
Supplementary Material for paper
Adaptive Stratified Sampling for Monte-Carlo
integration of Differentiable functions
A Numerical Experiments

We provide some experiments illustrating how LMC-UCB works, and compare its efficiency to that
of crude Monte-Carlo and Uniform stratified Monte-Carlo.

We first illustrate on an example, in Figure 2, the sampling scheme. We have launched LMC-UCB on
the function displayed in Figure 2 (i.e. f(x) = sin(1/(x+0.1))+I {x > 0.9} sin(1/(x−0.7))). We
chose this function since its variations are quite heterogeneous in the domain [0, 1]. We considered
a budget of n = 100, and took as parameter A = 10. Kn and S̄ are defined as in Figure 1.

Figure 2: Position of the samples collected by LMC-UCB.

We observe that, as expected, the algorithm allocates more points in parts of the domain where the
function has larger variations and, additional to that, it spreads the points on the domain so that every
region is covered (in a similar spirit to what low-discrepancy schemes would do).

We also compare, for this function, the mean squared error of crude Monte-Carlo, uniform stratified
Monte-Carlo and LMC-UCB, for different values of n. We average the mean squared error of the
estimate returned by each method on 10000 runs. We have the following performances for each
method (displayed in Figures 3 and 4).

As expected, the mean square error decreases faster than 1/n for uniform stratified Monte-Carlo and
LMC-UCB. These methods are also more efficient than crude Monte-Carlo (up to 100 times more
efficient on this function), which makes sense since the function that we integrate is differentiable
(and then the rate for LMC-UCB and Uniform stratified Monte-Carlo is of order O(n−1−2/d)). The
gain in efficiency when compared to crude Monte-Carlo however decreases with the dimension, as
explained in Subsection 5.3. We observe that LMC-UCB is more efficient than uniform stratified
Monte-Carlo, which is a minimax-optimal strategy in the class of non-adaptive strategies.

B Poof of Lemma 1

Step 0: Decomposition of the variance Let Ω = (Ωn
k )0<n<+∞,k≤n be a sequence of partitions

of [0, 1]d in n hyper-cubic strata such that the maximum diameter of the strata in the partitions
converges to 0 when n goes to infinity. In each of those strata, there is a point.

Let n be the number of points, and k ≤ n be an index. Let an,k be a point of the stratum Ωn
k . Let

us assume that f is differentiable, that it’s derivative ∇f is continuous, and let us also assume that
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Figure 3: Mean squared error w.r.t. the integral of
f of crudeMonte-Carlo, uniform stratifiedMonte-
Carlo and LMC-UCB, in function of the budget
n. Since crude Monte-Carlo is approximately 100
times less efficient than the two other strategies,
their curves are shrinked and not very visible.

Figure 4: Zoom on the mean squared error
w.r.t. the integral of f of uniform stratified Monte-
Carlo and LMC-UCB, in function of the budget
n.
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Step 1: Convergence of σk when the size of the strata goes to 0 Let x ∈ [0, 1]d. Note that as as
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By using the result of the previous step, one has (for every sequence Ω where the diameter of the
strata converge uniformly to 0), point-wise convergence of gn,Ω(x) to
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Note that the previous result holds for any sequence of partitions (Ωn)n where the diameter of each
stratum converges uniformly to 0. One finally has, using that, that the minimum possible asymptotic
variance is bounded by
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and we thus obtain the desired result.

C Proof of Lemmas 3

Upper bound on the standard deviation: The upper confidence bounds Bk,t used in the MC-
UCB algorithm is an elaboration in the specific case of Lipschitz function on Theorem 10 in [8] (a
variant of this result is also reported in [1]). We state here a main Lemma.

Lemma 4 Assume that the function f from which the data is collected is differentiable, and that
||∇f(x)||2 is bounded by L, and n ≥ 2. Define the following event

ξ = ξK,n(δ) =
�

1≤k≤K,





�����

���� 1

S̄ − 1

S̄�

i=1

�
Xk,i −

1

S̄

S̄�

j=1

Xk,j

�2

− σk
����� ≤ 2L

√
d(
wk

S̄
)1/d

�
log(2K/δ)

S̄



 .

(9)

The probability of ξ is bounded by 1− δ.

Note that the first term in the absolute value in Equation 9 is the empirical standard deviation of arm
k computed as in Equation 8 for t samples. The event ξ plays an important role in the proofs of this
section and a number of statements will be proved on this event.
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We now provide the proof of Lemma 4.

