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Abstract

Symmetric positive definite (spd) matrices pervade numerous scientific disci-
plines, including machine learning and optimization. We consider the key task
of measuring distances between two spd matrices; a task that is often nontriv-
ial whenever the distance function must respect the non-Euclidean geometry of
spd matrices. Typical non-Euclidean distance measures such as the Riemannian
metric δR(X,Y ) = ‖log(Y −1/2XY −1/2)‖F, are computationally demanding and
also complicated to use. To allay some of these difficulties, we introduce a new
metric on spd matrices, which not only respects non-Euclidean geometry but also
offers faster computation than δR while being less complicated to use. We sup-
port our claims theoretically by listing a set of theorems that relate our metric to
δR(X,Y ), and experimentally by studying the nonconvex problem of computing
matrix geometric means based on squared distances.

1 Introduction

Symmetric positive definite (spd) matrices1 are remarkably pervasive in a multitude of areas, espe-
cially machine learning and optimization. Several applications in these areas require an answer to
the fundamental question: how to measure a distance between two spd matrices?

This question arises, for instance, when optimizing over the set of spd matrices. To judge con-
vergence of an optimization procedure or in the design of algorithms we may need to compute
distances between spd matrices [1–3]. As a more concrete example, suppose we wish to retrieve
from a large database of spd matrices the “closest” spd matrix to an input query. The quality of
such a retrieval depends crucially on the distance function used to measure closeness; a choice that
also dramatically impacts the actual search algorithm itself [4, 5]. Another familiar setting is that
of computing statistical metrics for multivariate Gaussian distributions [6], or more recently, quan-
tum statistics [7]. Several other applications depend on being able to effectively measure distances
between spd matrices–see e.g., [8–10] and references therein.

In many of these domains, viewing spd matrices as members of a Euclidean vector space is insuffi-
cient, and the non-Euclidean geometry conferred by a suitable metric is of great importance. Indeed,
the set of (strict) spd matrices forms a differentiable Riemannian manifold [11, 10] that is perhaps
the most studied example of a manifold of nonpositive curvature [12; Ch.10]. These matrices also
form a convex cone, and the set of spd matrices in fact serves as a canonical higher-rank symmetric
space [13]. The conic view is of great importance in convex optimization [14–16], symmetric spaces
are important in algebra and analysis [13, 17], and in optimization [14, 18], while the manifold and
other views are also widely important—see e.g., [11; Ch.6] for an overview.

1We could equally consider Hermitian matrices, but for simplicity we consider only real matrices.
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The starting point for this paper is the manifold view. For space reasons, we limit our discussion
to P(n) as a Riemannian manifold, noting that most of the discussion could also be set in terms of
Finsler manifolds. But before we go further, let us fix basic notation.

Notation. Let Sn denote the set of n × n real symmetric matrices. A matrix A ∈ Sn is called
positive (we drop the word “definite” for brevity) if

〈x, Ax〉 > 0 for all x 6= 0; also denoted as A > 0. (1)

We denote the set of n × n positive matrices by Pn. If only the non-strict inequality 〈x, Ax〉 ≥ 0
holds (for all x ∈ Rn) we say A is positive semidefinite; this is also denoted as A ≥ 0. For two
matrices A,B ∈ Sn, the operator inequality A ≥ B means that the difference A − B ≥ 0. The
Frobenius norm of a matrix X ∈ Rm×n is defined as ‖X‖F =

√
tr(XTX), while ‖X‖ denotes the

standard operator norm. For an analytic function f on C, and a diagonalizable matrix A = UΛUT ,
f(A) := Uf(Λ)UT . Let λ(X) denote the vector of eigenvalues of X (in any order) and Eig(X) a
diagonal matrix that has λ(X) as its diagonal. We also use λ↓(X) to denote a sorted (in descending
order) version of λ(X) and λ↑(X) is defined likewise. Finally, we define Eig↓(X) and Eig↑(X) as
the corresponding diagonal matrices.

