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1 Continuous partial derivatives

Potential functions g(x) : R→ R that are piecewise smooth with a finite number of discontinuities
have expectation

〈
g(wTx)

〉
qw(w|A,b,θ) that is smooth in A,b provided that qv(v) is smooth in v.

In this context we say that a function is smooth if it has continuous second order partial derivatives.
Specifically, we require that g(x) is piecewise smooth and so can be expressed as a sum of functions

g(wTx) =

J∑
j=1

gj(w
Tx)I

[
wTx ∈ Cj

]
(1.1)

where I [x] is an indicator function equal to 1 when x is true and zero otherwise, {Cj}Jj=1 form a
disjoint partition of R and for which gj(x) are smooth in x. For site projection potentials of this
form the derivative w.r.t. Amn of the expectation can be expressed as

∂

∂Amn

〈
log g(wTx)

〉
=

J∑
j=1

∂

∂Amn

∫
wTx∈Cj

qw(w|A,b,θ)gj(w
Tx)dw (1.2)

=

J∑
j=1

∫
wTx∈Cj

gj(w
Tx)

∂

∂Amn
qw(w|A,b,θ)dw. (1.3)

Exchanging the order of the derivative and integral operators is possible since gj(wTx) is smooth in
w for wTx ∈ Cj by assumption and qw(w|A,b,θ) is smooth in w,A,b. To see that qw(w|A,b,θ)
is smooth in A,b we note that it is the composition of qv(v|θ) which is smooth by assumption and
v = A−1 (w − b) which is also smooth. Note that the limits of each integral in equation (1.2)
do not depend on Amn and so do not contribute additional terms to equation (1.3). Second order
derivatives carry through similarly by again passing the derivative under the integral sign in equation
(1.3).

2 AI KL bound and gradient evaluation

We describe how to efficiently numerically evaluate the AI KL bound and associated gradients (with
respect to the parameters A = LU,b and θ).

2.1 Entropy

The entropy’s contribution to the AI KL bound can be written

H [qw(w)] = log |det (A)|+
D∑
d=1

H [qvd(vd|θd)] , (2.1)
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where H [q(vd|θd)] is the univariate differential entropy of the base density qvd(vd|θd). The deriva-
tive of equation (2.1) w.r.t. A is then

∂

∂A
H [q(v)] = A−T. (2.2)

The derivatives of the marginal base density’s entropy, H [q(vd|θd)], depend on the parametric form
of the chosen base density qvd(vd|θd) and the parameter θd only. For the results presented only two
base densities were used: the skew-normal and the generalised-normal. The entropy and respective
derivatives of these distributions are presented in section(4).

For the LU parameterised bound, such that A = LU for L lower triangular and U upper triangular
we have

log |det (A)| =
D∑
d=1

logLdd + logUdd. (2.3)

Thus the partial derivatives of the entropy with respect to L and U are given by

∂

∂Lmn
H [qw(w)] = δmn

1

Lmn
,

∂

∂Umn
H [qw(w)] = δmn

1

Umn
,

where δmn is the Kronecker delta.

2.2 Site projection potentials

In the main text we showed that the expectation of g
(
xTw

)
with respect to qw(w) can be efficiently

computed by using the FFT. In this section first we review this result making clear each step of the
derivation. Second, we show how the derivatives of

〈
g
(
xTw

)〉
with respect to A,b,θ can also be

efficiently computed.