Let us assume that f is such that ||∇f ||2 ≤ L. Let us consider a small box Ωw of size w and such
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Then by doing a simple union bound on (k, t), we obtain the result.

The following Corollary holds.

Corollary 1 On the event ξ, ∀k ≤ K,
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By concavity, we also have the following Corollary.
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k=1 Ck = n−KS̄. As the samples are always picked in sub-strata
that have the less points, it ensures that there is at least one point per sub-stratum.
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On ξ, we have because of Corollary 2 that
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D Proof of Theorem 1

Step 1: Notations Let
�
(Ωn
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on the domain, as otherwise the bound on the pseudo-risk is trivial6. Then ∃X ∈ [0, 1]d such
that X is measurable and such that

�
X 1 > 0, and such that ∀x ∈ X , ||∇f(x)||2 > 0. Then�

[0,1]d
( ||∇f(x)||2

12 )
d

(d+1) dx > 0.
Let Nn be defined as in the proof of Lemma 3, i.e. Nn as in Equation 11. As
limn→+∞ ΣKn

=
�
[0,1]d

( ||∇f(x)||2
12 )

d
(d+1) dx, we know that for any n sufficiently large, limn ΣKn

≥
1
2

�
[0,1]d

( ||∇f(x)||2
12 )

d
(d+1) dx. We thus have

n ≥ Nn ≥ n− 7(L+ 1)d3/2
�
log(Kn/δn)(1 +

1

ΣKn

)K
1

d+1n
d

d+1

≥ n− C
�
log(Knn2)K

1
d+1
n n

d
d+1 ,

with C < +∞ as
�
[0,1]d

( ||∇f(x)||2
12 )

d
(d+1) dx > 0. As by definition of the sequence of partitions,

limn→+∞
�
log(Knn2)

�
Kn

n

� 1
d+1 = 0, we know that limn→+∞

Nn

n = 1.

By Lemma 3, with probability 1− δn, ∀k, Sn,k ≥ λKn,kNn. We thus have

P
�

1

sn(x)
− 1

λn(x)
≥ 1

λn(x)
(
n

Nn
− 1)

�
≤ δn,
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which leads to
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Let X+ = {x ∈ [0, 1]d : ||∇f ||2 > 0}. By the last Equation, ∀� > 0, ∀x ∈ X+, for n sufficiently
large (∃n� such that ∀n ≥ n�), P( 1

sn(x)
− 1

λn(x)
≥ �) ≤ δn. Note that

�+∞
n=1 δn =

�+∞
n=1

1
n2 ≤ +∞.

We can thus use Borel-Cantelli’s Theorem and this gives us that on X+, lim supn
1

sn(x)
− 1

λn(x)
≤ 0

a.s..
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1

λn(x)
≤ 1

s(x) a.s. (since, by definition, sn(x) ≥ S̄
nwn,K

>

0).

From that we deduce that ∀x ∈ X+, lim supn
1

sn(x)
≤ 1

s(x) a.s.. As on [0, 1]
d − X+, s(x) = 0, we

have ∀x ∈ [0, 1]d, that lim supn
1

sn(x)
≤ 1

s(x) a.s..

Step 2: Convergence rate of the pseudo-risk. The pseudo-risk of the estimate µ̂n is

Kn�

k=1

Sn,k�

s=1

�wn,k

Sn,k

�2

σ2n,k,s = n1+2/d

�

[0,1]d
g(1)n (x)

1

sn(x)1+2/d
dx.

On [0, 1]d, g(1)n converges pointwise to ||∇f ||22
12 , and lim supn→+∞

1
sn(x)1+2/d ≤ 1

s(x)1+2/d a.s. We
finally have by Fatou’s Lemma that

�

[0,1]d
g(1)n (x)

1

sn(x)1+2/d
dx ≤

�

[0,1]d
lim sup

n

�
g(1)n (x)

1

sn(x)1+2/d

�
dx

≤
�

[0,1]d
lim sup

n
g(1)n (x) lim sup

n

1

sn(x)1+2/d
dx

≤
�

[0,1]d

||∇f ||22
12

1

s(x)1+2/d
dx.

By plugging in the last Equation the Definition of s, we conclude the proof.