Background. The set Pn is a canonical higher-rank symmetric space that is actually an open set
within Sn, and thereby a differentiable manifold of dimension n(n + 1)/2. The tangent space at a
point A ∈ Pn can be identified with Sn, so a suitable inner-product on Sn leads to the Riemannian
distance on Pn [11; Ch.6]. At the point A this metric is induced by the differential form

ds2 = ‖A−1/2dAA−1/2‖2F = tr(A−1dAA−1dA). (2)

For A,B ∈ Pn, it is known that there is a unique geodesic joining them given by [11; Thm.6.1.6]:

γ(t) := A]tB := A1/2(A−1/2BA−1/2)tA1/2, 0 ≤ t ≤ 1, (3)

and its midpoint γ(1/2) is the geometric mean of A and B. The associated Riemannian metric is

δR(A,B) := ‖log(A−1/2BA−1/2)‖F, for A,B > 0. (4)

From definition (4) it is apparent that computing δR will be computationally demanding, and requires
care. Indeed, to compute (4) we must essentially compute generalized eigenvalues of A and B. For
an application that must repeatedly compute distances between numerous pairs of matrices this
computational burden can be excessive [4]. Driven by such computational concerns, Cherian et al.
[4] introduced a symmetrized “log-det” based matrix divergence:

J(A,B) = log det
(
A+B

2

)
− 1

2 log det(AB) for A,B > 0. (5)

This divergence was used as a proxy for δR and observed that J(A,B) offers the same level of per-
formance on a difficult nearest neighbor retrieval task as δR, while being many times faster! Among
other reasons, a large part of their speedup was attributed to the avoidance of eigenvalue compu-
tations for obtaining J(A,B) or its derivatives, a luxury the δR does not permit. Independently,
Chebbi and Moahker [2] also introduced a slightly generalized version of (5) and studied some of its
properties, especially computation of “centroids” of positive matrices using their matrix divergence.

Interestingly, Cherian et al. [4] claimed that
√
J(A,B) might not be metric, whereas Chebbi and

Moahker [2] conjectured that
√
J(A,B) is a metric. We resolve this uncertainty and prove that√

J(A,B) is indeed a metric, albeit not one that embeds isometrically into a Hilbert space.

Due to space constraints, we only summarily mention several of the properties that this metric sat-
isfies, primarily to help develop intuition that motivates

√
J as a good proxy for the Riemannian

metric δR. We apply these insights to study “matrix geometric means” of set of positive matrices:
a problem also studied in [4, 2]. Both cited papers have some gaps in their claims, which we fill
by proving that even though computing the geometric mean is a nonconvex problem, we can still
compute it efficiently and optimally.
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2 The δ`d metric

The main result of this paper is Theorem 1.

Theorem 1. Let J be as in (5), and define δ`d :=
√
J . Then, δ`d is a metric on Pn.

Our proof of Theorem 1 depends on several key steps. Due to restrictions on space we cannot include
full proofs of all the results, and refer the reader to the longer article [19] instead. We do, however,
provide sketches for the crucial steps in our proof.
Proposition 2. Let A,B,C ∈ Pn. Then, (i) δ`d(I, A) = δ`d(I,Eig(A)); (ii) for P,Q ∈ GL(n,C),
δ`d(PAQ,PBQ) = δ`d(A,B); (iii) for X ∈ GL(n,C), δ`d(X∗AX,X∗BX) = δ`d(A,B);
(iv) δ`d(A,B) = δ`d(A

−1, B−1); (v) δ`d(A ⊗ B,A ⊗ C) =
√
nδ`d(B,C), where ⊗ denotes the

Kronecker or tensor product.

The first crucial result is that for positive scalars, δ`d is indeed a metric. To prove this, recall the
notion of negative definite functions (Def. 3), and a related classical result of Schoenberg (Thm. 4).
Definition 3 ([20; Def. 1.1]). Let X be a nonempty set. A function ψ : X × X → R is said to be
negative definite if for all x, y ∈ X it is symmetric (ψ(x, y) = ψ(y, x)), and satisfies the inequality∑n

i,j=1
cicjψ(xi, xj) ≤ 0, (6)

for all integers n ≥ 2, and subsets {xi}ni=1 ⊆ X , {ci}ni=1 ⊆ R with
∑n
i=1 ci = 0.

