
Supplement for “Generalization Bounds for Domain Adaptation”

A Relationship between DF(S, T ) and Other Quantities

By (5), the quantity DF (S, T ) can be equivalently rewritten as

DF (S, T ) = sup
g∈G

∣∣∣E(S)`(g(x(S)),y(S))− E(T )`(g(x(T )),y(T ))
∣∣∣

= sup
g∈G

∣∣∣E(S)`
(
g(x(S)), g

(S)
∗ (x(S))

)
− E(T )`

(
g(x(T )), g

(T )
∗ (x(T ))

)∣∣∣. (22)

Next, based on the equivalent form (22), we discuss the relationship between the quantity DF (S, T )
and other quantities including the H-divergence and the discrepancy distance proposed in [13] and
[20], respectively.

A.1 H-Divergence and Discrepancy Distance

In classification tasks, setting ` as the absolute-value loss function (`(x,y) = |x − y|), Ben-David
et al. [13] introduced a variant of theH-divergence:

dH4H(D(S),D(T )) = sup
g1,g2∈H

∣∣∣E(S)`
(
g1(x(S)), g2(x(S))

)
− E(T )`

(
g1(x(T )), g2(x(T ))

)∣∣∣ (23)

to achieve VC-dimension-based generalization bounds for domain adaptation under the condition of
“λ-close”: there exists a λ > 0 such that

λ ≥ inf
g∈G

{∫
`(g(x(S)),y(S))dP(z(S)) +

∫
`(g(x(T )),y(T ))dP(z(T ))

}
.

In both classification and regression tasks, given a function class G and a loss function `, Mansour
et al. [20] defined the discrepancy distance as

disc`(D(S),D(T )) = sup
g1,g2∈G

∣∣∣E(S)`
(
g1(x(S)), g2(x(S))

)
− E(T )`

(
g1(x(T )), g2(x(T ))

)∣∣∣, (24)

and then used this quantity to obtain generalization bounds based on Rademacher complexities for
domain adaptation.

As mentioned by Mansour et al. [20], the quantities (23) and (24) match in the setting of classifica-
tion tasks by setting ` as the absolute-value loss function, while the usage of (24) does not require
the condition of “λ-close” but the usage of (23) does. Recalling Definition 3.1, since there is no
limitation on the function class F , the quantity DF (S, T ) can be used in both classification and re-
gression tasks. Therefore, we only need to consider the relationship between the proposed quantity
DF (S, T ) and the discrepancy distance disc`(D(S),D(T )).

A.2 Relationship between DF (S, T ) and disc`(D(S),D(T ))

From Definition 3.1 and (22), we can find that the quantity DF (S, T ) directly measures the differ-
ence between two distributions of the domains Z(S) and Z(T ). However, as addressed in Section 2,
if a domain Z(S) differs from another domain Z(T ), there are three possibilities: D(S) differs from
D(T ), or g(S)

∗ differs from g
(T )
∗ , or both of them occur. Therefore, we need to consider two kinds of

differences: the difference between the input-space distributions D(S) and D(T ) and the difference
between the labeling functions g(S)

∗ and g(T )
∗ . Next, we will show that the integral probability metric

DF (S, T ) can be bounded by the summation of two separate quantities that measure the difference
between D(S) and D(T ) and the difference between g(S)

∗ and g(T )
∗ , respectively.

As shown in (24), the quantity disc`(D(S),D(T )) measures the difference between the distributions
D(S) and D(T ). Next, we introduce another quantity to measure the difference between the labeling
functions g(S)

∗ and g(T )
∗ :
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Definition A.1 Given a loss function ` and a function class G, we define

Q
(T )
G (g

(S)
∗ , g

(T )
∗ ) := sup

g1∈G

∣∣∣E(T )`
(
g1(x(T )), g

(T )
∗ (x(T ))

)
− E(T )`

(
g1(x(T )), g

(S)
∗ (x(T ))

)∣∣∣. (25)

Note that if the loss function ` and the function class G are both non-trivial (i.e., F is non-trivial), the
quantity Q(T )

G (g
(S)
∗ , g

(T )
∗ ) is a (semi)metric between the labeling functions g(S)

∗ and g(T )
∗ . In fact, it

is not hard to verify that Q(T )
G (g

(S)
∗ , g

(T )
∗ ) satisfies the triangle inequality and is equal to zero if and

only if g(S)
∗ and g(T )

∗ match.

By combining (22), (24) and (25), we have

disc`(D(S),D(T )) = sup
g1,g2∈G

∣∣∣E(S)`
(
g1(x(S)), g2(x(S))

)
− E(T )`

(
g1(x(T )), g2(x(T ))

)∣∣∣
≥ sup
g1∈G

∣∣∣E(S)`
(
g1(x(S)), g

(S)
∗ (x(S))

)
− E(T )`

(
g1(x(T )), g

(S)
∗ (x(T ))

)∣∣∣
= sup
g1∈G

∣∣∣E(S)`
(
g1(x(S)), g

(S)
∗ (x(S))

)
− E(T )`

(
g1(x(T )), g

(T )
∗ (x(T ))

)
+ E(T )`

(
g1(x(T )), g

(T )
∗ (x(T ))

)
− E(T )`

(
g1(x(T )), g

(S)
∗ (x(T ))

)∣∣∣
≥ sup
g1∈G

∣∣∣E(S)`
(
g1(x(S)), g

(S)
∗ (x(S))

)
− E(T )`

(
g1(x(T )), g

(T )
∗ (x(T ))

)∣∣∣
− sup
g1∈G

∣∣∣E(T )`
(
g1(x(T )), g

(T )
∗ (x(T ))

)
− E(T )`

(
g1(x(T )), g

(S)
∗ (x(T ))

)∣∣∣
=DF (S, T )−Q(T )

G (g
(S)
∗ , g

(T )
∗ ), (26)

and thus
DF (S, T ) ≤ disc`(D(S),D(T )) +Q

(T )
G (g

(S)
∗ , g

(T )
∗ ). (27)

Therefore, DF (S, T ) can be bounded by the summation of the discrepancy distance
disc`(D(S),D(T )) and the quantity Q

(T )
G (g

(S)
∗ , g

(T )
∗ ), which measure the difference between the

input-space distributions D(S) and D(T ) and the difference between the labeling functions g(S)
∗ and

g
(T )
∗ , respectively.

B Proof of Theorem 5.1

In order to achieve the proof, we need to develop the specific Hoeffding-type deviation inequality
for multiple sources and the symmetrization inequality for domain adaptation with multiple sources.

B.1 Hoeffding-Type Deviation Inequality for Multiple Sources

Deviation (or concentration) inequalities play an essential role in obtaining the generalization
bounds for a certain learning process. Generally, specific deviation inequalities need to be developed
for different learning processes. There are many popular deviation and concentration inequalities,
e.g., Hoeffding’s inequality, McDiarmid’s inequality, Bennett’s inequality, Bernstein’s inequality
and Talagrand’s inequality. These results are all built under the assumption of same distribution, and
thus they are not applicable (or at least cannot be directly applied) to the setting of multiple sources.
Next, based on Hoeffding’s inequality [21], we present a deviation inequality for multiple sources.

Theorem B.1 Assume that F is a function class consisting of the bounded functions with the range
[a, b]. Let ZNk1 = {z(k)

n }Nkn=1 be the set of i.i.d. samples drawn from the source domain Z(Sk) ⊂ RL

(1 ≤ k ≤ K). Given w = (w1, · · · , wK) ∈ [0, 1]K with
∑K
k=1 wk = 1 and for any f ∈ F , we

define a function Fw : RL
∑K
k=1Nk → R as

Fw

(
{XNk

1 }Kk=1

)
:=

K∑
k=1

wk

(∏
i6=k

Ni

) Nk∑
n=1

f(x(k)
n ), (28)
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where for any 1 ≤ k ≤ K and given Nk ∈ N, the set XNk
1 is denoted as

XNk
1 := {x(k)

1 ,x
(k)
2 , · · · ,x(k)

Nk
} ∈ (RL)Nk .

Then, we have for any ξ > 0,

Pr
{∣∣E(S)Fw − Fw

(
{ZNk1 }Kk=1

)∣∣ > ξ
}

≤2 exp

− 2ξ2

(b− a)2
(∏K

k=1Nk
)(∑K

k=1 w
2
k

(∏
i 6=kNi

))
 , (29)

where E(S) stands for the expectation taken on all source domains {Z(Sk)}Kk=1.

This result is an extension of the classical Hoeffding-type deviation inequality under the assumption
of same distribution (cf. [2]). Compared to the classical result, the resultant deviation inequality
(29) is suitable to the setting of multiple sources. These two inequalities coincide when there is only
one source, i.e., K = 1

The proof of Theorem B.1 is processed by a martingale method. Before the formal proof, we
introduce some essential notations.