E Proof of Theorems 2

Step 0: Some inequalities when the second derivative of f is bounded Let a be a point in Ω.

f admits a Taylor expansion in any point. For any x ∈ Ω have |f(x) − f(a) +∇f(a).(x − a)| ≤
M ||x− a||22 with 2M a bound of the second derivative of f .
Note also that ||∇f(x)−∇f(a)||2 ≤M ||x− a||2.
Note also that���||∇f(x)||22 − ||∇f(a)||22

��� ≤
���
�
||∇f(x)||2

�2 − ||∇f(a)||22
���

≤
���
�
||∇f(a)||2 +M ||x− a||2

�2 − ||∇f(a)||22
���

≤
���||∇f(a)||22 + 2M ||∇f(a)||2||x− a||2 +M2||x− a||22 − ||∇f(a)||22

���
≤ 2M ||∇f(a)||2||x− a||2 +M2||x− a||22.

This means that ���||∇f(x)||2 − ||∇f(a)||2
��� ≤M ||x− a||2. (12)
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Step 1: Variance on a small box Let us place us on one small box of size w and such that the
corresponding domain is Ωw =

�
[ai − w1/d

2 , ai +
w1/d

2 ]. We can do a Taylor expansion in a and
have

|f(x)− f(a) +∇f(a)(x− a)| ≤M ||x− a||22,
with 2M a bound of the second derivative of f .

Note that because of the previous equation

| 1
w

�

Ωw

�
f(u)− f(a) +∇f(a)(u− a)

�
du| ≤ 1

w

�

Ωw

|f(u)− f(a) +∇f(a)(u− a)|du

≤M ||x− a||22. (13)

This implies because ai =
� ai+

w1/d

2

ai−w1/d

2

udu that

| 1
w

�

Ωw

f(u)du− f(a)| ≤M ||x− a||22. (14)

Finally, by combining Equations 13 and 14, we get

|f(x)− 1

w

�

Ωw

f(u)du+∇f(a)(x− a)| ≤ 2M ||x− a||22.

Triangle inequality on the last Equation leads to

|f(x)− 1

w

�

Ωw

f(u)du| ≤ |∇f(a)(x− a)|+ 2M ||x− a||22.

This means by integrating that
�

Ωw

�
f(x)− 1

w

�

Ωw

f(u)du
�2

dx ≤
�

Ωw

�
|∇f(a)(x− a)|+ 2M ||x− a||22

�2

dx

≤
�

Ωw

�
∇f(a)(x− a)

�2

dx (15)

+ 2M

�

Ωw

�
∇f(a)(x− a)|

�
||x− a||22dx (16)

+ 4M2

�

Ωw

||x− a||42dx. (17)

Note first that because ai =
� ai+

w1/d

2

ai−w1/d

2

udu, we have for the term in Equation 15

�

Ωw

�
∇f(a)(x− a)

�2

dx =

�

Ωw

� d�

i=1

∇f(a)i(xi − ai)
�2

dx

= w1−1/d
d�

i=1

� ai+
w1/d

2

ai−w1/d

2

∇f(a)2i (xi − ai)2dxi

=

d�

i=1

∇f(a)2i
w1+2/d

12

=
w1+2/d

12
||∇f(a)||22. (18)

Now note that for the term in Equation 17
�

Ωw

||x− a||42dx =

�

Ωw

� d�

i=1

(xi − ai)2
�2

dx

≤ d2w1+4/d. (19)
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Now note that because of Cauchy-Schwartz and by using Equations 18 and 19, we have for the term
in Equation 16

�

Ωw

�
∇f(a)(x− a)|

�
||x− a||22dx ≤

��

Ωw

�
∇f(a)(x− a)|

�2

dx

��

Ωw

||x− a||42dx

≤ ||∇f(a)||2w1/2+1/d
�
d2w1+4/d

≤ d||∇f(a)||2w1+3/d. (20)

We thus have by combining Equations 15, 16, 17, 18, 20 and 19
�

Ωw

�
f(x)− 1

w

�

Ωw

f(u)du
�2

dx ≤ ||∇f(a)||22
12

w1+2/d + 2Md||∇f(a)||2w1+3/d + 4M2d2w1+4/d.

This leads to using Step 0 in Proof B

w2σ2 ≤ ||∇f(a)||22
12

w2+2/d + 2Md||∇f(a)||2w2+3/d + 4M2d2w2+4/d

= w2+2/d
� ||∇f(a)||2

2
√
3

+ 2Mdw1/d
�2
. (21)

In the same way, one can prove

w2σ2 ≥ w2+2/d
� ||∇f(a)||2

2
√
3

− 2Mdw1/d
�2
. (22)

Step 2: Majoration on the strata Lemma 3 tells us that with probability 1 − δ (i.e. on the event

ξ), each stratum Ωk is partitioned in Sk ≥ max

�
λp,KN, S̄

�
hyper-cubic substrata Ωk,i of same

measure, and that that there is at least one sample per stratum.The measure of those sub-strata is
thus wk,i =

wk

Sk
.