Theorem 4 ([20; Prop. 3.2, Chap. 3]). Let ψ : X × X → R be negative definite. Then, there is a
Hilbert spaceH ⊆ RX and a mapping x 7→ ϕ(x) from X → H such that we have the equality

‖ϕ(x)− ϕ(y)‖2H = ψ(x, y)− 1
2 (ψ(x, x) + ψ(y, y)). (7)

Moreover, negative definiteness of ψ is necessary for such a mapping to exist.
Theorem 5 (Scalar case). Define δ2s(x, y) := log[(x+ y)/(2

√
xy)] for scalars x, y > 0. Then,

δs(x, y) ≤ δs(x, z) + δs(y, z) for all x, y, z > 0. (8)

Proof. We show that ψ(x, y) = log
(
x+y
2

)
is negative definite. Since δ2s(x, y) = ψ(x, y) −

1
2 (ψ(x, x)+ψ(y, y)), Thm. 4 then implies the triangle inequality (8). To prove ψ is negative definite,
by [Thm. 2.2, Chap. 3, 20] we may equivalently show that e−βψ(x,y) = ((x+ y)/2)−β is a positive
definite function for β > 0, and all x, y > 0. To that end, it suffices to show that the matrix

H = [hij ] =
[
(xi + xj)

−β] , 1 ≤ i, j ≤ n,

is positive definite for every integer n ≥ 1, and positive numbers {xi}ni=1. Now, observe that

hij =
1

(xi + xj)β
=

1

Γ(β)

∫ ∞
0

e−t(xi+xj)tβ−1dt, (9)

where Γ(β) =
∫∞
0
e−ttβ−1dt is the well-known Gamma function. Thus, with fi(t) = e−txit

β−1
2 ∈

L2([0,∞)), we see that [hij ] equals the Gram matrix [〈fi, fj〉], whereby H > 0.

Using Thm. 5 we obtain the following simple but important “Minkowsi” inequality for δs.
Corollary 6. Let x, y, z > 0 be scalars, and let p ≥ 1. Then,(∑n

i=1
δps (xi, yi)

)1/p
≤
(∑n

i=1
δps (xi, zi)

)1/p
+
(∑n

i=1
δps (yi, zi)

)1/p
. (10)

Corollary 7. Let X,Y, Z > 0 be diagonal matrices. Then,

δ`d(X,Y ) ≤ δ`d(X,Z) + δ`d(Y,Z) (11)

Next, we recall a fundamental determinantal inequality.
Theorem 8 ([21; Exercise VI.7.2]). Let A,B ∈ Pn. Then,∏n

i=1
(λ↓i (A) + λ↓i (B)) ≤ det(A+B) ≤

∏n

i=1
(λ↓i (A) + λ↑i (B)). (12)
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Corollary 9. Let A,B > 0. Then,

δ`d(Eig↓(A),Eig↓(B)) ≤ δ`d(A,B) ≤ δ`d(Eig↓(A),Eig↑(B))

The final result that we need is a well-known fact from linear algebra (our own proof is in [19]).
Lemma 10 ([e.g., 22; p.58]). Let A > 0, and let B be Hermitian. There is a matrix P for which

P ∗AP = I, and P ∗BP = D, and D is diagonal. (13)

With all these theorems and lemmas in hand, we are now finally ready to prove Thm. 1.

Proof. (Theorem 1). We must prove that δ`d is symmetric, nonnegative, definite, and that is satisfies
the triangle inequality. Symmetry is immediate from definition. Nonnegativity and definiteness
follow from the strict log-concavity (on Pn) of the determinant, whereby

det
(
X+Y

2

)
≥ det(X)1/2 det(Y )1/2,

which equality iff X = Y , which in turn implies that δ`d(X,Y ) ≥ 0 with equality iff X = Y . The
only hard part is to prove the triangle inequality, a result that has eluded previous attempts [4, 2].

