timesteps. As expected the run-time gap between the

11We used the SPAMS package http://spams-devel.gforge.inria.fr/ in our implementation.
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`1-batch and `1-online algorithms widen as t increases – in the first timestep the online algorithm is
5.4 times faster, and this rapidly increases to a factor of 11.5 in just 7 timesteps.

In Figure 2(b), we compare the dictionaries produced by the `1-batch and `1-online algorithms
under the SRE metric. In the first few timesteps, the SRE of the dictionaries produced by the online
algorithm is slightly lower than that of the batch algorithm. However, this gets corrected after a few
timesteps and as expected later on the batch algorithm produces better dictionaries.
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Figure 2: Running time and SRE plots for TDT2 and Twitter datasets.

5.2 Experiments on Twitter

Our second dataset is from an application of monitoring Twitter for Marketing and PR for smart-
phone and wireless providers. We used the Twitter Decahose to collect a 10% sample of all tweets
(posts) from Sept 15 to Oct 05, 2011. From this, we filtered the tweets relevant to “Smartphones”
using a scheme presented in [4] which utilizes the Wikipedia ontology to do the filtering. Our dataset
comprises of 127760 tweets over these 21 days and the vocabulary size is 6237 words. We used the
tweets from Sept 15 to 21 (34292 in number) to initialize the dictionaries. Subsequently, at each
timestep, we give as input to both the algorithms all the tweets from a given day (for a period of 14
days between Sept 22 to Oct 05). Since this dataset is unlabeled, we do a quantitative evaluation of
`1-batch vs. `1-online algorithms (in terms of SRE) and do a qualitative evaluation of the `1-online
algorithm for the novel document detection task. Here, the size of the initial dictionary k = 100.

Figure 2(c) shows the running times on the Twitter dataset. At first timestep the online algorithm is
already 10.8 times faster, and this speedup escalates to 18.2 by the 14th timestep. Figure 2(d) shows
the SRE of the dictionaries produced by these algorithms. In this case, the SRE of the dictionaries
produced by the batch algorithm is consistently better than that of the online algorithm, but as the
running time plots suggests this improvement comes at a very steep price.

Table 2 below shows a representative set of novel tweets identified by our online algorithm. In each
timestep, instead of thresholding by ζ, we take the top 10% of tweets measured in terms of the
sparse coding objective value and run a dictionary-based clustering, described in [14], on it. Further
post-processing is done to discard clusters without much support and to pick a representative tweet
for each cluster. Using this completely automated process, we are able to detect breaking news
and trending relevant to the smartphone market, such as AT&T throttling data bandwidth, launch of
IPhone 4S, and the death of Steve Jobs.

Date Sample Novel Tweets Detected Using our Online Algorithm
2011-09-26 Android powered 56 percent of smartphones sold in the last three months. Sad thing is it can’t lower the rating of ios!
2011-09-29 How Windows 8 is faster, lighter and more efficient: WP7 Droid Bionic Android 2.3.4 HP TouchPad white ipods 72
2011-10-03 U.S. News: AT&T begins sending throttling warnings to top data hogs: AT&T did away with its unlimited da... #iPhone
2011-10-04 Can’t wait for the iphone 4s #Let ustalkiphone
2011-10-05 Everybody put an iPhone up in the air one time #ripstevejobs

Table 2: Sample novel documents detected by our online algorithm.

6 Conclusion

The main contribution of this paper is a new online `1-dictionary learning algorithm, based on
which we develop a scalable approach to detecting novel documents in streams of text. We establish
a sublinear regret bound, and empirically demonstrate orders of magnitude speedup over the batch
algorithm, without much loss in performance. A further speedup can be achieved by distributing
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the algorithm using known techniques [3]. In batch setting, with the `1/`1- formulation, the dual
augmented Lagrangian marginally outperforms the primal augmented Lagrangian in practice [31].
A priori it is unclear whether the marginal improvements observed by [31] carries over to the online
setting, but it is an interesting open problem.

Apart from the target application of novel document detection, our online `1-dictionary learning
algorithm could have broader applicability to other tasks using text and beyond, e.g., signal process-
ing [10]. On a different note, there are several techniques that are related to dictionary learning, such
as Latent Dirichlet Allocation [2], Probabilistic Latent Semantic Analysis [12], and Non-negative
Matrix Factorization [15], and adapting these techniques for online detection of novel documents is
a rich area for future work.
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A Background on ADMM

In this section, we give a brief review of the general framework of ADMM. Let p(x) : Ra → R and
q(y) : Rb → R be convex functions, F ∈ Rc×a, G ∈ Rc×b, and z ∈ Rc. Consider the following
optimization problem

min
x,y

p(x) + q(y) s.t. Fx +Gy = z, (22)

where the variable vectors x and y are separate in the objective, and coupled only in the constraint.
The augmented Lagrangian for the above problem is given by

L(x,y, ρ) = p(x) + q(y) + ρ>(z− Fx−Gy) +
ϕ

2
‖z− Fx−Gy‖22 ,

where ρ ∈ Rc is the Lagrangian multiplier and ϕ > 0 is a penalty parameter. ADMM utilizes the
separability form of (22) and replaces the joint minimization over x and y with two simpler prob-
lems. The ADMM first minimizes L over x, then over y, and then applies a proximal minimization
step with respect to the Lagrange multiplier ρ. The entire ADMM procedure is summarized in Al-
gorithm 4. The γ > 0 is a constant. The subscript (i) denotes the ith iteration of the ADMM
procedure. The ADMM procedure has been proved to converge to the global optimal solution under
quite broad conditions [5].

Algorithm 4 : ADMM Update Equations for Solving (22)

Iterate until convergence


x(i+1) ← argminx L(x,y(i), ρ(i)),

y(i+1) ← argminy L(x(i+1),y, ρ(i)),

ρ(i+1) ← ρ(i) + γϕ(z− Fx(i+1) −Gy(i+1)).

