
Generalization Bounds for Domain Adaptation

Chao Zhang1, Lei Zhang2, Jieping Ye1,3

1Center for Evolutionary Medicine and Informatics, The Biodesign Institute,
and 3Computer Science and Engineering, Arizona State University, Tempe, USA

{czhan117,jieping.ye}@asu.edu
2School of Computer Science and Technology,

Nanjing University of Science and Technology, Nanjing, P.R. China
zhanglei.njust@yahoo.com.cn

Abstract

In this paper, we provide a new framework to study the generalization bound of
the learning process for domain adaptation. We consider two kinds of representa-
tive domain adaptation settings: one is domain adaptation with multiple sources
and the other is domain adaptation combining source and target data. In particu-
lar, we use the integral probability metric to measure the difference between two
domains. Then, we develop the specific Hoeffding-type deviation inequality and
symmetrization inequality for either kind of domain adaptation to achieve the cor-
responding generalization bound based on the uniform entropy number. By using
the resultant generalization bound, we analyze the asymptotic convergence and the
rate of convergence of the learning process for domain adaptation. Meanwhile, we
discuss the factors that affect the asymptotic behavior of the learning process. The
numerical experiments support our results.

1 Introduction

In statistical learning theory, one of the major concerns is to obtain the generalization bound of a
learning process, which measures the probability that a function, chosen from a function class by an
algorithm, has a sufficiently small error (cf. [1,2]). Generalization bounds have been widely used to
study the consistency of the learning process [3], the asymptotic convergence of empirical process
[4] and the learnability of learning models [5]. Generally, there are three essential aspects to obtain
generalization bounds of a specific learning process: complexity measures of function classes, devi-
ation (or concentration) inequalities and symmetrization inequalities related to the learning process
(cf. [3, 4, 6, 7]).

It is noteworthy that the aforementioned results of statistical learning theory are all built under the
assumption that training and test data are drawn from the same distribution (or briefly called the
assumption of same distribution). This assumption may not be valid in many practical applications
such as speech recognition [8] and natural language processing [9] in which training and test data
may have different distributions. Domain adaptation has recently been proposed to handle this
situation and it is aimed to apply a learning model, trained by using the samples drawn from a
certain domain (source domain), to the samples drawn from another domain (target domain) with a
different distribution (cf. [10, 11, 12, 13]).

This paper is mainly concerned with two variants of domain adaptation. In the first variant, the
learner receives training data from several source domains, known as domain adaptation with multi-
ple sources (cf. [14, 15, 16, 17]). In the second variant, the learner minimizes a convex combination
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of empirical source and target risk, termed as domain adaptation combining source and target data
(cf. [13, 18])1.

1.1 Overview of Main Results

In this paper, we present a new framework to study generalization bounds of the learning processes
for domain adaptation with multiple sources and domain adaptation combining source and target
data, respectively. Based on the resultant bounds, we then study the asymptotic behavior of the
learning process for the two kinds of domain adaptation, respectively. There are three major aspects
in the framework: the quantity that measures the difference between two domains, the deviation
inequalities and the symmetrization inequalities that are both designed for the situation of domain
adaptation2.

Generally, in order to obtain the generalization bounds of a learning process, it is necessary to obtain
the corresponding deviation (or concentration) inequalities. For either kind of domain adaptation,
we use a martingale method to develop the related Hoeffding-type deviation inequality. Moreover,
in the situation of domain adaptation, since the source domain differs from the target domain, the
desired symmetrization inequality for domain adaptation should incorporate some quantity to re-
flect the difference. We then obtain the related symmetrization inequality incorporating the integral
probability metric that measures the difference between the distributions of the source and the target
domains.

Next, we present the generalization bounds based on the uniform entropy number for both kinds of
domain adaptation. Finally, based on the resultant bounds, we give a rigorous theoretic analysis to
the asymptotic convergence and the rate of convergence of the learning processes for both types of
domain adaptation. Meanwhile, we give a comparison with the related results under the assumption
of same distribution. We also present numerical experiments to support our results.