Let X,Y, Z > 0 be arbitrary. From Lemma 10 we know that there is a matrix P such that P ∗XP =
I and P ∗Y P = D. Since Z > 0 is arbitrary, and congruence preserves positive definiteness, we
may write just Z instead of P ∗ZP . Also, since δ`d(P ∗XP,P ∗Y P ) = δ`d(X,Y ) (see Prop. 2),
proving the triangle inequality reduces to showing that

δ`d(I,D) ≤ δ`d(I, Z) + δ`d(D,Z). (14)

Consider now the diagonal matrices D↓ and Eig↓(Z). Corollary 7 asserts the inequality

δ`d(I,D
↓) ≤ δ`d(I,Eig↓(Z)) + δ`d(D

↓,Eig↓(Z)). (15)

Prop. 2(i) implies that δ`d(I,D) = δ`d(I,D
↓) and δ`d(I, Z) = δ`d(I,Eig↓(Z)), while Cor. 9 shows

that δ`d(D↓,Eig↓(Z)) ≤ δ`d(D,Z). Combining these inequalities, we obtain (14), as desired.

Although the metric space (Pn, δ`d) has numerous fascinating properties, due to space concerns, we
do not discuss it further. Instead we discuss a connection more important to machine learning and
related areas: kernel functions arising from δ`d. Indeed, some of connections (e.g., Thm. 11) have
already been successfully applied very recently in computer vision [23].

2.1 Hilbert space embedding of δ`d

Theorem 1 shows that δ`d is a metric and Theorem 5 shows that actually for positive scalars, the
metric space (R++, δs) embeds isometrically into a Hilbert space. It is, therefore, natural to ask
whether (Pn, δ`d) also admits such an embedding?

Theorem 4 says that such a kernel exists if and only if δ2`d is negative definite; equivalently, iff

e−βδ
2
`d(X,Y ) = det(XY )β

det((X+Y )/2)β
, (16)

is a positive definite kernel for all β > 0. To verify this, it suffices to check if the matrix

Hβ = [hij ] :=
[

1
det(Xi+Xj)β

]
, 1 ≤ i, j ≤ m, (17)

is positive for every integer m ≥ 1 and arbitrary positive matrices X1, . . . , Xm.

Unfortunately, a numerical experiment (see [19]) reveals thatHβ is not always positive. This implies
that (Pd, δ`d) cannot embed isometrically into a Hilbert space. Undeterred, we still ask: For what
choices of β is Hβ positive? Surprisingly, this question admits a complete answer. Theorem 11
characterizes the values of β necessary and sufficient for Hβ to be positive. We note here that the
case β = 1 was essentially treated in [24], in the context of semigroup kernels on measures.
Theorem 11. Let X1, . . . , Xm ∈ Pn. The matrix Hβ defined by (17) is positive, if and only if

β ∈
{
j
2 : j ∈ N, and 1 ≤ j ≤ (n− 1)

}
∪
{
γ : γ ∈ R, and γ > 1

2 (n− 1)
}
. (18)
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Proof. We first prove the “if” part. Define the function fi := 1
πn/4

e−x
TXix (for 1 ≤ i ≤ m). Then,

fi ∈ L2(Rn), where the inner-product is given by the Gaussian integral

〈fi, fj〉 :=
1

πd/2

∫
Rn
e−x

T (Xi+Xj)xdx = 1
det(Xi+Xj)1/2

. (19)

From (19) it follows that H1/2 is positive. Since the Schur (elementwise) product of two positive
matrices is again positive, it follows that Hβ > 0 whenever β is an integer multiple of 1/2. To
extend the result to all β covered by (18), we need a more intricate integral representation, namely
the multivariate Gamma function, defined as [25; §2.1.2]

Γn(β) :=

∫
Pn
e− tr(A) det(A)β−(n+1)/2dA, (20)

where the integral converges for β > 1
2 (n − 1). Define for each i the function fi := ce− tr(AXi)

(c > 0 is a constant). Then, fi ∈ L2(Pn), which we equip with the inner product

〈fi, fj〉 := c2
∫
Pn
e− tr(A(Xi+Xj)) det(A)β−(n+1)/2dA = det(Xi +Xj)

−β ,

and it exists whenever β > 1
2 (n− 1). Consequently, Hβ is positive for all β defined by (18).

