
A Proof of Theorem 1

Theorem 1 (restated). Assume Θ is a non-empty open connected subset of [0, 1]n and µ : Rn →
Rm is a polynomial map. With probability 1, the following holds.

• CHECKIDENTIFIABILITY returns “no”⇒ for almost all θ0 ∈ Θ and any open neighbor-
hood N(θ0) around θ0, |SΘ(θ0) ∩N(θ0)| is infinite (not locally identifiable).

• CHECKIDENTIFIABILITY returns “yes”⇒ (i) for almost all θ0 ∈ Θ, there exists an open
neighborhood N(θ0) around θ0 such that |SΘ(θ0)∩N(θ0)| = 1 (locally identifiable); and
(ii) there exists a set E ⊂ Θ with measure zero such that |SΘ\E(θ0)| is finite for every
θ0 ∈ Θ \ E (identifiability of Θ\E).

The proof of Theorem 1 crucially relies on the following lemma from [16] which holds even in the
case that µ is merely an analytic function (see Lemma 9 of [17] for a simpler proof in the case µ is
a polynomial map); it states that the Jacobian achieves its maximal rank almost everywhere in Θ.
To state this precisely, first define rmax

def
= max{rank(J(θ)) : θ ∈ Θ} and Θmax

def
= {θ ∈ Θ :

rank(J(θ)) = rmax}.
Lemma 2. The set Θ \Θmax has Lebesgue measure zero. That is, Θmax is almost all of Θ.

Proof of Theorem 1. By Lemma 2, CHECKIDENTIFIABILITY chooses a point θ̃ ∈ Θmax with prob-
ability 1. We henceforth condition on this event, so rank(J(θ̃)) = rmax.

Case 1: rank(J(θ̃)) < n (i.e., “no” is returned). In this case, we have rmax < n. We now employ
an argument from the proof of Proposition 20 of [16]. Fix any θ0 ∈ Θmax. Since Θ is open, Weyl’s
theorem implies that there is an open neighborhood U around θ0 in Θ on which rank(J(θ)) = rmax

for all θ ∈ U (i.e., rank(J(·)) is constant on U). Therefore, by the constant rank theorem, there is
an open neighborhood N(θ0) around θ0 in Θ such that µ−1(µ(θ0)) ∩N(θ0) is homeomorphic with
an open set in Rn−rmax . Therefore SΘ(θ0) ∩N(θ0) is uncountably infinite.

Case 2: rank(J(θ̃)) = n (i.e., “yes” is returned). In this case, we have rmax = n. Therefore
for every θ0 ∈ Θmax, the Jacobian J(θ0) has full column rank, and thus by the inverse function
theorem, µ is injective on a neighborhood of θ0. This in turn implies that for all θ0 ∈ Θmax, there
exists an open neighborhood N(θ0) around θ0 such that SΘ(θ0) ∩N(θ0) = {θ0}. This proves (i).

To show (ii), define E def
= Θ \ Θmax, and now claim that for every θ0 ∈ Θmax, the equivalence

class SΘmax(θ0) is finite. Observe that by (i), the set SΘmax(θ0) contains only geometrically isolated
solutions to the system of polynomial equations given by µ(θ) = µ(θ0). Therefore the claim fol-
lows immediately from Bézout’s Theorem, which implies that the number of geometrically isolated
solutions is finite.

Remark. All the models considered in this paper have moments µ which correspond to a polyno-
mial map. However, for some models (e.g., exponential families), µ will not be a polynomial map,
but rather, a general analytic function. In this case, Theorem 1 holds with one modification to (ii).
If CHECKIDENTIFIABILITY returns “yes”, then we have the following weaker guarantee in place of
(ii): SΘmax(θ0) is countable (but not necessarily finite) for all θ0 ∈ Θmax. The above proof does not
require the fact that µ is a polynomial map except in the invocation of Bézout’s Theorem. In place
of Bézout’s Theorem, we use the following argument. If SΘmax

(θ0) is uncountable, then it contains
a limit point θ∗ ∈ SΘmax

(θ0); thus for any small enough neighborhood N(θ∗) of θ∗, there is some
θ ∈ SΘmax

(θ0) ∩N(θ∗). This contradicts (i) as applied to θ∗, and thus we conclude that SΘmax
(θ0)

is countable.