Let {ZNk1 }Kk=1 be sample sets drawn from multiple sources {Z(Sk)}Kk=1, respectively. Define a
random variable

S(k)
n := E(S)

{
Fw({ZNk1 }Kk=1)|ZN1

1 ,ZN2
1 , · · · ,ZNk−1

1 ,Zn1

}
, 1 ≤ k ≤ K, 0 ≤ n ≤ Nk, (30)

where
Zn1 = {z(k)

1 , z
(k)
2 , · · · , z(k)

n } ⊆ ZNk1 , and Z0
1 = ∅.

It is clear that
S

(1)
0 = E(S)Fw and S(K)

NK
= Fw({ZNk1 }Kk=1),

where E(S) stands for the expectation taken on all source domains {Z(Sk)}Kk=1.

Then, according to (28) and (30), we have for any 1 ≤ k ≤ K and 1 ≤ n ≤ Nk:

S(k)
n − S(k)

n−1 =E(S)
{
Fw({ZNk1 }Kk=1)

∣∣ZN1
1 ,ZN2

1 , · · · ,ZNk−1

1 ,Zn1

}
− E(S)

{
Fw({ZNk1 }Kk=1)

∣∣ZN1
1 ,ZN2

1 , · · · ,ZNk−1

1 ,Zn−1
1

}
=E(S)


K∑
k=1

wk

(∏
i6=k

Ni

) Nk∑
n=1

f(z(k)
n )
∣∣ZN1

1 ,ZN2
1 , · · · ,ZNk−1

1 ,Zn1


− E(S)


K∑
k=1

wk

(∏
i 6=k

Ni

) Nk∑
n=1

f(z(k)
n )
∣∣ZN1

1 ,ZN2
1 , · · · ,ZNk−1

1 ,Zn−1
1


=

k−1∑
l=1

wl

(∏
i 6=l

Ni

) Nl∑
j=1

f(z
(l)
j ) + wk

(∏
i6=k

Ni
) n∑
j=1

f(z
(k)
j )

+ E(S)


K∑

l=k+1

wl

(∏
i 6=l

Ni

) Nl∑
j=1

f(z
(l)
j ) + wk

(∏
i6=k

Ni

) Nk∑
j=n+1

f(z
(k)
j )


−
k−1∑
l=1

wl

(∏
i 6=l

Ni

) Nl∑
j=1

f(z
(l)
j )− wk

(∏
i6=k

Ni
) n−1∑
j=1

f(z
(k)
j )

− E(S)


K∑

l=k+1

wl

(∏
i 6=l

Ni

) Nl∑
j=1

f(z
(l)
j ) + wk

(∏
i6=k

Ni

) Nk∑
j=n

f(z
(k)
j )


=wk

(∏
i 6=k

Ni

)(
f(z(k)

n )− E(Sk)f
)
. (31)
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To prove Theorem B.1, we need the following inequality resulted from Hoeffding’s lemma.

Lemma B.2 Let f be a function with the range [a, b]. Then, the following holds for any α > 0:

E
{

eα(f(z(S))−E(S)f)
}
≤ e

α2(b−a)2
8 . (32)

Proof. We consider
(f(z(S))− E(S)f)

as a random variable. Then, it is clear that

E{f(z(S))− E(S)f} = 0.

Since the value of E(S)f is a constant denoted as e, we have

a− e ≤ f(z(S))− E(S)f ≤ b− e.
According to Hoeffding’s lemma, we then have

E
{

eα(f(z(S))−E(S)f)
}
≤ e

α2(b−a)2
8 . (33)

This completes the proof. �

We are now ready to prove Theorem B.1.

Proof of Theorem B.1. According to (28), (31), Lemma B.2, Markov’s inequality, Jensen’s inequality
and the law of iterated expectation, we have for any α > 0,

Pr
{
Fw

(
{ZNk1 }Kk=1

)
− E(S)Fw > ξ

}
≤e−αξE

{
e
α
(
Fw

(
{ZNk1 }

K
k=1

)
−E(S)Fw

)}
=e−αξE

{
E

{
e
α
∑K
k=1

∑Nk
n=1

(
S(k)
n −S

(k)
n−1

)∣∣ZN1
1 , · · · ,ZNK−1

1 ,ZNK−1
1

}}
=e−αξE

{
e
α
(∑K

k=1

∑Nk
n=1

(
S(k)
n −S

(k)
n−1

)
−
(
S

(K)
NK
−S(K)

NK−1

))
E

{
e
α
(
S

(K)
NK
−S(K)

NK−1

)∣∣ZN1
1 , · · · ,ZNK−1

1 ,ZNK−1
1

}}
=e−αξE

{
e
α
(∑K

k=1

∑Nk
n=1

(
S(k)
n −S

(k)
n−1

)
−
(
S

(K)
NK
−S(K)

NK−1

))
E
{

eαwK(
∏
i6=K Ni)(f(z

(K)
N )−E(SK )f)

}}
≤e−αξE

{
e
α
(∑K

k=1

∑Nk
n=1

(
S(k)
n −S

(k)
n−1

)
−
(
S

(K)
NK
−S(K)

NK−1

))}
e
α2w2

K (
∏
i6=K Ni)

2(b−a)2
8 , (34)

where ZNK−1
1 := {z(K)

1 , · · · , z(K)
NK−1} ⊂ ZNK1 . Therefore, we have

Pr
{
Fw

(
{ZNk1 }Kk=1

)
− E(S)Fw > ξ

}
≤ eΦ(α)−αξ, (35)

where

Φ(α) =
α2(b− a)2

(∏K
k=1Nk

)(∑K
k=1 w

2
k

(∏
i 6=kNi

))
8

. (36)

Similarly, we can obtain

Pr
{

E(S)Fw − Fw

(
{ZNk1 }Kk=1

)
> ξ
}
≤ eΦ(α)−αξ. (37)

Note that Φ(α) − αξ is a quadratic function with respect to α > 0 and thus the minimum value
“minα>0 {Φ(α)− αξ}” is achieved when

α =
4ξ

(b− a)2
(∏K

k=1Nk
)(∑K

k=1 w
2
k

(∏
i 6=kNi

)) .
13



By combining (35), (36) and (37), we arrive at

Pr
{∣∣E(S)Fw − Fw

(
{ZNk1 }Kk=1

)∣∣ > ξ
}

≤2 exp

− 2ξ2

(b− a)2
(∏K

k=1Nk
)(∑K

k=1 w
2
k

(∏
i 6=kNi

))
 .

This completes the proof. �

In the following subsection, we present a symmetrization inequality for domain adaptation with
multiple sources.

B.2 Symmetrization Inequality

Symmetrization inequalities are mainly used to replace the expected risk by an empirical risk com-
puted on another sample set that is independent of the given sample set but has the same distribution.
In this manner, the generalization bounds can be achieved based on some kinds of complexity mea-
sures, e.g., the covering number and the VC dimension. However, the classical symmetrization
results are built under the assumption of same distribution (cf. [2]). The symmetrization inequality
for domain adaptation with multiple sources is presented in the following theorem:

Theorem B.3 Assume that F is a function class with the range [a, b]. Let sample sets {ZNk1 }Kk=1

and {Z′Nk1 }Kk=1 be drawn from the source domains {Z(Sk)}Kk=1. Then, given an arbitrary ξ >
D

(w)
F (S, T ) and w ∈ [0, 1]K with

∑K
k=1 wk = 1, we have for any

(∏K
k=1Nk

)
≥ 8(b−a)2

(ξ′)2 ,

Pr

{
sup
f∈F

∣∣E(T )f − E(S)
w f

∣∣ > ξ

}
≤ 2Pr

{
sup
f∈F

∣∣E′(S)
w f − E(S)

w f
∣∣ > ξ′

2

}
, (38)

where ξ′ = ξ −D(w)
F (S, T ).

This theorem shows that given ξ > D
(w)
F (S, T ), the probability of the event:

sup
f∈F

∣∣E(T )f − E(S)
w f

∣∣ > ξ

can be bounded by using the probability of the event:

sup
f∈F

∣∣E′(S)
w f − E(S)

w f
∣∣ > ξ −D(w)

F (S, T )

2
(39)

that is only determined by the characteristics of the source domains {Z(Sk)}Kk=1 when
∏K
k=1Nk ≥

8(b− a)2/(ξ′)2 with ξ′ = ξ −D(w)
F (S, T ). Compared to the classical symmetrization result under

the assumption of same distribution (cf. [2]), there is a discrepancy term D
(w)
F (S, T ) in the derived

inequality. Especially, the two results will coincide when any source domain and the target domain
match, i.e., DF (Sk, T ) = 0 holds for any 1 ≤ k ≤ K. The following is the proof of Theorem B.3.