The “only if” part follows from deeper results in the rich theory of symmetric spaces.2 Specifically,
since Pn is a symmetric cone, and 1/ det(X) is a decreasing function on this cone, (i.e., 1/ det(X+
Y ) ≤ 1/ det(X) for all X,Y > 0), an appeal to [26; VII.3.1] grants our claim.

Remark 12. Readers versed in stochastic processes will recognize that the above result provides a
different perspective on a classical result concerning infinite divisibility of Wishart processes [27],
where the set (18) also arises as a consequence of Gindikin’s theorem [28].

At this point, it is worth mentioning the following “obvious” result.
Theorem 13. Let X be a set of positive matrices that commute with each other. Then, (X , δ`d) can
be isometrically embedded into some Hilbert space.

Proof. The proof follows because a commuting set of matrices can be simultaneously diagonalized,
and for diagonal matrices, δ2`d(X,Y ) =

∑
i δ

2
s(Xii, Yii), which is a nonnegative sum of negative

definite kernels and is therefore itself negative definite.

3 Connections between δ`d and δR

After showing that δ`d is a metric and studying its relation to kernel functions, let us now return to
our original motivation: introducing δ`d as a reasonable alternative to the widely used Riemannian
metric δR. We note here that Cherian et al. [4; 29] offer strong experimental evidence supporting
δ`d as an alternative; we offer more theoretical results.

Our theoretical results are based around showing that δ`d fulfills several properties akin to those
displayed by δR. Due to lack of space, we present only a summary of our results in Table 1, and
cite the corresponding theorems in the longer article [19] for proofs. While the actual proofs are
valuable and instructive, the key message worth noting is: both δR and δ`d express the (negatively
curved) non-Euclidean geometry of their respective metric spaces by displaying similar properties.

4 Application: computing geometric means

In this section we turn our attention to an object that perhaps connects δR and δ`d most intimately:
the operator geometric mean (GM), which is given by the midpoint of the geodesic (3), denoted as

A]B := γ(1/2) = A1/2(A−1/2BA−1/2)1/2A1/2. (21)

2Specifically, the set (18) is identical to the Wallach set which is important in the study of Hilbert spaces of
holomorphic functions over symmetric domains [26; Ch.XIII].
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Riemannian metric Ref. δ`d-metric Ref.
δR(X

∗AX,X∗BX) = δR(A,B) [11; Ch.6] δ`d(X
∗AX,X∗BX) = δ`d(A,B) Prop. 2

δR(A
−1, B−1) = δR(A,B) [11; Ch.6] δ`d(A

−1, B−1) = δ`d(A,B) Prop. 2
δR(A

t, Bt) ≤ tδR(A,B) [11; Ex.6.5.4] δ`d(A
t, Bt) ≤

√
tδ`d(A,B) [19; Th.4.6]

δR(A
s, Bs) ≤ (s/u)δR(A

u, Bu) [19; Th.4.11] δ`d(A
s, Bs) ≤

√
s/uδ`d(A

u, Bu) [19; Th.4.11]
δR(A,A]B) = δR(B,A]B) Trivial δ`d(A,A]B) = δ`d(B,A]B) Th.14
δR(A,A]tB) = tδR(A,B) [11; Th.6.1.6] δ`d(A,A]tB) ≤

√
tδ`d(A,B) [19; Th.4.7]

δR(A]tB,A]tC) ≤ tδR(B,C) [11; Th.6.1.2] δ`d(A]tB,A]tC) ≤
√
tδ`d(B,C) [19; Th.4.8]

δ2R(X,A) + δ2R(X,B)
min7→ GM [11; Ch. 6] δ2`d(X,A) + δ2`d(X,B)

min7→ GM Th.14
δR(A+X,A+ Y ) ≤ δR(X,Y ) [3] δ`d(A+X,A+ Y ) ≤ δ`d(X,Y ) [19; Th.4.9]

Table 1: Some of the similarities between δR and δ`d. All matrices are assumed to be in Pn. The
scalars t, s, u satisfy 0 < t ≤ 1, 1 ≤ s ≤ u <∞.