We have for stratum Ωk,i by using Equation 21

w2
k,iσ

2
k,i ≤ w

2+2/d
k,i

� ||∇f(ak,i)||2
2
√
3

+ 2Mdw
1/d
k,i

�2
,

where ak,i is the center of stratum Ωk,i.

Let ck,i be a point in Ωk,i such that ck,i = argminc∈Ωk,i
||∇f(c)||2. By using that and Equation 12,

we get that the variance on strata k that is bounded by

Sk�

i=1

w2
k,iσ

2
k,i ≤

Sk�

i=1

w
2+2/d
k,i

� ||∇f(ak,i)||2
2
√
3

+ 2Mdw
1/d
k,i

�2

≤
Sk�

i=1

w
2+2/d
k,i

� ||∇f(ck,i)||2
2
√
3

+ 3Mdw
1/d
k,i

�2

≤wk

Sk

Sk�

i=1

w
d+2
d

k,i

� ||∇f(ck,i)||2
2
√
3

+ 3Mdw
1/d
k,i

�2
.

Let us call g(x) = ||∇f(x)||2
2
√
3

+ 3Mdw
1/d
k . As wk ≥ wk,i, and ||∇f ||2 is positive, we have

Sk�

i=1

w2
k,iσ

2
k,i ≤

wk

Sk

Sk�

i=1

w
d+2
d

k,i g(ck,i)
2. (23)
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Step 3: Minoration of the number of sub-strata in each stratum By setting Equation 21 to the
power d

2(d+1) , we get on stratum Ωk that

(wkσk)
d

d+1 ≤ wk

� ||∇f(ak)||2
2
√
3

+ 2Mdw
1/d
k

� d
d+1 .

Let cmk be a point in Ωk such that cmk = argminc∈Ωk
||∇f(c)||2. Note that this implies that�K

k=1 wk

� ||∇f(cmk )||2
2
√
3

+ 3Mdw
1/d
k

� d
d+1 ≤

�
[0,1]d

� ||∇f(u)||2
2
√
3

+ 3Mdw
1/d
k

� d
d+1 du. By using that

and Equation 12, we get that ΣK =
�

k(wkσk)
d

d+1 is bounded as

ΣK ≤
K�

k=1

wk

� ||∇f(ak)||2
2
√
3

+ 2Mdw
1/d
k

� d
d+1

≤
K�

k=1

wk

� ||∇f(cmk )||2
2
√
3

+ 3Mdw
1/d
k

� d
d+1

≤
�

[0,1]d

� ||∇f(u)||2
2
√
3

+ 3Mdw
1/d
k

� d
d+1 du

≤
�

[0,1]d
g(u)

d
d+1 du. (24)

In the same way, we can deduce

ΣK ≥
�

[0,1]d

� ||∇f(u)||2
2
√
3

− 3Mdw
1/d
k

� d
d+1 du. (25)

Let cMk be a point in Ωk such that cMk = argmaxc∈Ωk
||∇f(c)||2. For a stratum k, by using

Equations 22 and 12

(wkσk)
d+2
d+1 ≥ w

d+2
d

k

� ||∇f(ak)||2
2
√
3

− 2Mdw
1/d
k

� d+2
d+1

≥ w
d+2
d

k

� ||∇f(cMk )||2
2
√
3

− 3Mdw
1/d
k

� d+2
d+1 .

As for any u > 0 and α > 0 one has (1− u)−α ≥ 1 + αu, the last Equation leads to

1

(wkσk)
d+2
d+1

≤ 1

w
d+2
d

k

� ||∇f(cMk )||2
2
√
3

+ 3Mdw
1/d
k − 3Md(w

1/d
k + w

1/d
k )

� d+2
d+1

≤ 1

w
d+2
d

k

�
g(cMk )− 6Mdw

1/d
k

� d+2
d+1

≤ 1

w
d+2
d

k g(cMk )
d

d+1
�
1− 6Mdw

1/d
k

g(cMk )

� d+2
d+1

≤ 1

w
d+2
d

k

�
g(cMk )

� d+2
d+1

�
1 + (

d+ 2

d+ 1
)
6Mdw

1/d
k

g(cMk )

�

≤ 1

w
d+2
d

k

� 1
�
g(cMk )

� d+2
d+1

+
9Mdw

1/d
k

(g(cMk ))
2d+3
d+1

�
.