Computing the expectation. The expectation
〈
g(xTw)

〉
qw(w)

for g : R → R some non-linear

function, x ∈ RD some fixed vector and qw(w) an AI density is equivalent to the univariate expec-
tation 〈g(y)〉qy(y) where the density qy(y) can be obtained by using the Fourier transform. To show
this first we write the expectation of g(xTw) w.r.t. qw(w) as an expectation with respect to qv(v),〈

g
(
xTw

)〉
qw(w)

=

∫
g
(
xTw

)
qw(w)dw =

∫
g
(
xTAv + xTb

)
qv(v)dv. (2.4)

The last equality in equation (2.4) is obtained by making the substitution w = Av + b. For a
cleaner notation, in what follows we let α = ATx and β = xTb. We now substitute g(αTv + β) =∫
δ(y −αTv − β)g(y)dy, where δ(x) is the Dirac delta function, into equation (2.4) to give us〈

g
(
wTx

)〉
qw(w)

=

∫
g(y)

∫ ∏
d

qvd(vd|θd)δ
(
y −αTv − β

)
dvdy = 〈g(y)〉qy(y) . (2.5)

In equation (2.5) above qy(y) is the density of the random variable y defined as the linear projection
of the random variables v such that y = αTv + β. Thus the univariate marginal density qy(y) is
defined by the integral

qy(y) =

∫
δ
(
y −αTv − β

)∏
d

qvd(vd|θd)dv.

Whilst this integral is generally intractable we can make the substitution δ(x) =
∫
e2πitxdt to give

us

qy(y) =

∫ ∫
e2πit(y−α

Tv−β)
∏
d

qvd(vd|θd)dvdt (2.6)

=

∫
e2πitye−2πitβ

∏
d

∫
e−2πitαdvdqvd(vd|θd)dvddt. (2.7)
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We now inspect each term in equation (2.7). First we consider an individual factor of the group
product: ∫

qvd(vd)e
−2πitαdvddvd =

1

|αd|

∫
qvd

(
ud
αd

)
e−2πituddud (2.8)

=

∫
qud (ud|θd) e−2πituddud = q̃ud(t), (2.9)

where the first equality comes from making the substitution ud = αdvd. This substitution defines
the univariate density qud(ud|θd) = 1

|αd|qvd( udαd |θd). Thus each factor of the group product in equa-
tion (2.7) is the Fourier transform of the density qud(ud|θd). The e−2πitβ factor corresponds to the
Fourier transform of a delta mean shift δ(y − β). Putting this together equation (2.7) can be inter-
preted as the inverse Fourier transform of the product of the Fourier transforms of {qud(ud|θd)}Dd=1
and of the β mean shift. Algebraically this gives us an expression for the marginal qy(y) in the form

qy(y) =

∫
e2πitye−2πitβ

∏
d

q̃ud(t)dt. (2.10)

This result is a reworking of the D-fold convolution theorem for probability densities. We provide
the derivation here so that it may form the basis of subsequent derivations required to evaluate the
AI KL bound’s derivatives as univariate integrals.

Numerical evaluation. Since only in very special cases we have simple analytic forms for the
univariate density qy(y) we resort to numerical methods to evaluate it. To do so we evaluate equation
(2.10) replacing {qud(ud|θd)}Dd=1 with their discrete lattice approximations {q̂ud(ud|θd)}Dd=1. We
now show that making this substitution results in q̂y(y) as defined in equation(2.6) which can be
efficiently computed by utilising the FFT algorithm.

First, we must define the set of lattice points used to evaluate the discrete approximate densities
{q̂ud(ud|θd)}Dd=1. The user defines the number of lattice points K ∈ N according to their compu-
tational budget or accuracy requirements. The accuracy can be roughly assessed by computing the
difference in the expectation using K and 2K lattice points. The lattice end points are chosen such
that [l1, lk] = [−νσy, νσy] where σy is the standard deviation of the random variable y given by
σ2
y =

∑
d α

2
dvar(vd). ν is a user defined parameter, in our experiments we set ν = 6 and double

K until the bound value changes by less than 10−3. The lattice points [l1, ..., lK ] are evenly spaced
such that ∆ = lk+1 − lk is constant for all k.