The GM (21) has numerous attractive properties—see for instance [30]—among these, the following
variational characterization is very important [31, 32],

A]B = argminX>0 δ2R(A,X) + δ2R(B,X). (22)

especially because it generalizes the matrix geometric mean to more than two matrices. Specifically,
this “natural” generalization is the Karcher mean (Fréchet mean) [31, 32, 11]:

GM(A1, . . . , Am) := argminX>0

∑m

i=1
δ2R(X,Ai). (23)

This multivariable generalization is in fact a well-studied difficult problem—see e.g., [33] for infor-
mation on state-of-the-art. Indeed, its inordinate computational expenses motivated Cherian et al.
[4] to study the alternative mean

GM`d(A1, . . . , Am) := argmin
X>0

φ(X) :=
∑m

i=1
δ2`d(X,Ai), (24)

which has also been more thoroughly studied by Chebbi and Moahker [2].

Although the mean (24) was previously studied in [4, 2], some crucial aspects were missing. Specif-
ically, Cherian et al. [4] only proved their solution to be a stationary point of φ(X); they did not
prove either global or local optimality. Although Chebbi and Moahker [2] showed that (24) has a
unique solution, like [4] they too only proved stationarity, neither global nor local optimality.

We fill these gaps, and we make the following main contributions below:

1. We connect (24) to the Karcher mean more closely, where in Theorem 14 we shows that
for the two matrix case both problems have the same solution;

2. We show that the unique positive solution to (24) is globally optimal; this result is particu-
larly interesting because φ(X) is nonconvex.

We begin by looking at the two variable case of GM`d (24).
Theorem 14. Let A,B > 0. Then,

A]B = argminX>0 φ(X) := δ2`d(X,A) + δ2`d(X,B). (25)

Moreover, A]B is equidistant from A and B, i.e., δ`d(A,A]B) = δ`d(B,A]B).

Proof. If A = B, then clearly X = A minimizes φ(X). Assume therefore, that A 6= B. Ignoring
the constraint X > 0 momentarily, we see that any stationary point must satisfy∇φ(X) = 0. Thus,

∇φ(X) =
(
X+A

2

)−1 1
2 +

(
X+B

2

)−1 1
2 −X

−1 = 0

=⇒ (X +A)X−1(X +B) = 2X +A+B =⇒ B = XA−1X. (26)

The latter equation is a Riccati equation that is known to have a unique, positive definite solution
given by the matrix GM (21) (see [11; Prop 1.2.13]). All that remains to show is that this GM is in
fact a local minimizer. To that end, we must show that the Hessian ∇2φ(X) > 0 at X = A]B; but
this claim is immediate from Theorem 18. SoA]B is a strict local minimum of (8), which is actually
a global minimum because it is the unique positive solution to φ(X) = 0. Finally, the equidistance
property follows after some algebraic manipulations; we omit details for brevity [19].
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Let us now turn to the general case (24). The first-order optimality condition is

∇φ(X) =
∑m

i=1

1
2

(
X+Ai

2

)−1 − 1
2mX

−1 = 0, X > 0. (27)

From (27) using Lemma 15 it can be inferred that [see also 2, 4] that any critical point X of (24) lies
in a convex, compact set specified by

(
1
m

∑m
i=1A

−1
i

)−1 � X � ( 1
m

∑m
i=1Ai

)
.

Lemma 15 ([21; Ch.5]). The map X−1 on Pn is order reversing and operator convex. That is, for
X,Y ∈ Pn, ifX ≥ Y , thenX−1 ≤ Y −1; for t ∈ [0, 1], (tX + (1− t)Y )

−1 ≤ tX−1+(1−t)Y −1.
Lemma 16 ([19]). Let A,B,C,D ∈ Pn, so that A ≥ B and C ≥ D. Then, A⊗ C ≥ B ⊗D.