As wk,i =
wk

Sk
this leads with the last Equation and Equation 24

(wk,i)
d+2
d ≤

��
[0,1]d

�
g(u)

� d
d+1 du

N

� d+2
d � 1

�
g(cMk )

� d+2
d+1

+
9Mdw

1/d
k

(g(cMk ))
2d+3
d+1

�
. (26)
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Step 4: Bound on the pseudo-risk As cMk = maxc∈Ωk
||∇f(c)||2 and ck,i =

minc∈Ωk,i
||∇f(c)||2, and as g(x) = ||∇f(x)||2

2
√
3

+ 3Mdw
1/d
k , we have for any (a, b) ≥ 0 that

g(ck,i)
a

g(cMk )b
≤ minc∈Ωk,i

g(c)a−b. By using that and Equations 23 and 26

Sk�

i=1

w2
k,iσ

2
k,i ≤

wk

Sk

��
[0,1]d

�
g(u)

� d
d+1 du

N

� d+2
d

Sk�

i=1

w
d+2
d

k,i g(ck,i)
2

≤
��

[0,1]d

�
g(u)

� d
d+1 du

N

� d+2
d wk

Sk

Sk�

i=1

� 1
�
g(cMk )

� d+2
d+1

+
9Mdw

1/d
k

(g(cMk ))
2d+3
d+1

�
g(ck,i)

2

≤
��

[0,1]d

�
g(u)

� d
d+1 du

N

� d+2
d wk

Sk

Sk�

i=1

�
min

c∈Ωk,i

g(c)
d

d+1 + min
c∈Ωk,i

9Mdw
1/d
k

(g(c))
1

d+1

�
.

Note also that by definition, g(x) ≥ 3Mdw
1/d
k . From that and the previous Equation, we deduce

Sk�

i=1

w2
k,iσ

2
k,i ≤

��
[0,1]d

�
g(u)

� d
d+1 du

N

� d+2
d wk

Sk

Sk�

i=1

�
min

c∈Ωk,i

g(c)
d

d+1 +
9Mdw

1/d
k

(3Mdw
1/d
k )

1
d+1

�

≤
��

[0,1]d

�
g(u)

� d
d+1 du

N

� d+2
d

wk

� 1

wk

�

Ωk

g(u)
d

d+1 du+ 9Mdw
1

d+1

k

�
.

Finally, by summing over all strata and because all strata have same measure wk = 1
K

K�

i=1

Sk�

i=1

w2
k,iσ

2
k,i ≤

��
[0,1]d

�
g(u)

� d
d+1 du

N

� d+2
d

K�

k=1

� �

Ωk

g(u)
d

d+1 du+ wk × 9Mdw
1

d+1

k

�

≤
��

[0,1]d

�
g(u)

� d
d+1 du

N

� d+2
d � �

[0,1]d
g(u)

d
d+1 du+ 9Md

� 1

K

� 1
d+1

�

≤ 1

N
d+2
d

�� �

[0,1]d
g(u)

d
d+1 du

� 2(d+1)
d + 9Md

� �

[0,1]d
g(u)

d
d+1 du

� d+2
d
� 1

K

� 1
d+1

�
.

(27)

Step 5: Bound on
�
[0,1]d

g(u)
d

d+1 du Note that because d
d+1 ≤ 1, we have

g(u)
d

d+1 =
� ||∇f(u)||2

2
√
3

+ 3Mdw
1/d
k

� d
d+1

≤
� ||∇f(u)||2

2
√
3

� d
d+1 + 3Mdw

1
d+1

k

We thus have
�

[0,1]d
g(u)

d
d+1 du ≤

�

[0,1]d

� ||∇f(u)||2
2
√
3

� d
d+1 du+ 3Mdw

1
d+1

k . (28)

Note also that for x ≥ 0, and as 2(d+1)
d ≤ 4, we have

(1 + x)
2(d+1)

d ≤(1 + x)4 ≤ 1 + 24 max(x, x2, x3, x4).
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Let us call Σ =
�
[0,1]d

� ||∇f(u)||2
2
√
3

� d
d+1 du. Then by applying the previous result to Equation 28, we

get

��

[0,1]d
g(u)

d
d+1 du

� 2(d+1)
d ≤

��

[0,1]d

� ||∇f(u)||2
2
√
3

� d
d+1 du+ 3Mdw

1
d+1

k

� 2(d+1)
d

= Σ
2(d+1)

d

�
1 +

3Md

Σ
w

1
d+1

k

� 2(d+1)
d

≤ Σ
2(d+1)

d + 16Σ
2(d+1)

d

�
1 +

3Md

Σ

�4

w
1

d+1

k . (29)