1.2 Organization of the Paper

The rest of this paper is organized as follows. Section 2 introduces the problems studied in this
paper. Section 3 introduces the integral probability metric that measures the difference between the
distributions of two domains. We introduce the uniform entropy number for the situation of multiple
sources in Section 4. In Section 5, we present the generalization bounds for domain adaptation with
multiple sources, and then analyze the asymptotic behavior of the learning process for this type of
domain adaptation. The last section concludes the paper. In the supplement (part A), we discuss the
relationship between the integral probability metric DF (S, T ) and the other quantities proposed in
the existing works including the H-divergence and the discrepancy distance. Proofs of main results
of this paper are provided in the supplement (part B). We study domain adaptation combining source
and target data in the supplement (part C) and then give a comparison with the existing works on the
theoretical analysis of domain adaptation in the supplement (part D).

2 Problem Setup

We denoteZ(Sk) := X (Sk)×Y(Sk) ⊂ RI×RJ (1 ≤ k ≤ K) andZ(T ) := X (T )×Y(T ) ⊂ RI×RJ
as the k-th source domain and the target domain, respectively. Set L = I + J . Let D(Sk) and
D(T ) stand for the distributions of the input spaces X (Sk) (1 ≤ k ≤ K) and X (T ), respectively.
Denote g(Sk)

∗ : X (Sk) → Y(Sk) and g
(T )
∗ : X (T ) → Y(T ) as the labeling functions of Z(Sk)

(1 ≤ k ≤ K) and Z(T ), respectively. In the situation of domain adaptation with multiple sources,
the distributions D(Sk) (1 ≤ k ≤ K) and D(T ) differ from each other, or g(Sk)

∗ (1 ≤ k ≤ K) and
g

(T )
∗ differ from each other, or both of the cases occur. There are sufficient amounts of i.i.d. samples

1Due to the page limitation, the discussion on domain adaptation combining source and target data is pro-
vided in the supplement (part C).

2Due to the page limitation, we only present the generalization bounds for domain adaptation with multiple
sources and the discussions of the corresponding deviation inequalities and symmetrization inequalities are
provided in the supplement (part B) along with the proofs of main results.
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ZNk1 = {z(k)
n }Nkn=1 drawn from each source domain Z(Sk) (1 ≤ k ≤ K) but little or no labeled

samples drawn from the target domain Z(T ).

Given w = (w1, · · · , wK) ∈ [0, 1]K with
∑K
k=1 wk = 1, let gw ∈ G be the function that minimizes

the empirical risk

E(S)
w (` ◦ g) =

K∑
k=1

wkE
(Sk)
Nk

(` ◦ g) =

K∑
k=1

wk
Nk

Nk∑
n=1

`(g(x(k)
n ),y(k)

n ) (1)

over G with respect to sample sets {ZNk1 }Kk=1, and it is expected that gw will perform well on the
target expected risk:

E(T )(` ◦ g) :=

∫
`(g(x(T )),y(T ))dP(z(T )), g ∈ G, (2)

i.e., gw approximates the labeling g(T )
∗ as precisely as possible.

In the learning process of domain adaptation with multiple sources, we are mainly interested in the
following two types of quantities:

• E(T )(` ◦ gw) − E
(S)
w (` ◦ gw), which corresponds to the estimation of the expected risk in

the target domain Z(T ) from a weighted combination of the empirical risks in the multiple
sources {Z(Sk)}Kk=1;

• E(T )(` ◦ gw) − E(T )(` ◦ g̃∗), which corresponds to the performance of the algorithm for
domain adaptation with multiple sources,

where g̃∗ ∈ G is the function that minimizes the expected risk E(T )(` ◦ g) over G.

Recalling (1) and (2), since
E(S)
w (` ◦ g̃∗)− E(S)

w (` ◦ gw) ≥ 0,

we have

E(T )(` ◦ gw) =E(T )(` ◦ gw)− E(T )(` ◦ g̃∗) + E(T )(` ◦ g̃∗)
≤E(S)

w (` ◦ g̃∗)− E(S)
w (` ◦ gw) + E(T )(` ◦ gw)− ET (` ◦ g̃∗) + ET (` ◦ g̃∗)

≤2 sup
g∈G

∣∣E(T )(` ◦ g)− E(S)
w (` ◦ g)

∣∣+ E(T )(` ◦ g̃∗), (3)

and thus

0 ≤ E(T )(` ◦ gw)− E(T )(` ◦ g̃∗) ≤ 2 sup
g∈G

∣∣E(T )(` ◦ g)− E(S)
w (` ◦ g)

∣∣.
This shows that the asymptotic behaviors of the aforementioned two quantities, when the sample
numbers N1, · · · , NK go to infinity, can both be described by the supremum

sup
g∈G

∣∣E(T )(` ◦ g)− E(S)
w (` ◦ g)

∣∣, (4)

which is the so-called generalization bound of the learning process for domain adaptation with
multiple sources.