B Additional results from the identifiability checker

PCFG models with d < k. The PCFG models that we’ve considered so far assume that the
number of words d is at least the number of hidden states k, which is a realistic assumption for
natural language. However, there are applications, e.g., computational biology, where the vocabulary
size d is relatively small. In this regime, identifiability becomes trickier because the data doesn’t

10

reveal as much about the hidden states, and brings us closer to the boundary between identifiability
and non-identifiability. In this section, we consider the d < k regime.

The following table gives additional identifiability results from CHECKIDENTIFIABILITY for values
of d, k, and L where d < k (recall that the results reported in Section 4.4 only considered values
where d ≥ k). In each cell, we show the (k, d, L) values for which CHECKIDENTIFIABILITY
returned “yes”; the values checked were k ∈ {3, 4, . . . , 8}, d ∈ {2, . . . , k − 1}, L ∈ {3, 4, . . . , 9}.

φ12 φ∗∗ φ123e1 φ123 φ∗∗∗e1 φ∗∗∗
PCFG None

PCFG-I None

(3, 2,≥ 6)
(4, 2,≥ 8)
(4, 3,≥ 5)
(5, 3,≥ 6)
(5, 4,≥ 4)
(6, 3,≥ 7)
(6, 4,≥ 5)
(6, 5,≥ 4)
(7, 3,≥ 8)
(7, 4,≥ 6)
(7, 5,≥ 5)
(7, 6,≥ 4)

None

(5, 4,≥ 4)
(6, 5,≥ 4)
(7, 5,≥ 4)
(7, 6,≥ 4)

(3, 2,≥ 5)
(4, 2,≥ 6)
(4, 3,≥ 4)
(5, 2,≥ 7)

(5,≥ 3,≥ 4)
(6, 2,≥ 8)
(6, 3,≥ 5)

(6,≥ 4,≥ 4)
(7, 2,≥ 9)
(7, 3,≥ 5)

(7,≥ 4,≥ 4)

PCFG-IE None

(3, 2,≥ 6)
(4, 2,≥ 8)
(4, 3,≥ 5)
(5, 3,≥ 6)
(5, 4,≥ 5)
(6, 3,≥ 7)
(6, 4,≥ 5)
(6, 5,≥ 4)
(7, 3,≥ 8)
(7, 4,≥ 6)
(7, 5,≥ 5)
(7, 6,≥ 4)

(5, 4,≥ 4)
(6, 5,≥ 4)
(7, 5,≥ 5)
(7, 6,≥ 4)

(4, 3,≥ 4)
(5, 4,≥ 4)

(6,≥ 4,≥ 4)
(7,≥ 5,≥ 4)

(3, 2,≥ 5)
(4, 2,≥ 6)
(4, 3,≥ 4)
(5, 2,≥ 7)
(5, 3,≥ 5)
(5, 4,≥ 4)
(6, 2,≥ 8)
(6, 3,≥ 5)

(6,≥ 4,≥ 4)
(7, 2,≥ 9)
(7, 3,≥ 5)

(7,≥ 4,≥ 4)

(3, 2,≥ 5)
(4, 2,≥ 6)
(4, 3,≥ 4)
(5, 2,≥ 7)

(5,≥ 3,≥ 4)
(6, 2,≥ 8)
(6, 3,≥ 5)

(6,≥ 4,≥ 4)
(7, 2,≥ 9)
(7, 3,≥ 5)

(7,≥ 4,≥ 4)

Fixed topology models. We now present some results for latent class models (LCMs) and hidden
Markov models (HMMs). While identifiability for these models are more developed than for parsing
models, we show that the identifiability checker can refine the results even for the classic models.