A.1 ADMM Equations for updating X and A’s

Consider the `1-dictionary learning problem

min
A∈A,X≥0

‖P −AX‖1 + λ‖X‖1,

where A is defined in Section 2. We use the following algorithm from [14] to solve this problem. It
is quite easy to adapt the ADMM updates outlined in Algorithm 4 to update X’s and A’s, when the
other variable is fixed (see e.g., [14]).
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ADMM for updating X , given fixed A. Here we are given matrices P ∈ Rm×n and A ∈ Rm×k,
and we want to solve the following optimization problem

min
X≥0

‖P −AX‖1 + λ‖X‖1.

Algorithm 5 shows the ADMM update steps for solving this problem. The entire derivation is
presented in [14] and we are reproducing them here for completeness. In our experiments, we set
ϕ = 5, κ = 1/Ψmax(A), and γ = 1.89. These parameters are chosen based on the ADMM
convergence results presented in [14, 31].

Algorithm 5 : ADMM for Updating X

ADMM procedure for solving minX≥0 ‖P −AX‖1 + λ‖X‖1
Input: A ∈ Rm×k, P ∈ Rm×n, λ ≥ 0, γ ≥ 0, ψ ≥ 0, κ ≥ 0
X(1) ← 0k×n, E(1) ← P , ρ(1) ← 0m×n
for i = 1, 2, . . . , to convergence do

E(i+1) ← soft(P −AX(i) + ρ(i)/ϕ, 1/ϕ)

G← A>(AX(i) + E(i+1) − P − ρ(i)/ϕ)

X(i+1) ← max
{
X(i) − κG− (λκ)/ϕ, 0

}
ρ(i+1) ← ρ(i) + γϕ(P −AX(i+1) − E(i+1))

Return X at convergence

ADMM for Updating A, given fixed X . Given inputs P ∈ Rm×n and X ∈ Rk×n, consider the
following optimization problem

min
A∈A

‖P −AX‖1.

Algorithm 6 : ADMM for Updating A

ADMM procedure for solving minA∈A ‖P −AX‖1
Input: X ∈ Rk×n, P ∈ Rm×n, γ ≥ 0, ψ ≥ 0, κ ≥ 0
A(1) ← 0m×k, E(1) ← P , ρ(1) ← 0m×n
for i = 1, 2, . . . , to convergence do

E(i+1) ← soft(P −A(i)X + ρ(i)/ϕ, 1/ϕ)

G← (A(i)X + E(i+1) − P − ρ(i)/ϕ)X>

A(i+1) ← ΠA(max
{
A(i) − κG, 0

}
)

ρ(i+1) ← ρ(i) + γϕ(P −A(i+1)X − E(i+1))
Return A at convergence

When repeating this optimization over multiple timesteps, we use warm starts for faster convergence,
i.e., instead of initializing A(1) to 0m×k, we initialize A(1) to the dictionary obtained at the end of
the previous timestep.

B Pseudo-Codes from Section 5

Let us start by extending the definition of A, define

Akt = {A ∈ Rm×kt : A ≥ 0m×kt ∀j = 1, . . . , kt , ‖Aj‖1 ≤ 1}, where Aj is the jth column in A.

We use ΠAkt to denote the projection onto the nearest point in the convex set Akt .
Define Akt as

Akt = {A ∈ Rm×kt : A ≥ 0m×kt ∀j = 1, . . . , kt , ‖Aj‖2 ≤ 1}, where Aj is the jth column in A.

We use ΠAkt to denote the projection onto the nearest point in the convex set Akt .
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Algorithm 7 : BATCH-IMPL

Input: P[t−1] ∈ Rm×Nt−1 , X[t−1] ∈ Rkt×Nt−1 , Pt = [p1, . . . ,pnt ] ∈ Rm×nt , At ∈ Rm×kt ,
λ, ζ, η ≥ 0
Novel Document Detection Step:
for j = 1 to nt do

Solve: xj = argminx≥0 ‖pj −Atx‖1 + λ‖x‖1 (solved using Algorithm 5)
if ‖pj −Atxj‖1 + λ‖xj‖1 > ζ

Mark pj as novel
Batch Dictionary Learning Step:
Set kt+1 ← kt + η
Set Z[t] ← [X[t−1] |x1, . . . ,xnt ]

Set X[t] ←
[

Z[t]

0η×Nt

]
Set P[t] ← [P[t−1] |p1, . . . ,pnt ]
for i = 1 to convergence do

Solve: At+1 = argminA∈Akt+1
‖P[t]−AX[t]‖1 (solved using Algorithm 6 with warm starts)

Solve: X[t] = argminX≥0 ‖P[t] −At+1X‖1 + λ‖X‖1 (solved using Algorithm 5)

Algorithm 8 : L2-BATCH

Input: P[t−1] ∈ Rm×Nt−1 , Pt = [p1, . . . ,pnt ] ∈ Rm×nt , At ∈ Rm×kt , λ ≥ 0, ζ ≥ 0, η ≥ 0
Novel Document Detection Step:
for j = 1 to nt do

Solve: xj = argminx≥0 ‖pj −Atx‖2 + λ‖x‖1 (solved using the LARS method [9])
if ‖pj −Atxj‖2 + λ‖xj‖1 > ζ

Mark pj as novel
`2-batch Dictionary Learning Step:
Set kt+1 ← kt + η
Set P[t] ← [P[t−1] |p1, . . . ,pnt ]
[At+1, X[t]] = argminA∈Akt+1

,X≥0 ‖P[t] −AX‖2 + λ‖X‖1 (non-negative sparse coding
problem)
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