For convenience, we define the loss function class

F := {z 7→ `(g(x),y) : g ∈ G}, (5)

and call F as the function class in the rest of this paper. By (1) and (2), given sample sets {ZNk1 }Kk=1

drawn from the multiple sources {Z(Sk)}Kk=1 respectively, we briefly denote for any f ∈ F ,

E(T )f :=

∫
f(z(T ))dP(z(T )) ; E(S)

w f :=

K∑
k=1

wk
Nk

Nk∑
n=1

f(z(k)
n ). (6)

Thus, we can equivalently rewrite the generalization bound (4) for domain adaptation with multiple
sources as

sup
f∈F

∣∣E(T )f − E(S)
w f

∣∣. (7)
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3 Integral Probability Metric

As shown in some prior works (e.g. [13, 16, 17, 18, 19, 20]), one of major challenges in the
theoretical analysis of domain adaptation is how to measure the distance between the source domain
Z(S) and the target domainZ(T ). Recall that, ifZ(S) differs fromZ(T ), there are three possibilities:
D(S) differs from D(T ), or g(S)

∗ differs from g
(T )
∗ , or both of them occur. Therefore, it is necessary

to consider two kinds of distances: the distance between D(S) and D(T ) and the distance between
g

(S)
∗ and g(T )

∗ .

In [13, 18], the H-divergence was introduced to derive the generalization bounds based on the VC
dimension under the condition of “λ-close”. Mansour et al. [20] obtained the generalization bounds
based on the Rademacher complexity by using the discrepancy distance. Both quantities are aimed
to measure the difference between two distributions D(S) and D(T ). Moreover, Mansour et al. [17]
used the Rényi divergence to measure the distance between two distributions. In this paper, we
use the following quantity to measure the difference of the distributions between the source and the
target domains:

Definition 3.1 Given two domains Z(S),Z(T ) ⊂ RL, let z(S) and z(T ) be the random variables
taking value from Z(S) and Z(T ), respectively. Let F ⊂ RZ be a function class. We define

DF (S, T ) := sup
f∈F
|E(S)f − E(T )f |, (8)

where the expectations E(S) and E(T ) are taken with respect to the distributions Z(S) and Z(T ),
respectively.

The quantity DF (S, T ) is termed as the integral probability metric that plays an important role in
probability theory for measuring the difference between the two probability distributions (cf. [23,
24, 25, 26]). Recently, Sriperumbudur et al. [27] gave the further investigation and proposed the
empirical methods to compute the integral probability metric in practice. As mentioned by Müller
[page 432, 25], the quantity DF (S, T ) is a semimetric and it is a metric if and only if the function
class F separates the set of all signed measures with µ(Z) = 0. Namely, according to Definition
3.1, given a non-trivial function class F , the quantity DF (S, T ) is equal to zero if the domains Z(S)

and Z(T ) have the same distribution.

In the supplement (part A), we discuss the relationship between the quantity DF (S, T ) and other
quantities proposed in the previous works, and then show that the quantityDF (S, T ) can be bounded
by the summation of the discrepancy distance and another quantity, which measure the difference
between the input-space distributions D(S) and D(T ) and the difference between the labeling func-
tions g(S)

∗ and g(T )
∗ , respectively.

4 The Uniform Entropy Number

Generally, the generalization bound of a certain learning process is achieved by incorporating the
complexity measure of the function class, e.g., the covering number, the VC dimension and the
Rademacher complexity. The results of this paper are based on the uniform entropy number that is
derived from the concept of the covering number and we refer to [22] for more details.

The covering number of a function class F is defined as follows:

Definition 4.1 Let F be a function class and d is a metric on F . For any ξ > 0, the covering
number of F at radius ξ with respect to the metric d, denoted by N (F , ξ, d) is the minimum size of
a cover of radius ξ.