Lemma 17 (Uniqueness [2]). The nonlinear equation (27) has a unique positive solution.

Using the above results, we can finally prove the main theorem of this section.

Theorem 18. Let X be a matrix satisfying (27). Then, it is the unique global minimizer of (24).

Proof. The objective function φ(X) (24) has only one positive stationary point, which follows from
Lemma 17. Let X be this stationary point satisfying (27). We show that X is actually a local
minimum; global optimality is immediate from uniqueness of X .

To show local optimality, we prove that the Hessian ∇2φ(X) > 0. Ignoring constants, showing
positivity of the Hessian reduces to proving that

mX−1 ⊗X−1 −
∑m

i=1

1
2

(
X+Ai

2

)−1 ⊗ (X+Ai
2

)−1
> 0. (28)

Now replace mX−1 in (28) using the condition (27); therewith inequality (28) turns into(∑m

i=1

(
X+Ai

2

)−1)⊗X−1 >∑m

i=1

(
X+Ai

2

)−1 ⊗ (X +Ai)
−1

⇐⇒
∑m

i=1

(
X+Ai

2

)−1 ⊗X−1 >∑m

i=1

(
X+Ai

2

)−1 ⊗ (X +Ai)
−1
.

(29)

From Lemma 15 we know that X−1 > (X +Ai)
−1, so that an application of Lemma 16 shows that(

X+Ai
2

)−1 ⊗ X−1 > (
X+Ai

2

)−1 ⊗ (X +Ai)
−1 for 1 ≤ i ≤ m. Summing up, we obtain (29),

which implies the desired local (and by uniqueness, global) optimality of X .

Remark 19. It is worth noting that Theorem 18 establishes that solving (27) yields the global
minimum of a nonconvex optimization problem. This result is even more remarkable because unlike
CAT(0)-metrics such as δR, the metric δ`d is not geodesically convex.

4.1 Numerical Results

We present a key numerical result to illustrate the large savings in running time when computing with
δ`d when compared with δR. To compute the Karcher mean we downloaded the “Matrix Means
Toolbox” of Bini and Iannazzo from http://bezout.dm.unipi.it/software/mmtoolbox/. In particular,
we use the file called rich.m which implements a state-of-the-art method [33].

The first plot in Fig. 1 indicate that δ`d can be around 5 times faster than δR2 and up to 50 times
faster than δR1. The second plot shows how expensive it can be to compute GM (23) as opposed
to GM`d (24)—up to 1000 times! The former was computed using the method of [33], while the
latter runs the fixed-point iteration proposed in [2] (the iteration was run until ‖∇φ(X)‖ fell below
10−10). The key point here is not that the fixed-point iteration is faster, but rather that (24) is a much
simpler problem thanks to the convenient eigenvalue free structure of δ`d.

5 Conclusions and future work

We presented a new metric on the manifold of positive definite matrices, and related it to the classical
Riemmannian metric on this manifold. Empirically, our new metric was shown to lead to large
computational gains, while theoretically, a series of theorems demonstrated how it expresses the
negatively curved non-Euclidean geometry in a manner analogous to the Riemannian metric.
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Figure 1: Running time comparisons between δR and δ`d. The left panel shows time (in seconds)
taken to compute δR and δ`d, averaged over 10 runs to reduce variance. In the plot, δR1 refers to the
implementation of δR in the matrix means toolbox [33], while δR2 is our own implementation.

At this point, there are several directions of future work opened by our paper. We mention some of
the most relevant ones below. (i) Study further geometric properties of the metric space (Pn, δ`d);
(ii) Further enrich the connections to δR, and to other (Finsler) metrics on Pn; (iii) Study properties
of geometric mean GM`d (24), including faster algorithms to compute it; (iv) Akin to [4], apply δ`d
in where δR has been so far dominant. We plan to tackle some of these problems, and hope that our
paper encourages other researchers in machine learning and optimization to also study them.
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