The parameters of an HMM are θ = (π, T,O), where π ∈ Rk specifies the initial state distribu-
tion, T ∈ Rk×k specifies the state transition probabilities, and O ∈ Rd×k specifies the emission
distributions. The probability over a sentence x is:

Pθ(x) = 1>T diag(O>xL) · · ·T diag(O>x2)T diag(O>x1)π. (5)

The parameters of an LCM are θ = (π,O)—the same as that of an HMM except with T ≡ I . The
probability over a sentence x is also given by (5) (with T = I).

The following table summarizes some identifiability results obtained by CHECKIDENTIFIABILITY
(for d ≥ k); these results have all been proven analytically in previous work (e.g., [8,10,11,20,21])
except for the identifiability of HMMs from φ∗∗.

φ12 φ∗∗ φ123e1 φ123 φ∗∗∗e1 φ∗∗∗
LCM No Yes iff L ≥ 3
HMM No Yes iff L ≥ 3

It is known that LCMs are not identifiable from φ∗∗ for any value of L [8]. However, LCMs con-
stitute a subfamily of HMMs arising from a measure zero subset of the HMM parameter space.
Therefore the identifiability of HMMs from φ∗∗ (for L ≥ 3) does not contradict this result. The
result does not appear to be covered by application of Kruskal’s theorem in previous work [11], so
we prove the result rigorously below.

11

It can be checked using (5) that

Eθ[φ12(x)] = O diag(π)T>O>

Eθ[φ34(x)] = O diag(Tπ)T>O>.

Let M1
def
= O, M2

def
= OT diag(π), and D def

= diag(Tπ) diag(π)−1. Provided that

1. π > 0,

2. O has full column rank,

3. T is invertible,

4. the ratios of probabilities (Tπ)i/πi, ranging over i ∈ [k], are distinct

(all of which are true for all but a measure zero set of parameters in Θ), the matrices M1 and M2

have full column rank and the diagonal matrix D has distinct diagonal entries. Therefore Lemma 1
can be applied with X = Eθ[φ12(x)] = M1M

>
2 and Y = Eθ[φ34(x)] = M1DM

>
2 to recover

M1 = O. It is easy to see that π and T can also easily be recovered.

Note that the fourth condition above, that Tπ be entry-wise distinct from π, is violated when a LCM
distribution is cast as an HMM distribution (by setting T = I so Tπ = π). However, the set of
HMM parameters satisfying this equation is a measure zero set.

Discussion. CHECKIDENTIFIABILITY tests for local identifiability. If it finds that a model family
is not locally identifiable, then it is not globally identifiable. However the inverse claim is not
necessarily true: if it finds that a model family is locally identifiable, it is not necessarily globally
identifiable. Theorem 1 provides the somewhat weaker guarantee that a restricted model family is
globally identifiable, where the equivalence classes SΘ\E(θ0) are only taken with respect to a subset
Θ \ E ⊆ Θ of the parameter space. However, there is a gap between this property (which is with
respect to Θ \ E) and true global identifiability (which is with respect to Θ).

On the other hand, having explicit estimators guarantees us proper global identifiability with respect
to the original model family Θ. In fact, the exceptional set E can typically be characterized explicitly.
For instance, in the case of PCFG-IE, the set Θ \ E contains those θ = (π, T,O) that satisfy full
rank conditions:

Θ \ E = {(π, T,O) : π � 0, T is invertible, O has full column rank}. (6)

Additionally, the explicit estimators also provides an explicit characterization of the elements in
the equivalence class SΘ(θ0) for each θ0 ∈ Θ \ E : the set SΘ(θ0) contains exactly k! elements
corresponding to permutation of the hidden states. Specifically,

SΘ((π, T,O)) = {(Π−1π,Π−1TΠ, OΠ) : Π is a permutation matrix. (7)

Note that this is shaper than Theorem 1, which only says that the equivalence classes have to be
finite.