The continuous Fourier transform of the lattice density q̂ud(ud|θd) takes the form

˜̂qud(t) :=

∫
e−2πitud q̂ud(ud|θd)dud =

K∑
k=1

πdke
−2πitlk . (2.11)

Taking the inverse Fourier transform of the product of these transforms, as q(y) is defined in equation
(2.10), we get

q̂y(y) =

∫
e2πit(y−β)

∏
d

K∑
kd=1

πdkde
−2πitlkddt (2.12)

=
∑

[k1,...,kD]

∫
e2πit(y−β−

∑
d lkd)

∏
d

πdkddt (2.13)

=
∑

[k1,...,kD]

δ

(
y − β −

∑
d

lkd

)∏
d

πdkd , (2.14)

where the sum in equation (2.14) refers to the sum over the KD permutations of the D dimensional
cartesian product of lattice point indices [k1, ..., kD]. We note that lkd = lk, the subscript is only to
distinguish the different permutations of the sum.

Equation(2.14) describes a mixture of delta distributions and is the exact result from computing
the convolution of the lattice approximate densities by means of the continuous Fourier transform.
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Importantly, the KD mixtures in equation (2.14) collapse to just DK distinct delta points since lk
are evenly spaced.

When D = 2:

q̂y(y) =

K∑
j=1

K∑
k=1

π1jπ2kδ(y − β − lj − lk). (2.15)

We can see from equation (2.15) above that q̂y(y) is a mixture of 2K delta densities evenly spaced
at lattice points [2l1, ..., 2lK ],

q̂y(y) =

2K∑
n=1

ρnδ(y − β − ln) (2.16)

for suitably defined ρ. For a single lattice point lm,

ρm =
∑

i,j:i+j=m

π1jπ2k =

2K∑
n=1

π′1nπ
′
2(m−n) = [ifft [fft[π′1] · fft[π′2]]]m , (2.17)

Here π′ refers to the zero padded vector of delta mixture weights π′ = [π,0] such that 0 is a K
dimensional vector of zeros. Ifm−n < 1 we extend the indices π′m−n := π′2K+m−n; this extension
is valid and does not affect the convolution due to the zero padding of π′. The last equality in the
expression above is the statement of the discrete Fourier transform convolution theorem.

The result can be extended to higher dimensions D > 2 by induction using the associativity of the
convolution operator and the fact that lattice point locations are invariant to convolution to give

q̂y(y) =

DK∑
n=1

ρnδ(y − β − ln) where ρ = ifft

[∏
d

fft [π′d]

]
(2.18)

For general D, π′ refers to the zero padded vector of delta mixture weights π′ = [π,0] such that 0
is a (D − 1)K dimensional vector of zeros.

Computing the derivative w.r.t. A Taking the derivative of
〈
g
(
wTx

)〉
with respect to Amn we

obtain

∂

∂Amn

〈
g(wTx)

〉
= xn

∫
qv(v)g′

(
xTAv + bTx

)
vmdv. (2.19)

As previously mentioned the above form is not equivalent to xn 〈vmg′(y)〉qy(y). It can however be
expressed as a one dimensional integral:

∂

∂Amn

〈
g
(
wTx

)〉
= xn

∫
vm

D∏
d=1

qvd(vd|θd)g′
(
xTAv + bTx

)
dv

= xn

∫
vm

D∏
d=1

qvd(vd|θd)
∫
δ
(
y −αTv − β

)
g′(y)dydv

= xn

∫
vmqvm(vm|θm)

∏
d6=m

qvd(vd|θd)
∫
δ
(
y −αTv − β

)
g′(y)dydv

= xn

∫
g′(y)

∫
vmqvm(vm|θm)

∏
d 6=m

qvd(vd|θd)δ
(
y −αTv − β

)
dvdy

where g′(y) = d
dy g(y), α = ATx and β = bTx. To evaluate the expression above we define the

univariate weighting function dm(y),

dm(y) :=

∫
vmqvm(vm|θm)

∏
d6=m

qvd(vd|θd)δ
(
y −αTv − β

)
dv. (2.20)
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Using this weighting function the gradient can simply be expressed as

∂

∂Amn

〈
g
(
wTx

)〉
= xn

∫
g′(y)dm(y)dy.