Proof of Theorem B.3. Let f̂ be the function achieving the supremum:

sup
f∈F

∣∣E(T )f − E(S)
w f

∣∣
with respect to the sample set {ZNk1 }Kk=1. According to (6), (8) and (12), we arrive at

|E(T )f̂ − E(S)
w f̂ | = |E(T )f̂ − E

(S)
f̂ + E

(S)
f̂ − E(S)

w f̂ | ≤ D(w)
F (S, T ) +

∣∣E(S)
f̂ − E(S)

w f̂
∣∣, (40)

and thus,

Pr
{
|E(T )f̂ − E(S)

w f̂ | > ξ
}
≤ Pr

{
D

(w)
F (S, T ) +

∣∣E(S)
f̂ − E(S)

w f̂
∣∣ > ξ

}
, (41)
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where the expectation E
(S)
f̂ is defined as

E
(S)
f̂ :=

K∑
k=1

wkE(Sk)f̂ . (42)

Let

ξ′ := ξ −D(w)
F (S, T ), (43)

and denote ∧ as the conjunction of two events. According to the triangle inequality, we have(
|E(S)

f̂ − E(S)
w f̂ | − |E′(S)

w f̂ − E
(S)
f̂ |
)
≤ |E′(S)

w f̂ − E(S)
w f̂ |,

and thus for any ξ′ > 0, (
1|E(S)

f̂−E
(S)
w f̂ |>ξ′

)(
1|E(S)

f̂−E′(S)
w f̂ |< ξ′

2

)
=1{|E(S)f̂−E

(S)
w f̂ |>ξ′

}
∧
{
|E(S)

f̂−E′(S)
w f̂ |< ξ′

2

}
≤1|E′(S)

w f̂−E
(S)
w f̂ |> ξ′

2

.

Then, taking the expectation with respect to {Z′Nk1 }Kk=1 gives(
1|E(S)

f̂−E
(S)
w f̂ |>ξ′

)
Pr′
{
|E(S)

f̂ − E′
(S)
w f̂ | < ξ′

2

}
≤Pr′

{
|E′(S)

w f̂ − E(S)
w f̂ | > ξ′

2

}
. (44)

By Chebyshev’s inequality, since {Z′Nk1 }Kk=1 are the sets of i.i.d. samples drawn from the multiple
sources {Z(Sk)}Kk=1 respectively, we have for any ξ′ > 0,

Pr′
{∣∣E(S)

f̂ − E′
(S)
w f̂

∣∣ ≥ ξ′

2

}
≤Pr′

{
K∑
k=1

wk
Nk

Nk∑
n=1

|E(Sk)f̂ − f̂(z′
(k)
n )| ≥ ξ′

2

}

=Pr′


K∑
k=1

wk

(∏
i6=k

Ni

) Nk∑
n=1

|E(Sk)f̂ − f̂(z′
(k)
n )| ≥ ξ′

∏K
k=1Nk
2


≤

4E
{∑K

k=1 wk
(∏

i 6=kNi
)∑Nk

n=1

∣∣E(Sk)f̂ − f̂(z′
(k)
n )
∣∣2}(∏K

k=1Nk
)2

(ξ′)2

=
4E
{∑K

k=1 wk
(∏

i 6=kNi
)
Nk (b− a)

2
}

(∏K
k=1Nk

)2
(ξ′)2

=
4
(∏K

k=1Nk
)

(b− a)
2(∏K

k=1Nk
)2

(ξ′)2
=

4 (b− a)
2

(ξ′)2
(∏K

k=1Nk
) . (45)

Subsequently, according to (44) and (45), we have for any ξ′ > 0,

Pr′
{
|E′(S)

w f̂ − E(S)
w f̂ | > ξ′

2

}
≥
(
1|E(S)

f̂−E
(S)
w f̂ |>ξ′

)(
1− 4 (b− a)

2

(ξ′)2
(∏K

k=1Nk
)) . (46)

By combining (41), (43) and (46), taking the expectation with respect to {ZNk1 }Kk=1 and letting

4 (b− a)
2

(ξ′)2
(∏K

k=1Nk
) ≤ 1

2
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can lead to: for any ξ > D
(w)
F (S, T ),

Pr
{
|E(T )f̂ − E(S)

w f̂ | > ξ
}
≤Pr

{
|E(S)

f̂ − E(S)
w f̂ | > ξ′

}
≤2Pr

{
|E′(S)

w f̂ − E(S)
w f̂ | > ξ′

2

}
(47)

with ξ′ = ξ −D(w)
F (S, T ). This completes the proof. �

By using the resultant deviation inequality and the symmetrization inequality, we can achieve the
proof of Theorem 5.1.

B.3 Proof of Theorem 5.1

Proof of Theorem 5.1. Consider ε as an independent Rademacher random variables, i.e., an indepen-
dent {−1, 1}-valued random variable with equal probability of taking either value. Given sample
sets {Z2Nk

1 }Kk=1, denote for any f ∈ F and 1 ≤ k ≤ K,

−→ε (k) := (ε
(k)
1 , · · · , ε(k)

Nk
,−ε(k)

1 , · · · ,−ε(k)
Nk

) ∈ {−1, 1}2Nk , (48)

and for any f ∈ F ,
−→
f (Z2Nk

1 ) :=
(
f(z′

(k)
1 ), · · · , f(z′

(k)
Nk

), f(z
(k)
1 ), · · · , f(z

(k)
Nk

)
)
. (49)

According to (6) and Theorem B.3, given an arbitrary ξ > D
(w)
F (S, T ) and denoting ξ′ = ξ −

D
(w)
F (S, T ), we have for any {Nk}Kk=1 ∈ NK such that (

∏K
k=1Nk) ≥ 8(b− a)2/(ξ′)2,

Pr

{
sup
f∈F

∣∣E(T )f − E(S)
w f

∣∣ > ξ

}

≤2Pr

{
sup
f∈F

∣∣E′(S)
w f − E(S)

w f
∣∣ > ξ′

2

}
(by Theorem B.3)

=2Pr

{
sup
f∈F

∣∣∣ K∑
k=1

wk
Nk

Nk∑
n=1

(
f(z′

(k)
n )− f(z(k)

n )
)∣∣∣ > ξ′

2

}

=2Pr

{
sup
f∈F

∣∣∣ K∑
k=1

wk
Nk

Nk∑
n=1

ε(k)
n

(
f(z′

(k)
n )− f(z(k)

n )
)∣∣∣ > ξ′

2

}

=2Pr

{
sup
f∈F

∣∣∣ K∑
k=1

wk
2Nk

〈−→ε (k),
−→
f (Z2Nk

1 )
〉∣∣∣ > ξ′

4

}
. (by (48) and (49)) (50)

Fix a realization of {Z2Nk
1 }Kk=1 and let Λ be a ξ′/8-radius cover of F with respect to the

`w1 ({Z2Nk
1 }Kk=1) norm. Since F is composed of the bounded functions with the range [a, b], we

assume that the same holds for any h ∈ Λ. If f0 is the function that achieves the following supre-
mum

sup
f∈F

∣∣∣ K∑
k=1

wk
2Nk

〈−→ε (k),
−→
f (Z2Nk

1 )
〉∣∣∣ > ξ′

4
,

there must be an h0 ∈ Λ that satisfies
K∑
k=1

wk
2Nk

(
|f0(z′

(k)
n )− h0(z′

(k)
n )|+ |f0(z(k)

n )− h0(z(k)
n )|

)
<
ξ′

8
,

and meanwhile, ∣∣∣ K∑
k=1

wk
2Nk

〈−→ε (k),
−→
h0(Z2Nk

1 )
〉∣∣∣ > ξ′

8
.
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Therefore, for the realization of {Z2Nk
1 }Kk=1, we arrive at

Pr

{
sup
f∈F

∣∣∣ K∑
k=1

wk
2Nk

〈−→ε (k),
−→
f (Z2Nk

1 )
〉∣∣∣ > ξ′

4

}

≤Pr

{
sup
h∈Λ

∣∣∣ K∑
k=1

wk
2Nk

〈−→ε (k),
−→
h (Z2Nk

1 )
〉∣∣∣ > ξ′

8

}
. (51)

Moreover, we denote the event

A :=

{
Pr

{
sup
h∈Λ

∣∣∣ K∑
k=1

wk
2Nk

〈−→ε (k),
−→
h (Z2Nk

1 )
〉∣∣∣ > ξ′

8

}}
,

and let 1A be the characteristic function of the event A. By Fubini’s Theorem, we have