C Dynamic programs

For a sentence of length L, the number of parse trees is exponential in L. Therefore, dynamic
programming is often employed to efficiently compute expectations over the parse trees, the core
computation in the E-step of the EM algorithm. In the case of PCFG, this dynamic program is
referred to as the CKY algorithm, which runs in O(L3k3) time, where k is the number of hidden
states. For simple dependency models, a O(L3) dynamic program was developed by [29]. At a
high-level, the states of the dynamic program in both cases are the spans [i : j] of the sentence (and
for the PCFG, the these states include the hidden states z[i:j] of the nodes).

In this paper, we need to compute (i) the Jacobian matrix for checking identifiability (Section 4.2)
and (ii) the mixing matrix for recovering compound parameters (Section 5.1). Both computations
can be performed efficiently with a modified version of the classic dynamic programs, which we
will describe in this section.

12

C.1 Computing the Jacobian matrix

Recall that the j-th row of the Jacobian matrix J is (the transpose of) the gradient of hj(θ) =
µj(θ) − µj(θ0). Specifically, entry Jji is the derivative of the j-th moment with respect to the i-th
parameter:

Jji =
∂hj(θ)

∂θi
(8)

=
∂Eθ[φj(x)]

∂θi
(9)

=
∑
x,z

∂pθ(x, z)

∂θi
φj(x). (10)

We can encode the sum over the exponential set of possible sentences x and parse trees z using a
directed acyclic hypergraph so that each hyperpath through the hypergraph corresponds to a (x, z)
pair. Specifically, a hypergraph consists of the following:

• a set of nodes V with a designated start node START ∈ V and an end node END ∈ V , and
• a set of hyperedges E where each hyperedge e ∈ E has a source node e.a ∈ V and a pair

of target nodes (e.b, e.c) ∈ V × V (we say that e connects e.a to e.b and e.c) and an index
e.i ∈ [n] corresponding to a component of the parameter vector θ ∈ Rn.

Define a hyperpath P to be a subset of the edges E such that:

• (START, a, b) ∈ P for some a, b ∈ V;
• if (a, b, c) ∈ P and b 6= END, then (b, d, e) ∈ P for some d, e ∈ V; and
• if (a, b, c) ∈ P and c 6= END, then (c, d, e) ∈ P for some d, e ∈ V .

Each hyperpath P , encoding (x, z), is associated with a probability equal to the product of all of the
parameters on that hyperpath:

pθ(x, z) = pθ(P) =
∏
e∈P

θe.i. (11)

In this way, the hypergraph compactly defines a distribution over exponentially many hyperpaths.

Now, we assume that each moment φj(x) corresponds to a function fj : E 7→ R mapping each
hyperedge e to a real number so that the moment is equal to the product over function values:

φj(x) =
∏
e∈P

fj(e), (12)

where P is any hyperpath that encodes the sentence x and some parse tree z (we assume that the
product is the same no matter what z is).

Now, let us write out the Jacobian matrix entries in terms of hyperpaths:

Jji =
∑
P

∑
e0∈P

∂θe0.i
∂θi

∏
e∈P,e6=e0

θe.ifj(e). (13)

The sum over hyperpaths P can be computed efficiently as follows. For each hypergraph node a,
we compute an inside score α(a), which sums over all possible partial hyperpaths terminating at
the target node, and an outside score β(a), which sums over all possible partial hyperpaths from the
source node:

α(a)
def
=

∑
e∈E:e.a=a

θe.iα(e.b)α(e.c), (14)

β(a)
def
=

∑
e∈E:e.b=a

θe.iα(e.c)β(e.a)
∑

e∈E:e.c=a

θe.iα(e.b)β(e.a). (15)

The Jacobian entry Jji can be computed as follows:

Jji =
∑
e∈E

β(e.a)α(e.b)α(e.c)I[i = e.i]. (16)

13