In some classical results of statistical learning theory, the covering number is applied by letting
d be the distribution-dependent metric. For example, as shown in Theorem 2.3 of [22], one can
set d as the norm `1(ZN1 ) and then derive the generalization bound of the i.i.d. learning process
by incorporating the expectation of the covering number, i.e., EN (F , ξ, `1(ZN1 )). However, in
the situation of domain adaptation, we only know the information of source domain, while the
expectation EN (F , ξ, `1(ZN1 )) is dependent on both distributions of source and target domains

4



because z = (x,y). Therefore, the covering number is no longer applicable to our framework to
obtain the generalization bounds for domain adaptation. By contrast, uniform entropy number is
distribution-free and thus we choose it as the complexity measure of function class to derive the
generalization bounds for domain adaptation.

For clarity of presentation, we give a useful notation for the following discussion. For any 1 ≤ k ≤
K, given a sample set ZNk1 := {z(k)

n }Nkn=1 drawn from Z(Sk), we denote Z′
Nk
1 := {z′(k)

n }Nkn=1 as
the ghost-sample set drawn from Z(Sk) such that the ghost sample z′(k)

n has the same distribution as
z

(k)
n for any 1 ≤ n ≤ Nk and any 1 ≤ k ≤ K. Denoting Z2Nk

1 := {ZNk1 ,Z′
Nk
1 }. Moreover, given

any f ∈ F and any w = (w1, · · · , wK) ∈ [0, 1]K with
∑K
k=1 wk = 1, we introduce a variant of the

`1 norm:

‖f‖
`w1 ({Z2Nk

1 }Kk=1)
:=

K∑
k=1

wk
Nk

Nk∑
n=1

(
|f(z(k)

n )|+ |f(z′
(k)
n )|

)
. (9)

It is noteworthy that the variant `w1 of the `1 norm is still a norm on the functional space, which
can be easily verified by using the definition of norm, so we omit it here. In the situation of domain
adaptation with multiple sources, setting the metric d as `w1 ({Z2Nk

1 }Kk=1), we then define the uniform
entropy number of F with respect to the metric `w1 ({Z2Nk

1 }Kk=1) as

lnNw
1

(
F , ξ, 2

K∑
k=1

Nk
)

:= sup
{Z2Nk

1 }Kk=1

lnN
(
F , ξ, `w1 ({Z2Nk

1 }Kk=1)
)
. (10)

5 Domain Adaptation with Multiple Sources

In this section, we present the generalization bound for domain adaptation with multiple sources.
Based on the resultant bound, we then analyze the asymptotic convergence and the rate of conver-
gence of the learning process for such kind of domain adaptation.

5.1 Generalization Bounds for Domain Adaptation with Multiple Sources

Based on the aforementioned uniform entropy number, the generalization bound for domain adap-
tation with multiple sources is presented in the following theorem:

Theorem 5.1 Assume that F is a function class consisting of the bounded functions with the range
[a, b]. Let w = (w1, · · · , wK) ∈ [0, 1]K with

∑K
k=1 wk = 1. Then, given an arbitrary ξ >

D
(w)
F (S, T ), we have for any

(∏K
k=1Nk

)
≥ 8(b−a)2

(ξ′)2 and any ε > 0, with probability at least 1− ε,

sup
f∈F

∣∣E(S)
w f − E(T )f

∣∣ ≤ D(w)
F (S, T ) +


(

lnNw
1

(
F , ξ′/8, 2∑K

k=1Nk
)
− ln(ε/8)

)
(∏K

k=1Nk

)
32(b−a)2

(∑K
k=1 w

2
k(
∏
i6=k Ni)

)


1
2

, (11)

where ξ′ = ξ −D(w)
F (S, T ) and

D
(w)
F (S, T ) :=

K∑
k=1

wkDF (Sk, T ). (12)

In the above theorem, we show that the generalization bound supf∈F |E(T )f − E
(S)
w f | can be

bounded by the right-hand side of (11). Compared to the classical result under the assumption
of same distribution (cf. Theorem 2.3 and Definition 2.5 of [22]): with probability at least 1− ε,

sup
f∈F

∣∣ENf − Ef
∣∣ ≤ O

( lnN1

(
F , ξ,N

)
− ln(ε/8)

N

) 1
2

 (13)
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with ENf being the empirical risk with respect to the sample set ZN1 , there is a discrepancy quantity
D

(w)
F (S, T ) that is determined by the two factors: the choice of w and the quantities DF (Sk, T )

(1 ≤ k ≤ K). The two results will coincide if any source domain and the target domain match, i.e.,
DF (Sk, T ) = 0 holds for any 1 ≤ k ≤ K.