Pr{A} = E
{

E−→ε
{
1A
}∣∣ {Z2Nk

1 }Kk=1

}
= E

{
Pr

{
sup
h∈Λ

∣∣∣ K∑
k=1

wk
2Nk

〈−→ε (k),
−→
h (Z2Nk

1 )
〉∣∣∣ > ξ′

8

}∣∣∣ {Z2Nk
1 }Kk=1

}
. (52)

Fix a realization of {Z2Nk
1 }Kk=1 again. According to (48), (49) and Theorem B.1, we have

Pr

{
sup
h∈Λ

∣∣∣ K∑
k=1

wk
2Nk

〈−→ε (k),
−→
h (Z2Nk

1 )
〉∣∣∣ > ξ′

8

}

≤|Λ|max
h∈Λ

Pr

{∣∣∣ K∑
k=1

wk
2Nk

〈−→ε (k),
−→
h (Z2Nk

1 )
〉∣∣∣ > ξ′

8

}

=N
(
F , ξ′/8, `w1 ({Z2Nk

1 }Kk=1)
)

max
h∈Λ

Pr

{∣∣E′(S)
w h− E(S)

w h
∣∣ > ξ′

4

}
≤N

(
F , ξ′/8, `w1 ({Z2Nk

1 }Kk=1)
)

max
h∈Λ

Pr

{
|E(S)

h− E′
(S)
w h|+ |E(S)

h− E(S)
w h| > ξ′

4

}
≤2N

(
F , ξ′/8, `w1 ({Z2Nk

1 }Kk=1)
)

max
h∈Λ

Pr

{∣∣E(S)
h− E(S)

w h
∣∣ > ξ′

8

}

≤4N
(
F , ξ′/8, `w1 ({Z2Nk

1 }Kk=1)
)

exp

−
(∏K

k=1Nk
) (
ξ −D(w)

F (S, T )
)2

32(b− a)2
(∑K

k=1 w
2
k(
∏
i6=kNi)

)
 , (53)

where the expectation E
(S)

is defined in (42).

The combination of (50), (51) and (53) leads to the result: given an arbitrary ξ > D
(w)
F (S, T ) and

for any
(∏K

k=1Nk
)
≥ 8 (b− a)

2
/(ξ′)2 with ξ′ = ξ −D(w)

F (S, T ),

Pr

{
sup
f∈F

∣∣E(T )f − E(S)
w f

∣∣ > ξ

}

≤8EN
(
F , ξ′/8, `w1 ({Z2Nk

1 }Kk=1)
)

exp

−
(∏K

k=1Nk
) (
ξ −D(w)

F (S, T )
)2

32(b− a)2
(∑K

k=1 w
2
k(
∏
i 6=kNi)

)


≤8Nw
1

(
F , ξ′/8, 2

K∑
k=1

Nk

)
exp

−
(∏K

k=1Nk
) (
ξ −D(w)

F (S, T )
)2

32(b− a)2
(∑K

k=1 w
2
k(
∏
i 6=kNi)

)
 . (54)
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According to (54), letting

ε := 8Nw
1

(
F , ξ′/8, 2

K∑
k=1

Nk

)
exp

−
(∏K

k=1Nk
) (
ξ −D(w)

F (S, T )
)2

32(b− a)2
(∑K

k=1 w
2
k(
∏
i 6=kNi)

)
 ,

we then arrive at with probability at least 1− ε,

sup
f∈F

∣∣E(S)
w f − E(T )f

∣∣ ≤ D(w)
F (S, T ) +

 lnNw
1

(
F , ξ′/8, 2∑K

k=1Nk
)
− ln(ε/8)(∏K

k=1Nk

)
32(b−a)2

(∑K
k=1 w

2
k(
∏
i6=k Ni)

)


1
2

,

where ξ′ = ξ −D(w)
F (S, T ). This completes the proof. �

C Domain Adaptation Combining Source and Target Data

Here, we study the generalization bounds of the learning process for domain adaptation combining
source and target data. We first introduce some notations to formalize the problem.

C.1 Problem Setup

DenoteZ(S) := X (S)×Y(S) ⊂ RI×RJ andZ(T ) := X (T )×Y(T ) ⊂ RI×RJ as the source domain
and the target domain, respectively. LetD(S) andD(T ) stand for the distributions of the input spaces
X (S) and X (T ), respectively. Denote g(S)

∗ : X (S) → Y(S) and g(T )
∗ : X (T ) → Y(T ) as the labeling

functions of Z(S) and Z(T ), respectively. In the situation of domain adaptation combining source
and target data (cf. [13, 18]), the input-space distributions D(S) and D(T ) differ from each other, or
the labeling functions g(S)

∗ and g(T )
∗ differ from each other, or both cases occur. There are some (but

not enough) samples ZNT1 := {z(T )
n }NTn=1 drawn from the target domain Z(T ) in addition to a large

amount of samples ZNS1 := {z(S)
n }NSn=1 drawn from the source domain Z(S) with N (T ) � N (S).

Given a τ ∈ [0, 1), we denote gτ ∈ G as the function that minimizes the convex combination of the
source and the target empirical risks over G:

Eτ (` ◦ g) := τE
(T )
NT

(` ◦ g) + (1− τ)E
(S)
NS

(` ◦ g), (55)

and it is expected that gτ will perform well for any pair z(T ) = (x(T ),y(T )) ∈ Z(T ), i.e., gτ
approximates the labeling function g(T )

∗ as precisely as possible.

As mentioned in [13,18], setting τ involves a tradeoff between the source data that are sufficient
but not accurate and the target data that are accurate but not sufficient. Especially, setting τ = 0
provides a learning process of the basic domain adaptation with one single source (cf. [19]).

Similar to the situation of domain adaptation with multiple sources, two types of quantities: E(T )(`◦
gτ )−Eτ (`◦gτ ) and E(T )(`◦gτ )−E(T )(`◦g̃∗) also play an essential role in analyzing the asymptotic
behavior of the learning process for domain adaptation combining source and target data. By the
similar way of (3), we need to consider the supremum

sup
g∈G

∣∣E(T )(` ◦ g)− Eτ (` ◦ g)
∣∣, (56)

which is the so-called generalization bound of the learning process for domain adaptation combin-
ing source and target data. Following the notation of (6), the generalization bound (56) can be
equivalently rewritten as

sup
f∈F

∣∣E(T )f − Eτf
∣∣.
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C.2 The Uniform Entropy Number

In the situation of domain adaptation combining source and target data, we have to introduce a
variant of the `1 norm on F . Let ZNS1 = {z(S)

n }NSn=1 and Z
NT
1 = {z(T )

n }NTn=1 be two sets of

samples drawn from the domains Z(S) and Z(T ), respectively. Moreover, let Z′
NS
1 and Z

′NT
1

be the ghost sample sets of ZNS1 and Z
NT
1 , respectively. Denote Z2NS

1 := {ZNS1 ,Z′
NS
1 } and

Z
2NT
1 := {ZNT1 ,Z

′NT
1 }, respectively.

Given an f ∈ F , we define for any τ ∈ [0, 1),

‖f‖
`τ1 ({Z2NS

1 ,Z
2NT
1 }) :=

τ

NT

NT∑
n=1

(
|f(z(T )

n )|+ |f(z′
(T )
n )|

)
+

1− τ
NS

NS∑
n=1

(
|f(z(S)

n )|+ |f(z′
(S)
n )|

)
.

(57)
Note that the variant `τ1 (τ ∈ [0, 1)) of the `1 norm is still a norm on the functional space, which
can be easily verified by using the definition of norm, so we omit it here. Then, the uniform entropy
number of F with respect to the `τ1({Z2NS

1 ,Z
2NT
1 }) is defined as

lnN τ
1 (F , ξ, 2(NS +NT )) := sup

Z
2NS
1 ,Z

2NT
1

lnN
(
F , ξ, `τ1({Z2NS

1 ,Z
2NT
1 })

)
, (58)

where N
(
F , ξ, `τ1({Z2NS

1 ,Z
2NT
1 })

)
is the covering number of the function class F with respect to

the norm `τ1({Z2NS
1 ,Z

2NT
1 }).

C.3 Generalization Bounds

The following theorem provides a generalization bound for domain adaptation combining source
and target data based on the uniform entropy number with respect to the norm `τ1 (cf. (58)).