We evaluate dm(y) by means of computing its Fourier transform. The Fourier transform of dm(y)
is given by

d̃m(t) =

∫
e−2πity

∫
vmqvm(vm|θm)

∏
d6=m

qvd(vd|θd)δ
(
y −αTv − β

)
dvdy

= e−2πitβ
∫
vmqvm(vm|θm)e−2πitαmvm

∏
d6=m

qvd(vd|θd)e−2πitαdvddv

= e−2πitβ × ẽm(t)×
∏
d 6=m

q̃ud(t|θd)

where ẽm(t|θm) is the Fourier transform of the univariate expectation

ẽm(t) :=

∫
vmqvm(vm|θm)e−2πitαmvmdvm =

∫
um
αm

qum (um|θm) e−2πitumdum.

Computing the derivative w.r.t. b Taking the derivative of
〈
g
(
wTx

)〉
with respect to bm we get

∂

∂bm

〈
g
(
wTx

)〉
= xm

∫ D∏
d=1

qvd(vd|θd)g′
(
xTAv + bTx

)
dv

= xm

∫
qy(y)g′(y)dy.

Computing the derivative w.r.t. θ Taking the derivative of
〈
g
(
wTx

)〉
with respect to θm we get

∂

∂θm

〈
g
(
wTx

)〉
=

∂

∂θm

∫ D∏
d=1

qvd(vd|θd)g
(
xTAv + bTx

)
dv

=

∫  ∂

∂θm

∏
d 6=m

qvd(vd|θd)qvm(vm|θm)

 g (xTAv + bTx
)
dv

=

∫
g(y)

∫ [
∂

∂θm
qvm(vm|θm)

] ∏
d6=m

qvd(vd|θd)δ
(
y − xTAv − bTx

)
dydv

Similar to the gradient of
〈
log fn(wTxn)

〉
with respect to Amn we define a derivative weighting

function p̃′d such that

p̃′d(t) :=

∫
e−2πity

∫  ∂

∂θm
qvm(vm|θm)

∏
d6=m

qvd(vd|θd)

 δ (y − xTAv − bTx
)
dydv

= e−2πitβ

∏
d 6=m

q̃ud(t|θd)

∫ e−2πitαmvm
∂

∂θm
p(vm|θm)dvm.

For p′d(y) the inverse Fourier transform of p̃′d(t) we obtain the gradient

∂

∂θm

〈
g
(
wTx

)〉
=

∫
p′d(y)g(y)dy.

2.3 Gaussian potentials

For the Gaussian potential N (w|µ,Σ) we have its log expectation under qw(w) given by

2 〈logN (w|µ,Σ)〉 = −D log 2π−log det (Σ)−
〈
wTΣ−1w

〉
+2 〈w〉Σ−1µ−µTΣ−1µ. (2.21)
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To evaluate this expression we precompute the Cholesky decomposition of Gaussian precision ma-
trix Σ−1 = PTP, which scales O

(
D3
)

and only needs to be performed once. Since 〈w〉 =

A 〈v〉+ b and
〈
vTBv

〉
= 〈v〉T B 〈v〉+ trace (Bcov(v)) we have that〈

wTΣ−1w
〉

=
〈
vTATΣ−1Av

〉
+ 2

〈
vTATΣ−1b

〉
+ bTΣ−1b

= 〈v〉T ATΣ−1A 〈v〉+ trace
(
ATΣ−1Acov(v)

)
+ 2 〈v〉T ATΣ−1b + bTΣ−1b

〈w〉Σ−1µ = 〈v〉T ATΣ−1µ + bTΣ−1µ

where cov(v) = diag (var(v)) = D since v are assumed independent. All terms in the expression
above, except for the trace term, can be computed as a sequence of matrix vector products. To com-

pute the trace term we use trace
(
ATΣ−1Acov(v)

)
= vec

(
PLUD

1
2

)T
vec
(
PLUD

1
2

)
, where

vec (X) constructs a column vector by concatenating the columns of the matrix X and D
1
2 is the

square root of the diagonal covariance matrix, which scale O
(
D3
)

for general Σ. When Σ = σ2I

this reduces to O
(
D2
)
.