In order to prove this result, we develop the related Hoeffding-type deviation inequality and the
symmetrization inequality for domain adaptation with multiple sources, respectively. The detailed
proof is provided in the supplement (part B). By using the resultant bound (11), we can analyze the
asymptotic behavior of the learning process for domain adaptation with multiple sources.

5.2 Asymptotic Convergence

In statistical learning theory, it is well-known that the complexity of the function class is the main
factor to the asymptotic convergence of the learning process under the assumption of same distribu-
tion (cf. [3, 4, 22]).

Theorem 5.1 can directly lead to the concerning theorem showing that the asymptotic convergence
of the learning process for domain adaptation with multiple sources:

Theorem 5.2 Assume that F is a function class consisting of bounded functions with the range
[a, b]. Let w = (w1, · · · , wK) ∈ [0, 1]K with

∑K
k=1 wk = 1. If the following condition holds:

lim
N1,··· ,NK→+∞

lnNw
1

(
F , ξ′/8, 2∑K

k=1Nk
)(∏K

k=1Nk

)
32(b−a)2

(∑K
k=1 w

2
k(
∏
i6=k Ni)

) < +∞ (14)

with ξ′ = ξ −D(w)
F (S, T ), then we have for any ξ > D

(w)
F (S, T ),

lim
N1,··· ,NK→+∞

Pr
{

sup
f∈F

∣∣E(T )f − E(S)
w f

∣∣ > ξ
}

= 0. (15)

As shown in Theorem 5.2, if the choice of w ∈ [0, 1]K and the uniform entropy number
lnNw

1

(
F , ξ′/8, 2∑K

k=1Nk
)

satisfy the condition (14) with
∑K
k=1 wk = 1, the probability of the

event that “supf∈F
∣∣E(T )f − E

(S)
w f

∣∣ > ξ” will converge to zero for any ξ > D
(w)
F (S, T ), when

the sample numbers N1, · · · , NK of multiple sources go to infinity, respectively. This is partially in
accordance with the classical result of the asymptotic convergence of the learning process under the
assumption of same distribution (cf. Theorem 2.3 and Definition 2.5 of [22]): the probability of the
event that “supf∈F

∣∣Ef − ENf
∣∣ > ξ” will converge to zero for any ξ > 0, if the uniform entropy

number lnN1 (F , ξ,N) satisfies the following:

lim
N→+∞

lnN1 (F , ξ,N)

N
< +∞. (16)

Note that in the learning process of domain adaptation with multiple sources, the uniform conver-
gence of the empirical risk on the source domains to the expected risk on the target domain may not
hold, because the limit (15) does not hold for any ξ > 0 but for any ξ > D

(w)
F (S, T ). By contrast,

the limit (15) holds for all ξ > 0 in the learning process under the assumption of same distribution,
if the condition (16) is satisfied.

By Cauchy-Schwarz inequality, setting wk = Nk∑K
k=1Nk

(1 ≤ k ≤ K) minimizes the second term of
the right-hand side of (11) and then we arrive at

sup
f∈F

∣∣E(S)
w f − E(T )f

∣∣
≤
∑K
k=1NkDF (Sk, T )∑K

k=1Nk
+

 (lnNw
1 (F , ξ′/8, 2∑K

k=1Nk)− ln(ε/8)(∑K
k=1Nk

)
32(b−a)2


1
2

, (17)

which implies that setting wk = Nk∑K
k=1Nk

(1 ≤ k ≤ K) can result in the fastest rate of convergence
and our numerical experiments presented in the next section also support this point (cf. Fig. 1).
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6 Numerical Experiments

We have performed the numerical experiments to verify the theoretic analysis of the asymptotic
convergence of the learning process for domain adaptation with multiple sources. Without loss of
generality, we only consider the case of K = 2, i.e., there are two source domains and one target
domain. The experiment data are generated in the following way:

For the target domainZ(T ) = X (T )×Y(T ) ⊂ R100×R, we considerX (T ) as a Gaussian distribution
N(0, 1) and draw {x(T )

n }NTn=1 (NT = 4000) from X (T ) randomly and independently. Let β ∈ R100

be a random vector of a Gaussian distribution N(1, 5), and let the random vector R ∈ R100 be a
noise term with R ∼ N(0, 0.5). For any 1 ≤ n ≤ NT , we randomly draw β and R from N(1, 5)

and N(0, 0.01) respectively, and then generate y(T )
n ∈ Y as follows:

y(T )
n = 〈x(T )

n , β〉+R. (18)

The derived {(x(T )
n , y

(T )
n )}NTn=1 (NT = 4000) are the samples of the target domain Z(T ) and will be

used as the test data.

