
Supplementary Material

A Complete convergence analysis in the regularized case

Basic setup: We are minimizing a function f of the form F +R where F is a convex differentiable
function F : Rp ! R that satisfies a second order upper bound
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and R : Rp ! R is convex (and possibly non-differentiable) and separable across coordinates:
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In our case X is the n⇥p design matrix. If columns of X are zero mean and unit variance normalized
then entries in XTX measure the correlation between features. Also, r(x) = �|x|.
Divide the p features into B blocks of p/B features each. The algorithm we analyze is block-
greedy, a direct generalization of Shotgun (B = p in the Shotgun case). In the regularized case, the
block-greedy algorithm is

For P randomly chosen blocks in parallel do

• Within a block b, find j = jb 2 b such that |⌘j | is maximum and update
w0
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Here |⌘j | serves to quantify the guaranteed descent (based on second order upper bound) if feature
j is updates and solves the one-dimensional problem
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Note that if there is no regularization, then ⌘j = �rjF (w)/� = gj/� and this is the case we
analyzed in the main body of the paper. In the general case, by first order optimality conditions for
the above one-dimensional convex optimization problem, we have

gj + �⌘j + ⌫j = 0

where ⌫j is a subgradient of r at wj + ⌘j . That is, ⌫j 2 @r(wj + ⌘j). This implies that
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for any w0.

We first calculate the expected change in objective function following the Shotgun analysis. We will
use wb to denote wjb (similarly for ⌫b, gb)
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Define the B ⇥ B matrix M (depends on the current iteration) with entries Mb,b0 = AT
jbAjb . Then,

using r(wb + ⌘b)� r(wb)  ⌫b⌘b, we continue
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Above (with some abuse of notation), ⌘, ⌫ and g are B length vectors with components ⌘b, ⌫b and
gb respectively.

Our generalization of Shotgun’s ⇢
block

parameter is

⇢
block

= max

M2M
⇢(M)

where M is the set of all B ⇥B submatrices obtainable from XTX by selecting exactly one index
from each of the B blocks.

So, we continue
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where we used ⌫ = �g � �⌘.

Simplifying we get
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Now note that
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where the “infinity-2” norm k · k1,2 of a p-vector is, by definition, as follows: take the `1 norm
within a block and take the `

2

of the resulting values. Note that in the second step above, we moved
from a B-length ⌘ to a p length ⌘.

This gives us
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From the results in Dhillon et al. [2011] we know that f(w)� f(w?
)  Ck⌘k1 where the constant

C depends on the function F (e.g. its smoothness and Lipschitz constants) and the maximum value
kw � w?k
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can take over the course of the algorithm. Because k⌘k1  k⌘k1,2, plugging this
into (2), we get
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Defining the accuracy ↵k = F (wk)� F (w?
), we translate the above into the recurrence
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which solves to (upto a universal constant factor)
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