Theorem C.1 Assume that F is a function class consisting of the bounded functions with the range
[a, b]. Let ZNS1 = {z(S)

n }NSn=1 and Z
NT
1 = {z(T )

n }NTn=1 be two sets of i.i.d. samples drawn from
domains Z(S) and Z(T ), respectively. Then, for any τ ∈ [0, 1) and given an arbitrary ξ > (1 −
τ)DF (S, T ), we have for any NSNT ≥ 8(b−a)2

(ξ′)2 , with probability at least 1− ε,

sup
f∈F

∣∣Eτf − E(T )f
∣∣ ≤ (1− τ)DF (S, T ) +

(
lnN τ

1 (F , ξ′/8, 2(NS +NT ))− ln(ε/8)
NSNT

32(b−a)2((1−τ)2NT+τ2NS)

) 1
2

, (59)

where DF (S, T ) is defined in (8) and ξ′ := ξ − (1− τ)DF (S, T ).

Similar to the situation of domain adaptation with multiple sources, the proof of this theorem is
processed by using a specific Hoeffding-type deviation inequality and a symmetrization inequality
for domain adaptation combining source and target data (cf. Subsection C.6).

Compared to the classical result (13) under the assumption of same distribution, the expression of the
generalization bound (59) contains a discrepancy term (1 − τ)DF (S, T ) that is determined by two
factors: the combination coefficient τ and the integral probability metricDF (S, T ). The two bounds
coincide when the source domain Z(S) and the target domain Z(T ) match, i.e., DF (S, T ) = 0.

Note that this result exhibits a tradeoff between the sample numbers NS and NT . Although the
tradeoff has been mentioned in some previous works (cf. [13, 18]), the following subsection will
show a rigorous theoretical analysis of the tradeoff based on our resultant generalization bound for
domain adaptation combining source and target data.

C.4 Asymptotic Convergence

Based on Theorem C.1, we can directly obtain the following result pointing out that the asymptotic
convergence of the learning process for domain adaptation combining source and target data is
affected by the uniform entropy number lnN τ

1 (F , ξ′/8, 2(NS +NT )), the combination coefficient
τ and the integral probability metric DF (S, T ).
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Theorem C.2 Assume that F is a function class consisting of bounded functions with the range
[a, b]. Given a τ ∈ [0, 1), if the following condition holds:

lim
NS→+∞

lnN τ
1 (F , ξ′/8, 2(NS +NT ))

NSNT
((1−τ)2NT+τ2NS)

< +∞ (60)

with ξ′ := ξ − (1− τ)DF (S, T ), then we have for any ξ > (1− τ)DF (S, T ),

lim
NS→+∞

Pr

{
sup
f∈F

∣∣E(T )f − Eτf
∣∣ > ξ

}
= 0. (61)

As shown in Theorem C.2, if the choice of τ ∈ [0, 1) and the uniform entropy num-
ber lnN τ

1 (F , ξ′/8, 2(NS + NT )) satisfy the condition (60), the probability of the event
“supf∈F

∣∣E(T )f − Eτf
∣∣ > ξ” will converge to zero for any ξ > (1 − τ)DF (S, T ), when NS

goes to infinity. This is partially in accordance with the classical result under the assumption of
same distributions given by the combination of Theorem 2.3 and Definition 2.5 of [22].

Note that in the learning process for domain adaptation combining source and target data, the
uniform convergence of the empirical risk on the source domain to the expected risk on the tar-
get domain may not hold, because the limit (61) does not hold for any ξ > 0 but for any
ξ > (1 − τ)DF (S, T ). By contrast, the limit (61) holds for all ξ > 0 in the learning process
under the assumption of same distribution, if the condition (16) is satisfied. The two conditions
coincide when the source domain Z(S) and the target domain Z(T ) match, i.e., DF (S, T ) = 0.

Additionally, we consider the choice of τ that is an essential factor to the asymptotic convergence
of the learning process and is associated with the tradeoff between the sample numbers NS and NT .
Recalling (59), if we fix the value of lnN τ

1 (F , ξ′/8, 2(NS +NT )), setting τ = NT
NT+NS

minimizes
the second term of the right-hand side of (59) and then we arrive at

sup
f∈F

∣∣Eτf − E(T )f
∣∣ ≤ NSDF (S, T )

NS +NT
+

(
(lnN τ

1 (F , ξ′/8, 2(NS +NT ))− ln(ε/8))
NS+NT
32(b−a)2

) 1
2

, (62)

which implies that setting τ = NT
NT+NS

can result in the fastest rate of convergence, while it can also
cause the relatively larger discrepancy between the empirical risk Eτf and the expected risk E(T )f ,
because the situation of domain adaptation is set up in the condition that NT � NS , which implies
that NS

NS+NT
≈ 1. It is noteworthy that the value τ = NT

NT+NS
has been mentioned in the section of

“Experimental Results” in [18]. Here, we show a rigorous theoretical analysis of this value and the
related numerical experiment also supports this point (cf. Fig. 2).

Similar to the situation of domain adaptation with multiple sources, by setting τ = NT
NT+NS

and
ignoring the discrepancy termNSDF (S, T )/(NS+NT ), the learning process for domain adaptation
combining source and target data has the same rate of convergence as that of the learning process
under the assumption of same distribution [cf. (13) and (62)].

C.5 Numerical Experiments

We have performed some numerical experiments to verify the theoretical analysis of the asymptotic
convergence of the learning process for domain adaptation combining source and target data.

In this situation, the samples {(x(T )
n , y

(T )
n )}NTn=1 (NT = 4000) of the target domain Z(T ) are gener-

ated in the aforementioned way (cf. (18)). We randomly pick N ′T = 100 samples from them to form
the objective function and the rest N ′′T = 3900 are used to test.

Similarly, the samples {(x(S)
n , y

(S)
n )}NSn=1 (NS = 4000) of the source domain Z(S) are generated as

follows: for any 1 ≤ n ≤ NS ,
y(S)
n = 〈x(S)

n , β〉+R, (63)

where x
(S)
n ∼ N(1, 2), β ∼ N(1, 5) and R ∼ N(0, 0.5).
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We also use the method of Least Square Regression to minimize the empirical risk

Eτ (` ◦ g) =
1− τ
NS

NS∑
n=1

`(g(x(S)
n ), y(S)

n ) +
τ

N ′T

N ′T∑
n=1

`(g(x(T )
n ), y(T )

n )

for different combination coefficients τ ∈ {0.1, 0.3, 0.5, 0.9} and then compute the discrepancy
|Eτf − E(T )

N ′′T
f | for each NS . Since NS � N ′T , the initial NS is set to be 200. Each test is repeated

100 times and the final result is the average of the 100 results. After each test, we increment NS by
200 until NS = 4000. The experiment results are shown in Fig. 2.
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Figure 2: Domain Adaptation Combining Source and Target Data

Fig. (2) shows that for any choice of τ ∈ {0.1, 0.3, 0.5, 0.9}, the curve of |Eτf−E(T )
N ′′T
| is decreasing

asNS increases. This is in accordance with our results of the asymptotic convergence of the learning
process for domain adaptation combining source and target data (cf. Theorems C.1 and C.2).

At the end of Subsection C.4, we have theoretically analyzed how the choice of τ affects the rate of
convergence of the learning process for domain adaptation combining source and target data. Our
numerical experiments support this theoretical finding as well. In fact, as shown in Fig. 2, when
τ ≈ N ′T /(NS +N ′T ), the discrepancy |E(S)

τ f −E(T )
N ′′T

f | has the fastest rate of convergence, and the
rate becomes slower as τ is further away from N ′T /(NS +N ′T ). Thus, this is in accordance with the
theoretical analysis of the asymptotic convergence presented above.

C.6 Proof of Theorem C.1

Here, we provide the proof of Theorem C.1. Similar to the situation of domain adaptation with
multiple sources, we need to develop the related Hoeffding-type deviation inequality and the sym-
metrization inequality for domain adaptation combining source and target data.

C.6.1 Hoeffding-Type Deviation Inequality

Based on Hoeffding’s inequality [21], we derive a deviation inequality for the combination of source
and target domains.

Theorem C.3 Assume that F is a function class consisting of the bounded functions with the range
[a, b]. Let ZNS1 := {z(S)

n }NSn=1 and Z
NT
1 := {z(T )

n }NTn=1 be sets of i.i.d. samples drawn from the
source domain Z(S) ⊂ RL and the target domain Z(T ) ⊂ RL, respectively. For any τ ∈ [0, 1),
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define a function Fτ : RL(NS+NT ) → R as

Fτ

(
XNT

1 ,YNS
1

)
:= τNS

NT∑
n=1

f(xn) + (1− τ)NT

NS∑
n=1

f(yn), (64)

where

XNT
1 := {x1, · · · ,xNT } ∈ (RL)NT ; YNS

1 := {y1, · · · ,yNS} ∈ (RL)NS .