Note also that by Equation 12, we know that ||∇f(u)||2 ≤ ||∇f(0)||2+M
√
d. From that we deduce

that
�

[0,1]d
g(u)

d
d+1 du ≤ Σ+ 3Mdw

1
d+1

k

≤ Σ+ 3Md. (30)

Step 6: Final bound on the pseudo-risk From Equations 27, 29 and 30, we deduce

K�

i=1

Sk�

i=1

w2
k,iσ

2
k,i ≤

1

N
d+2
d

�� �

[0,1]d
g(u)

d
d+1 du

� 2(d+1)
d + 9Md

� �

[0,1]d
g(u)

d
d+1 du

� d+2
d
� 1

K

� 1
d+1

�

≤ 1

N
d+2
d

�
Σ

2(d+1)
d + 16Σ

2(d+1)
d

�
1 +

3Md

Σ

�4

w
1

d+1

k

+ 9Md
�
Σ+ 3Md

� d+2
d
� 1

K

� 1
d+1

�

≤ 1

N
d+2
d

�
Σ

2(d+1)
d + 25Md(Σ + 1)

2(d+1)
d

�
1 +

3Md

Σ

�4� 1

K

� 1
d+1

�

≤ 1

N
d+2
d

�
Σ

2(d+1)
d + C

� 1

K

� 1
d+1

�
,

where C = 25Md(Σ + 1)
2(d+1)

d

�
1 + 3Md

Σ

�4

.

Note thatN = n− (2+2 A
ΣK

+d)K
1

d+1n
d

d+1 = n−BK 1
d+1n

d
d+1 , where B = 2+2 A

ΣK
+d. From

plugging that in the last Equation, we get

K�

i=1

Sk�

i=1

w2
k,iσ

2
k,i ≤

1
�
n−BK 1

d+1n
d

d+1

� d+2
d

�
Σ

2(d+1)
d + C

� 1

K

� 1
d+1

�

≤ 1

n
d+2
d

�
1−BK 1

d+1n−
1

d+1

� d+2
d

�
Σ

2(d+1)
d + C

� 1

K

� 1
d+1

�

≤ 1

n
d+2
d

�
1 + (

d+ 2

d
)BK

1
d+1n−

1
d+1

��
Σ

2(d+1)
d + C

� 1

K

� 1
d+1

�

≤ 1

n
d+2
d

�
Σ

2(d+1)
d + 3Σ

2(d+1)
d BK

1
d+1n−

1
d+1 + C

� 1

K

� 1
d+1 + 3BCn−

1
d+1

�
,

where we use for passing from the second to the third line of the Equation that (1−u)−α ≤ 1+αu.

By it’s definition, C ≥ Σ
2(d+1)

d and this leads to

K�

i=1

Sk�

i=1

w2
k,iσ

2
k,i ≤

1

n
d+2
d

�
Σ

2(d+1)
d + 6BCK

1
d+1n−

1
d+1 + C

� 1

K

� 1
d+1

�
. (31)
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Note first that by Equation 25 and because ||∇f ||2 ≤ L we have

ΣK ≥
�

[0,1]d

� ||∇f(u)||2
2
√
3

− 3Mdw
1/d
k

� d
d+1 du

≥Σ− 3LMdw
1

d+1

k .

From that we deduce that

B ≤ 2 + 2
4(L+ 1)

√
d
�
log(K/δ)

Σ− 3LMdw
1

d+1

k

+ d

≤ 2 + 8
(L+ 1)

√
d
�
log(K/δ)

Σ
+ 2LMdw

1
d+1

k

(L+ 1)
√
d
�
log(K/δ)

Σ2
+ d

≤ 10(L+ 1)
√
d
�
log(K/δ)(1 +

1

Σ2
).

By plugging in Equation 31 the definition of C and the bound on B computed above, we obtain

K�

i=1

Sk�

i=1

w2
k,iσ

2
k,i ≤

1

n
d+2
d

�
Σ

2(d+1)
d + 650M(L+ 1)d3/2

�
1 +

3Md

Σ

�4�
log(K/δ)K

1
d+1n−

1
d+1

+ 25Md(Σ + 1)
2(d+1)

d

�
1 +

3Md

Σ

�4� 1

K

� 1
d+1

�
.

This concludes the proof.
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