Derivative w.r.t. A The derivatives of the above form with respect to A and b are

∂

∂A
2 〈logN (w|µ,Σ)〉 =

∂

∂A
− 〈v〉T ATΣ−1A 〈v〉 − trace

(
ATΣ−1Acov(v)

)
− 2 〈v〉T ATΣ−1b + 2 〈v〉T ATΣ−1µ + 2bTΣ−1µ,

which can be expressed

∂

∂A
〈logN (w|µ,Σ)〉 = −Σ−1A

(
〈v〉 〈v〉T + cov(v)

)
+ 〈v〉

(
µΣ−1 − Σ

−1
b
)T
, (2.22)

and computed using sequential matrix vector multiplies and vector outer products.

Derivative w.r.t. b The derivative with respect to b is given by

∂

∂b
2 〈logN (w|µ,Σ)〉 =

∂

∂b
− 2 〈v〉T ATΣ−1b− bTΣ−1b + 2bTΣ−1µ

= −2Σ−1 (A 〈v〉+ b + µ) .

2.4 Derivatives w.r.t. L,U

We extend the above results to the LU decomposition of the transformation matrix such that A =
LU where L is lower triangular and U upper triangular matrices. We apply the chain rule, noting
that Amn =

∑
k LmkUkn to give

∂Amn
∂Luv

= δmuUvn and
∂Amn
∂Ust

= δtnLms

for δab the Kronecker delta. Thus to compute the derivative of F (A) = F (LU) we have that

∂

∂Luv
F (A) =

∑
mn

∂

∂Amn
F (A)δmuUvn when u ≥ v and zero otherwise

∂

∂Ust
F (A) =

∑
mn

∂

∂Amn
F (A)δtnLms when t ≥ s and zero otherwise.

3 Blockwise concavity

Here we present a simple reworking, and extension, of the concavity result originally provided in
[1] for log-concave potentials {fn}Nn=1. Whilst the bound is jointly concave in L and b or U and b
it is not jointly concave in L and U simultaneously.
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The entropy of the AI bound is clearly concave in both L and U being a sum of log terms acting on
individual elements of L and U.

The Gaussian potential contribution to the AI bound is a negative quadratic in L or U. To see this
we consider the Gaussian contribution, omitting constants w.r.t. U, L and b we have that

2 〈logN (w|µ,Σ)〉 c.= −v̄TUTLTΣ−1LUv̄ − trace
(
UTLTΣ−1LUD

)
− 2v̄TUTLTΣ−1b

− bTΣ−1b + 2v̄UTLTΣ−1µ + 2bTΣ−1µ

where v̄ = 〈v〉 and D = diag (var(v)). Keeping L fixed and denoting X = LTΣ−1L we get

2 〈logN (w|µ,Σ)〉 c.= −v̄TUTXUv̄ − trace
(
UTXUD

)
− 2v̄TUTLTΣ−1b

− bTΣ−1b + 2v̄UTLTΣ−1µ + 2bTΣ−1µ (3.1)

which is a negative quadratic in U and b and is thus jointly concave in these parameters. A similar
analysis carries through for L keeping U fixed.