Then, we have for any τ ∈ [0, 1) and any ξ > 0,

Pr
{∣∣Fτ (ZNS1 ,Z

NT
1

)
− E(∗)Fτ

∣∣ > ξ
}

≤2 exp

{
− 2ξ2

(b− a)2NSNT ((1− τ)2NT + τ2NS)

}
, (65)

where the expectation E(∗) is taken on both of the source domain Z(S) and the target domain Z(T ).

In this theorem, we present a deviation inequality for the combination of source and target domains,
which is an extension of the classical Hoeffding-type deviation inequality under the assumption of
same distribution (cf. [2]). Compare to the classical result, the deviation inequality (65) allows the
samples to be drawn from two different domains.

The proof of Theorem C.3 is also processed by a martingale method. Before the formal proof, we
introduce some essential notations.

For any τ ∈ [0, 1), we denote

FS(ZNS1 ) := (1− τ)NT

NS∑
n=1

f(z(S)
n ); FT (Z

NT
1 ) := τNS

NT∑
n=1

f(z(T )
n ). (66)

Recalling (64), it is evident that Fτ
(
ZNS1 ,Z

NT
1

)
= FS(ZNS1 ) + FT (Z

NT
1 ). We then define two

random variables:

Sn :=E(S)
{
FS(ZNS1 )|Zn1

}
, 0 ≤ n ≤ NS ;

Tn :=E(T )
{
FT (Z

NT
1 )|Zn1

}
, 0 ≤ n ≤ NT , (67)

where

Zn1 = {z(S)
1 , · · · , z(S)

n } ⊆ ZNS1 with Z0
1 := ∅;

Z
n

1 = {z(T )
1 , · · · , z(T )

n } ⊆ Z
NT
1 with Z

0

1 := ∅.

It is clear that S0 = E(S)FS ; SNS = FS(ZNS1 ) and T0 = E(T )FT ; TNT = FT (Z
NT
1 ).

According to (64) and (67), we have for any 1 ≤ n ≤ NS and any τ ∈ [0, 1),

Sn − Sn−1

= E(S)
{
FS(ZNS1 )|Zn1

}
− E(S)

{
FS(ZNS1 )|Zn−1

1

}
= E(S)

{
(1− τ)NT

NS∑
n=1

f(z(S)
n )

∣∣∣Zn1
}
− E(S)

{
(1− τ)NT

NS∑
n=1

f(z(S)
n )

∣∣∣Zn−1
1

}

= (1− τ)NT

n∑
m=1

f(z(S)
m ) + E(S)

{
(1− τ)NT

NS∑
m=n+1

f(z(S)
m )

}

−
(

(1− τ)NT

n−1∑
m=1

f(z(S)
m ) + E(S)

{
(1− τ)NT

NS∑
m=n

f(z(S)
m )

})
= (1− τ)NT

(
f(z(S)

n )− E(S)f
)
. (68)
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Similarly, we also have for any 1 ≤ n ≤ NT ,

Tn − Tn−1 = τNS

(
f(z(T )

n )− E(T )f
)
. (69)

We are now ready to prove Theorem C.3.

Proof of Theorem C.3. According to (64) and (66), we have

Fτ (ZN1 )− E(∗)Fτ =FS(ZNS1 ) + FT (Z
NT
1 )− E(∗){FS + FT }

=FS(ZNS1 )− E(S)FS + FT (Z
NT
1 )− E(T )FT . (70)

According to Lemma B.2, (68), (69), (70), Markov’s inequality, Jensen’s inequality and the law of
iterated expectation, we have for any α > 0 and any τ ∈ [0, 1),

Pr
{
Fτ (ZN1 )− E(∗)Fτ > ξ

}
=Pr

{
FS(ZNS1 )− E(S)FS + FT (Z

NT
1 )− E(T )FT > ξ

}
≤e−αξE

{
e
α
(
FS(Z

NS
1 )−E(S)FS+FT (Z

NT
1 )−E(T )FT

)}
=e−αξE

{
eα
(∑NS

n=1(Sn−Sn−1)+
∑NT
n=1(Tn−Tn−1)

)}
=e−αξE

{
E

{
eα
(∑NS

n=1(Sn−Sn−1)+
∑NT
n=1(Tn−Tn−1)

)∣∣∣ZNS−1
1

}}
=e−αξE

{
eα
(∑NS−1

n=1 (Sn−Sn−1)+
∑NT
n=1(Tn−Tn−1)

)
E
{

eα(SNS−SNS−1)
∣∣∣ZNS−1

1

}}
≤e−αξE

{
eα
(∑NS−1

n=1 (Sn−Sn−1)+
∑NT
n=1(Tn−Tn−1)

)}
e

(1−τ)2N2
T α

2(b−a)2
8

=e−αξE

{
eα
(∑NS−1

n=1 (Sn−Sn−1)+
∑NT−1

n=1 (Tn−Tn−1)
)
E
{

eα(TNT−TNT−1)
∣∣∣ZNT−1

1

}}
× e

(1−τ)2N2
T α

2(b−a)2
8

≤e−αξE

{
eα
(∑NS−1

n=1 (Sn−Sn−1)+
∑NT−1

n=1 (Tn−Tn−1)
)}

e
τ2N2

Sα
2(b−a)2
8

× e
(1−τ)2N2

T α
2(b−a)2

8 . (71)
Then, we have

Pr
{
Fτ

(
ZNS1 ,Z

NT
1

)
− E(∗)Fτ > ξ

}
≤ eΦ(α)−αξ, (72)

where

Φ(α) =
α2(1− τ)2(b− a)2NSN

2
T

8
+
α2τ2(b− a)2N2

SNT
8

. (73)

Similarly, we can arrive at

Pr
{

E(∗)Fτ − Fτ
(
ZNS1 ,Z

NT
1

)
> ξ
}
≤ eΦ(α)−αξ. (74)

Note that “Φ(α)− αξ” is a quadratic function with respect to α > 0 and thus the minimum value
min
α>0
{Φ(α)− αξ}

is achieved when
α =

4ξ

(b− a)2NSNT ((1− τ)2NT + τ2NS)
.

By combining (72), (73) and (74), we arrive at

Pr
{
|Fτ
(
ZNS1 ,Z

NT
1

)
− E(∗)Fτ | > ξ

}
≤ 2 exp

{
− 2ξ2

(b− a)2NSNT ((1− τ)2NT + τ2NS)

}
.

This completes the proof. �
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C.6.2 Symmetrization Inequality

In the following theorem, we present the symmetrization inequality for domain adaptation combin-
ing source and target data.

Theorem C.4 Assume that F is a function class with the range [a, b]. Let ZNS1 and Z′
NS
1 be drawn

from the source domain Z(S), and Z
NT
1 and Z′

NT
1 be drawn from the target domain Z(T ). Then, for

any τ ∈ [0, 1) and given an arbitrary ξ > (1− τ)DF (S, T ), we have for any NSNT ≥ 8(b−a)2

(ξ′)2 ,

Pr

{
sup
f∈F

∣∣E(T )f − Eτf
∣∣ > ξ

}
≤ 2Pr

{
sup
f∈F

∣∣E′τf − Eτf
∣∣ > ξ′

2

}
(75)

with ξ′ = ξ − (1− τ)DF (S, T ).

This theorem shows that for any ξ > (1− τ)DF (S, T ), the probability of the event:

sup
f∈F

∣∣E(T )f − Eτf
∣∣ > ξ

can be bounded by using the probability of the event:

sup
f∈F

∣∣E′τf − Eτf
∣∣ > ξ′

2

that is only determined by the samples drawn from the source domain Z(S) and the target domain
Z(T ), when NSNT ≥ 8(b − a)2/(ξ′)2. Compared to the classical symmetrization result under
the assumption of same distribution (cf. [2]), there is a discrepancy term (1 − τ)DF (S, T ). The
two results will coincide when the source and the target domains match, i.e., DF (S, T ) = 0. The
following is the proof of Theorem C.4.