In the similar way, we derive the sample set {(x(1)
n , y

(1)
n )}N1

n=1 (N1 = 2000) of the source domain
Z(S1) = X (1) × Y(1) ⊂ R100 × R: for any 1 ≤ n ≤ N1,

y(1)
n = 〈x(1)

n , β〉+R, (19)

where x
(1)
n ∼ N(0.5, 1), β ∼ N(1, 5) and R ∼ N(0, 0.5).

For the source domain Z(S2) = X (2) × Y(2) ⊂ R100 × R, the samples {(x(2)
n , y

(2)
n )}N2

n=1 (N2 =
2000) are generated in the following way: for any 1 ≤ n ≤ N2,

y(2)
n = 〈x(2)

n , β〉+R, (20)

where x
(2)
n ∼ N(2, 5), β ∼ N(1, 5) and R ∼ N(0, 0.5).

In this experiment, we use the method of Least Square Regression to minimize the empirical risk

E(S)
w (` ◦ g) =

w

N1

N1∑
n=1

`(g(x(1)
n ), y(1)

n ) +
(1− w)

N2

N2∑
n=1

`(g(x(2)
n ), y(2)

n ) (21)

for different combination coefficients w ∈ {0.1, 0.3, 0.5, 0.9} and then compute the discrepancy
|E(S)
w f −E(T )

NT
f | for each N1 +N2. The initial N1 and N2 both equal to 200. Each test is repeated

30 times and the final result is the average of the 30 results. After each test, we increment both N1

and N2 by 200 until N1 = N2 = 2000. The experiment results are shown in Fig. 1.

From Fig. 1, we can observe that for any choice of w, the curve of |E(S)
w f − E(T )

NT
f | is decreasing

when N1 +N2 increases, which is in accordance with the results presented in Theorems 5.1 & 5.2.
Moreover, when w = 0.5, the discrepancy |E(S)

w f −E(T )
NT

f | has the fastest rate of convergence, and
the rate becomes slower as w is further away from 0.5. In this experiment, we set N1 = N2 that
implies that N2/(N1 + N2) = 0.5. Recalling (17), we have shown that w = N2/(N1 + N2) will
provide the fastest rate of convergence and this proposition is supported by the experiment results
shown in Fig. 1.

7 Conclusion

In this paper, we present a new framework to study the generalization bounds of the learning process
for domain adaptation. We use the integral probability metric to measure the difference between the
distributions of two domains. Then, we use a martingale method to develop the specific deviation
inequality and the symmetrization inequality incorporating the integral probability metric. Next, we
utilize the resultant deviation inequality and symmetrization inequality to derive the generalization
bound based on the uniform entropy number. By using the resultant generalization bound, we an-
alyze the asymptotic convergence and the rate of convergence of the learning process for domain
adaptation.
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Figure 1: Domain Adaptation with Multiple Sources

We point out that the asymptotic convergence of the learning process is determined by the complex-
ity of the function class F measured by the uniform entropy number. This is partially in accordance
with the classical result of the asymptotic convergence of the learning process under the assumption
of same distribution (cf. Theorem 2.3 and Definition 2.5 of [22]). Moreover, the rate of convergence
of this learning process is equal to that of the learning process under the assumption of same dis-
tribution. The numerical experiments support our results. Finally, we give a comparison with the
previous works [13, 14, 15, 16, 17, 18, 20] (cf. supplement, part D).

It is noteworthy that by Theorem 2.18 of [22], the generalization bound (11) can lead to the result
based on the fat-shattering dimension. According to Theorem 2.6.4 of [4], the bound based on the
VC dimension can also be obtained from the result (11). In our future work, we will attempt to
find a new distance between two distributions and develop the generalization bounds based on other
complexity measures, e.g., Rademacher complexities, and analyze other theoretical properties of
domain adaptation.
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