Without loss of generality we can consider the concavity of a single non-linear site potential’s con-
tribution to the AI bound. We have that

E(A,b) := 〈log fn(w)〉 =

∫
qv(v)g(xTAv + bTx)dv (3.2)

where g(x) = log f(x) for nonlinear site function f(x) : R → R+, f(x) are assumed log-concave
and so ∀θ ∈ [0, 1]

g (θx+ (1− θ)y) ≥ θg(x) + (1− θ)g(y). (3.3)

Thus considering two transformation matrices A1 and A2 we have that

E (θA1 + (1− θ)A2, θb1 + (1− θ)b2) =〈
g
(
θ
(
xTA1v + bT

1x
)

+ (1− θ)
(
xTA2v + bT

2x
))〉

,

using the concavity of g and the linearity of the expectation operator we have

E(θA1 + (1− θ)A2, θb1 + (1− θ)b2) ≥ θ
〈
g(xTA1v + bT

1x)
〉

+ (1− θ)
〈
g(xTA2v + bT

2x)
〉

and thus the non-linear site functions contribute terms that are concave in A to the AI KL bound.
Concavity in L follows through by letting x = Ux, similarly the converse holds for concavity in U
keeping L fixed.

4 Base distributions

We present the entropy and gradients required to perform AI KL variational inference with the
skew-normal and generalised-normal distributions.

4.1 Skew-normal

The skew-normal distribution, SN (v|µ, σ, ν), is parameterised,

SN (v|µ, σ, ν) =
2

σ
φ

(
v − µ
σ

)
Φ

(
ν

(
v − µ
σ

))
(4.1)

where φ(z) = N (z|0, 1), Φ(z) =
∫ z
−∞ φ(x)dx, location parameter µ ∈ R, scale parameter σ ∈ R+

and skew parameter ν ∈ R. When ν = 0 we recover the Gaussian density N
(
v|µ, σ2

)
. For AI KL

approximate inference A,b parameterise the covariance and the location of qw(w) thus we only
require to specify the skew of each base density qvd(vd) and so we fix µ = 0 and σ = 1 in all
experiments, letting θd = ν.
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Derivatives To evaluate the derivative of SN (v|µ, σ, ν) with respect to ν we use the fact that
f ′(x) = f(x) d

dx log f(x) and present the derivatives of logSN (v|µ, σ, ν) with respect to ν

∂

∂ν
logSN (v|µ, σ, ν) =

rφ (νr)

Φ (r)
where r =

v − µ
σ

. (4.2)

Moments The first two moments of the distribution are given by

〈v〉 = µ+ σδ
√

2/π

var(v) = σ2

(
1− 2δ2

π

)
where δ = ν√

1+ν2
.

Entropy The authors are not aware of an analytic form for the skew-normal density’s entropy.
Therefore we used univariate rectangular quadrature to compute these terms.

4.2 Generalised-normal

The generalised-normal distribution, GN (v|µ, α, β), is given by

GN (v|µ, α, β) =
β

2αΓ (1/β)
e−( x−µα )

β

(4.3)

where Γ(x) is the Gamma function Γ(x) =
∫∞
0
e−ttx−1dt, location parameter µ ∈ R, scale param-

eter α ∈ R+ and shape parameter β ∈ R+. In practice we constrain β > 1 to ensure differentiability
of the KL bound.

Derivatives The derivative of the log density with respect to β is

∂

∂β
log GN (v|µ, α, β) =

1

β
+

1

β2
g

(
1

β

)
−
(
|v − µ|
α

)β
log

(
|v − µ|
α

)
. (4.4)

Moments The first two moments of the generalised-normal distribution are:

〈v〉 = µ,

var(v) =
Γ (3/β)

Γ (1/β)
.

Entropy The generalised-normal admits an analytic form for the differential entropy

H [GN (v|µ, α, β)] =
1

β
− log

[
β

2αΓ (1/β)

]
(4.5)

which in turn has the gradient

∂

∂β
H [GN (v|µ, α, β)] = − 1

β2
− 1

β
+ ψ

(
1

β

)
1

β2
(4.6)

where ψ(x) is the digamma function defined as ψ(x) = d
dx log Γ(x).
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