Proof of Theorem C.4. Let f̂ be the function achieving the supremum:

sup
f∈F
|E(T )f − Eτf |

with respect to ZNS1 and Z
NT
1 . According to (8), and (55), we arrive at∣∣E(T )f̂ − Eτ f̂

∣∣ =
∣∣τE(T )f̂ + (1− τ)E(T )f̂ − (1− τ)E(S)f̂ + (1− τ)E(S)f̂ − Eτ f̂

∣∣
=
∣∣τ(E(T )f̂ − E

(T )
NT
f̂) + (1− τ)(E(T )f̂ − E(S)f̂) + (1− τ)(E(S)f̂ − E

(S)
NS
f̂)
∣∣

≤(1− τ)DF (S, T ) +
∣∣τ(E(T )f̂ − E

(T )
NT
f̂) + (1− τ)(E(S)f̂ − E

(S)
NS
f̂)
∣∣, (76)

and thus

Pr
{∣∣E(T )f̂ − Eτ f̂

∣∣ > ξ
}

≤Pr
{

(1− τ)DF (S, T ) +
∣∣τ(E(T )f̂ − E

(T )
NT
f̂) + (1− τ)(E(S)f̂ − E

(S)
NS
f̂)
∣∣ > ξ

}
, (77)

where

E
(T )
NT
f̂ :=

1

NT

NT∑
n=1

f̂(z(T )
n );

E
(S)
NS
f̂ :=

1

NS

NS∑
n=1

f̂(z(S)
n ). (78)

Let
ξ′ = ξ − (1− τ)DF (S, T ) (79)
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and denote ∧ as the conjunction of two events. According to the triangle inequality, we have(
1{|τ(E(T )f̂−E

(T )
NT

f̂)+(1−τ)(E(S)f̂−E
(S)
NS

f̂)|>ξ′
})(1{|τ(E(T )f̂−E′(T )

NT
f̂)+(1−τ)(E(S)f̂−E′(S)

NS
f̂)|< ξ′

2

})
=1{|τ(E(T )f̂−E

(T )
NT

f̂)+(1−τ)(E(S)f̂−E
(S)
NS

f̂)|>ξ′
}
∧
{
|τ(E(T )f̂−E′(T )

NT
f̂)+(1−τ)(E(S)f̂−E′(S)

NS
f̂)|< ξ′

2

}
≤1{|τ(E′(T )

NT
f̂−E

(T )
NT

f̂)+(1−τ)(E′(S)
NS

f̂−E
(S)
NS

f̂)|> ξ′
2

} .
Then, taking the expectation with respect to Z′

NS
1 and Z′

NT
1 gives(

1{|τ(E(T )f̂−E
(T )
NT

f̂)+(1−τ)(E(S)f̂−E
(S)
NS

f̂)|>ξ′
})

× Pr′
{∣∣τ(E(T )f̂ − E′

(T )
NT
f̂) + (1− τ)(E(S)f̂ − E′

(S)
NS
f̂)
∣∣ < ξ′

2

}
≤ Pr′

{∣∣τ(E′
(T )
NT
f̂ − E

(T )
NT
f̂) + (1− τ)(E′

(S)
NS
f̂ − E

(S)
NS
f̂)
∣∣ > ξ′

2

}
. (80)

By Chebyshev’s inequality, since Z′
NS
1 = {z′(S)

n }NSn=1 and Z′
NT
1 = {z′(T )

n }NTn=1 are sets of i.i.d.
samples drawn from the source domain Z(S) and the target domain Z(T ) respectively, we have for
any ξ′ > 0 and any τ ∈ [0, 1),

Pr′
{∣∣τ(E(T )f̂ − E′

(T )
NT
f̂) + (1− τ)(E(S)f̂ − E′

(S)
NS
f̂)
∣∣ ≥ ξ′

2

}
≤Pr′

{
τ

NT

NT∑
n=1

|E(T )f̂ − f̂(z′
(T )
n )|+ 1− τ

NS

NS∑
n=1

|E(S)f̂ − f̂(z′
(S)
n )| ≥ ξ′

2

}

≤
4E
{
τNSNT (E(T )f̂ − f̂(z′

(T )
))2 + (1− τ)NSNT (E(S)f̂ − f̂(z′

(S)
))2
}

N2
SN

2
T (ξ′)2

≤4E
{
τNSNT (b− a)2 + (1− τ)NSNT (b− a)2

}
N2
SN

2
T (ξ′)2

=
4(b− a)2

NSNT (ξ′)2
, (81)

where z′
(S) and z′

(T ) stand for the ghost random variables taking values from the domain source
Z(S) and the target domain Z(T ), respectively.

Subsequently, according to (80) and (81), we have for any ξ′ > 0,

Pr′
{∣∣τ(E′

(T )
NT
f̂ − E

(T )
NT
f̂) + (1− τ)(E′

(S)
NS
f̂ − E

(S)
NS
f̂)
∣∣ > ξ′

2

}
≥
(
1{∣∣τ(E(T )f̂−E

(T )
NT

f̂)+(1−τ)(E(S)f̂−E
(S)
NS

f̂)
∣∣>ξ′}

)(
1− 4(b− a)2

NSNT (ξ′)2

)
. (82)

According to (77), (79) and (82), by letting
4(b− a)2

NSNT (ξ′)2
≤ 1

2
,

and taking the expectation with respect to ZNS1 and Z
NT
1 , we have for any ξ′ > 0,

Pr
{
|E(T )f̂ − Eτ f̂ | > ξ

}
≤Pr

{∣∣τ(E(T )f̂ − E
(T )
NT
f̂) + (1− τ)(E(S)f̂ − E

(S)
NS
f̂)
∣∣ > ξ′

}
≤2Pr

{∣∣τ(E′
(T )
NT
f̂ − E

(T )
NT
f̂) + (1− τ)(E′

(S)
NS
f̂ − E

(S)
NS
f̂)
∣∣ > ξ′

2

}
=2Pr

{∣∣E′τ f̂ − Eτ f̂
∣∣ > ξ′

2

}
(83)
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with ξ′ = ξ − (1− τ)DF (S, T ). This completes the proof. �

We are now ready to prove Theorem C.1.

C.6.3 Proof of Theorem C.1

Proof of Theorem C.1. Consider {εn}Nn=1 as independent Rademacher random variables, i.e., in-
dependent {±1}-valued random variables with equal probability of taking either value. Given
{εn}NSn=1, {εn}NTn=1, Z2NS

1 and Z
2NT
1 , denote

−→ε S :=(ε1, · · · , εNS ,−ε1, · · · ,−εNS ) ∈ {±1}2NS ;
−→ε T :=(ε1, · · · , εNT ,−ε1, · · · ,−εNT ) ∈ {±1}2NT , (84)

and for any f ∈ F ,
−→
f (Z2NS

1 ) :=
(
f(z′1), · · · , f(z′NS ), f(z1), · · · , f(zNS )

)
∈ [a, b]2NS ;

−→
f (Z2NT

1 ) :=
(
f(z′1), · · · , f(z′NT ), f(z1), · · · , f(zNT )

)
∈ [a, b]2NT . (85)

We also denote

Z :=
{
Z

2NT
1 ,Z2NS

1

}
∈
(
Z(T )

)2NT × (Z(S)
)2NS

;

−→ε :=
(−→ε T , · · · ,−→ε T︸ ︷︷ ︸

NS

,−→ε S , · · · ,−→ε S︸ ︷︷ ︸
NT

)
∈ {±1}4NSNT ;

−→
f
(
Z
)

:=
(−→
f (Z

2NT
1 ), · · · ,−→f (Z

2NT
1 )︸ ︷︷ ︸

NS

,
−→
f (Z2NS

1 ), · · · ,−→f (Z2NS
1 )︸ ︷︷ ︸

NT

)
∈ [a, b]4NSNT . (86)

According to (6), (79) and Theorem C.4, for any τ ∈ [0, 1) and given an arbitrary ξ > (1 −
τ)DF (S, T ), we have for any NSNT ≥ 8(b−a)2

(ξ′)2 with ξ′ = ξ − (1− τ)DF (S, T ),

Pr

{
sup
f∈F

∣∣E(T )f − Eτf
∣∣ > ξ

}

≤2Pr

{
sup
f∈F

∣∣E′τf − Eτf
∣∣ > ξ′

2

}
(by Theorem C.4)

=2Pr

{
sup
f∈F

∣∣∣ τ
NT

NT∑
n=1

(
f(z′

(T )
n )− f(z(T )

n )
)

+
1− τ
NS

NS∑
n=1

(
f(z′

(S)
n )− f(z(S)

n )
)∣∣∣ > ξ′

2

}

=2Pr

{
sup
f∈F

∣∣∣ τ
NT

NT∑
n=1

εn
(
f(z′

(T )
n )− f(z(T )

n )
)

+
1− τ
NS

NS∑
n=1

εn
(
f(z′

(S)
n )− f(z(S)

n )
)∣∣∣ > ξ′

2

}

=2Pr

{
sup
f∈F

∣∣∣ τ

2NT

〈−→ε T ,−→f (Z
2NT
1 )

〉
+

1− τ
2NS

〈−→ε S ,−→f (Z2NS
1 )

〉∣∣∣ > ξ′

4

}
. (87)

Given a τ ∈ [0, 1), fix a realization of Z and let Λ be a ξ′/8-radius cover of F with respect to the
`τ1(Z) norm. Since F is composed of the bounded functions with the range [a, b], we assume that
the same holds for any h ∈ Λ. If f0 is the function that achieves the following supremum

sup
f∈F

∣∣∣ τ

2NT

〈−→ε T ,−→f (Z
2NT
1 )

〉
+

1− τ
2NS

〈−→ε S ,−→f (Z2NS
1 )

〉∣∣∣ > ξ′

4
,

there must be an h0 ∈ Λ that satisfies that

τ

2NT

NT∑
n=1

(
|f0(z′

(T )
n )− h0(z′

T
n )|+ |f0(z(T )

n )− h0(z(T )
n )|

)
+

1− τ
2NS

NS∑
n=1

(
|f0(z′

(S)
n )− h0(z′

S
n)|+ |f0(z(S)

n )− h0(z(S)
n )|

)
<
ξ′

8
,
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and meanwhile, ∣∣∣ τ

2NT

〈−→ε T ,−→h 0(Z
2NT
1 )

〉
+

1− τ
2NS

〈−→ε S ,−→h 0(Z2NS
1 )

〉∣∣∣ > ξ′

8
.

Therefore, for the realization of Z, we arrive at

Pr

{
sup
f∈F

∣∣∣ τ

2NT

〈−→ε T ,−→f (Z
2NT
1 )

〉
+

1− τ
2NS

〈−→ε S ,−→f (Z2NS
1 )

〉∣∣∣ > ξ′

4

}

≤Pr

{
sup
h∈Λ

∣∣∣ τ

2NT

〈−→ε T ,−→h (Z
2NT
1 )

〉
+

1− τ
2NS

〈−→ε S ,−→h (Z2NS
1 )

〉∣∣∣ > ξ′

8

}
. (88)

Moreover, we denote the event

A :=

{
Pr

{
sup
h∈Λ

∣∣∣ τ

2NT

〈−→ε T ,−→h (Z
2NT
1 )

〉
+

1− τ
2NS

〈−→ε S ,−→h (Z2NS
1 )

〉∣∣∣ > ξ′

8

}}
,

and let 1A be the characteristic function of the event A. By Fubini’s Theorem, we have

Pr{A} = E
{

E−→ε
{
1A
}∣∣ Z}

=E

{
Pr

{
sup
h∈Λ

∣∣∣ τ

2NT

〈−→ε T ,−→h (Z
2NT
1 )

〉
+

1− τ
2NS

〈−→ε S ,−→h (Z2NS
1 )

〉∣∣∣ > ξ′

8

} ∣∣ Z} . (89)

Fix a realization of Z again. According to (57), (84), (85) and Theorem C.3, for any τ ∈ [0, 1) and
given an arbitrary ξ′ > 0, we have for any NSNT ≥ 8(b− a)2/(ξ′)2,

Pr

{
sup
h∈Λ

∣∣∣ τ

2NT

〈−→ε T ,−→h (Z
2NT
1 )

〉
+

1− τ
2NS

〈−→ε S ,−→h (Z2NS
1 )

〉∣∣∣ > ξ′

8

}
≤|Λ|max

h∈Λ
Pr

{∣∣∣ τ

2NT

〈−→ε T ,−→h (Z
2NT
1 )

〉
+

1− τ
2NS

〈−→ε S ,−→h (Z2NS
1 )

〉∣∣∣ > ξ′

8

}
=N (F , ξ′/8, `τ1(Z)) max

h∈Λ
Pr

{∣∣E′τh− Eτh
∣∣ > ξ′

4

}
≤N (F , ξ′/8, `τ1(Z)) max

h∈Λ
Pr

{
|Ẽh− E′τh|+ |Ẽh− Eτh| >

ξ′

4

}
≤2N (F , ξ′/8, `τ1(Z)) max

h∈Λ
Pr

{∣∣Ẽh− Eτh
∣∣ > ξ′

8

}
≤4N (F , ξ′/8, `τ1(Z)) exp

{
− NSNT (ξ − (1− τ)DF (S, T ))

2

32(b− a)2 ((1− τ)2NT + τ2NS)

}
, (90)

where Ẽh := τE(T )h+ (1− τ)E(S)h.

The combination of (58), (87), (88) and (90) leads to the following result: for any τ ∈ [0, 1) and
given an arbitrary ξ > (1− τ)DF (S, T ), we have for any NSNT ≥ 8(b− a)2/(ξ′)2,

Pr

{
sup
f∈F

∣∣E(T )f − Eτf
∣∣ > ξ

}

≤8EN (F , ξ′/8, `τ1(Z)) exp

{
− NSNT (ξ − (1− τ)DF (S, T ))

2

32(b− a)2 ((1− τ)2NT + τ2NS)

}

≤8N τ
1 (F , ξ′/8, 2(NS +NT )) exp

{
− NSNT (ξ − (1− τ)DF (S, T ))

2

32(b− a)2 ((1− τ)2NT + τ2NS)

}
. (91)

According to (91), letting

ε := 8N τ
1 (F , ξ′/8, 2(NS +NT )) exp

{
− NSNT (ξ − (1− τ)DF (S, T ))

2

32(b− a)2 ((1− τ)2NT + τ2NS)

}
,
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we have given an arbitrary ξ > (1− τ)DF (S, T ) and for any NSNT ≥ 8(b−a)2

(ξ′)2 , with probability at
least 1− ε,

sup
f∈F

∣∣Eτf − E(T )f
∣∣ ≤(1− τ)DF (S, T ) +

(
lnN τ

1 (F , ξ′/8, 2(NS +NT ))− ln(ε/8)
NSNT

32(b−a)2((1−τ)2NT+τ2NS)

) 1
2

.

This completes the proof. �

D Comparison with Prior Works

There have been some previous works on the theoretical analysis of domain adaptation with multiple
sources (cf. [13, 14, 15, 16, 17, 20]) and domain adaptation combining source and target data (cf.
[13, 18]).

In [14, 15], the function class and the loss function are assumed to satisfy the conditions of “α-
triangle inequality” and “uniform convergence bound”. Moreover, one has to get some prior infor-
mation about the disparity between any source domain and the target domain. Under these condi-
tions, some generalization bounds were obtained by using the classical techniques developed under
the assumption of same distribution.

Mansour et al. [16] proposed another framework to study the problem of domain adaptation with
multiple sources. In this framework, one has to know some prior knowledge including the exact
distributions of the source domains and the hypothesis function with a small loss on each source
domain. Furthermore, the target domain and the hypothesis function on the target domain were
deemed as the mixture of the source domains and the mixture of the hypothesis functions on the
source domains, respectively. By introducing the Rényi divergence, Mansour et al. [17] extended
their previous work [16] to a more general setting, where the distribution of the target domain can
be arbitrary and one only needs to know an approximation of the exact distribution of each source
domain. Ben-David et al. [13] also discussed the situation of domain adaptation with the mixture of
source domains.

In [13, 18], domain adaptation combining source and target data was originally proposed and mean-
while a theoretical framework was presented to analyze its properties for the classification tasks
by introducing the H-divergence. Under the condition of “λ-close”, the authors applied the clas-
sical techniques developed under the assumption of same distribution to achieve the generalization
bounds based on the VC dimension.

Mansour et al. [20] introduced the discrepancy distance disc`(D(S),D(T )) to measure the difference
between domains and this quantity can be used in both classification and regression tasks. By
applying the classical results of statistical learning theory, the authors obtained the generalization
bounds based on the Rademacher complexity.

The framework proposed in this paper is suitable for various kinds of tasks including classification
and regression, because there is no assumption on the characteristics of domains and the function
class except that the function class is composed of bounded functions.

We use the integral probability metric DF (S, T ) to measure the difference between Z(S) and Z(T ).
We show that this quantity actually is a (semi)metric for any non-trivial function class F and
can be bounded by the summation of the discrepancy distance disc`(D(S),D(T )) and the quan-
tity Q(T )

G (g
(S)
∗ , g

(T )
∗ ), which measure the difference between the input-space distributions D(S) and

D(T ) and the difference between labeling functions g(S)
∗ and g(T )

∗ , respectively.

Instead of directly applying the classical techniques, based on the integral probability metric, the
generalization bounds for the two types of domain adaptation are derived by using the specific
Hoeffding-type deviation inequality and symmetrization inequality for the corresponding kind of
domain adaptation, respectively. By the resultant generalization bounds, we can provide a rigor-
ous theoretical analysis of the asymptotic convergence and the rate of convergence of the learning
process for either kind of domain adaptation.

Based on the derived generalization bounds, we provide a rigorous theoretical analysis of the asymp-
totic convergence and the rate of convergence of the learning process for either kind of domain adap-
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tation. We also consider the choices of w and τ that affect the rate of convergence of the learning
processes for the two types of domain adaptation, respectively. The numerical experiments support
our results as well.
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