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A Loss Functions and Risk Minimization in a General Supervised Learning
Setting

In this section we give a broader discussion on the minimization of the expected risk induced by a
loss function. We consider a general setting and introduce minimal assumptions on the loss function
allowing to exploit results from convex analysis and variational calculus for integral functionals [5].
Our approach follows the ideas in [12] and can be contrasted on the usual approach based on the
study of the inner risk see [2, 13, 9, 15, 14, 11] and in particular Section 3.1 in [10]. We refer to
appendix (D) for basic convex analysis tools used throughout this section.

A.1 A General Supervised Learning setting

Let (X,Y ) be two random variables with values in a measurable space X and a Polish space Y ,
respectively. We denote by µ the law of (X,Y ) on Z = X ×Y , by ρX , the law of X on X . For any
measurable function g, we have∫

µ(z)g(z) =

∫
µ(x, y)g(x, y) =

∫
dρX (x)

∫
dρy(x)g(x, y),

where ρy(x) defines a measure on Y for almost all x ∈ X , see Lemma A.3.16 in [10].

Let (G, 〈·, ·〉), be a separable Hilbert space. We introduce some function spaces naturally associated
to this setting. For p ∈ [1,∞[, let

Lp(X , ρX ) =

{
f : X → G | ‖f‖ρ,p =

(∫
‖f(x)‖p dρX (x)

) 1
p

<∞

}
,

and ‖f‖ρ = ‖f‖ρ,2 for f ∈ L2(X , dρX ). Similarly, let

Lp(Z, dµ) =

{
f : Z → G | ‖f‖µ,p =

(∫
‖g(x, y)‖p dµ(x, y)

) 1
p

<∞

}
,

and ‖f‖µ = ‖f‖µ,2 for f ∈ L2(Z, dµ).
Consider the embedding j : Lp(X , ρX )→ Lp(Z, µ) defined by

(jf)(z) = f(x), for almost all (x, y) ∈ Z,
and f ∈ Lp(X , dρ). Clearly j is linear and bounded by one. For q ∈]1,∞], such that 1

p + 1
q = 1,

let j∗ : Lq(Z, µ) → Lq(X , ρX ) be the adjoint of j. A version of the Riesz representation theorem
ensures that

(j∗g)(x) =

∫
dρy(x)g(x, y), for almost all x ∈ X ,

and g ∈ Lq(Z, dµ) (see Theorem 4.11-4.14 in [3] for the case G = R and Theorem 2.3 in [7] for
general G).
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A.2 General Nemitski Loss Functions

The class of loss functions we consider has been proposed in [12] for G = R and further used in
[10]. Here we consider the extension to the case of G being a Hilbert space, the only difference
being that continuity is no longer implied by convexity and needs to be separately assumed.

Definition 1 (Nemitski Loss Function). Given p ∈ [1,+∞[, a measurable function V : Y × G →
[0,+∞[ such that

1. for all y ∈ Y the function V (y, ·) is convex and continuous on G;

2. there are b ∈ [0,+∞[ and a : Y → [0,+∞[ such that

V (y, w) ≤ a(y) + b ‖w‖p ∀w ∈ G, y ∈ Y (1)∫
a(y)dµ(x, y) < +∞, (2)

is called a Nemitski p-loss function with respect to µ.

Loss functions satisfying the above conditions include the following classes.

1. Let C : Y → G, be a measurable map, such that∫
‖C(y)‖2 dµ(x, y) < +∞,

then V (y, w) = ‖C(y)− w‖2 is Nemitski 2-loss function with respect to µ.

2. Let V (y, ·) be Lipschitz on G with a Lipschitz constant independent of y and∫
V (y, 0)dµ(x, y) < +∞,

then V is Nemitski 1-loss function with respect to µ.

A.3 Risk Minimization

Given a loss function, the corresponding expected risk is defined by,

E(f) =

∫
V (y, f(x))dµ(x, y).

The following theorem characterizes the properties of the expected risk defined by a Nemitski loss
function and provides an explicit expression for its subdifferential.

Theorem 1. Let V : Y × G → R+, be a p-Nemitski loss function with respect to ρ. Then,

• the expected risk E : Lp(X , ρX )→ R+ is a well defined, convex continuous functional.

• Moreover v ∈ (∂E)(f) if and only if

v(x) =

∫
dρy(x)u(x, y), (3)

for almost all x ∈ X , where u(x, y) ∈ (∂V )(y, f(x)), for almost all (x, y) ∈ X × Y .

Proof. Let V̄ : Z × G → R+ be such that V̄ (z, w) = V (y, w), with w ∈ G, then the functional
Ē : Lp(Z, µ)→ R+ defined by

Ē(g) =

∫
dµ(z)V̄ (z, g(z))

is the Nemitski functional associated to V̄ and from Proposition 2 it is a well defined convex and
continuous. Moreover we have E = Ē◦j so that the expected risk is a well defined convex continuous
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functional inLp(X , ρX ) since it is a composition of a convex continuous functional and a linear map.
Then, from Proposition (1) Item 6,

(∂E)(f) = {v ∈ Lq(X , ρX ) | v(x) = (j∗u)(z), u ∈ (∂Ē)(jf)}.

and from Proposition (3) we have

(∂Ē)(g) = {u ∈ Lq(Z, µ) | u(z) ∈ (∂V̄ )(z, g(z))}

for g ∈ Lp(Z, µ), so that (3) follows combinining the above results and using the definition of
j.

A.4 Special Cases

The above setting is general enough to recover a number of different scenarios. The standard regres-
sion setting is given by Y = G = R, while more generally vector -valued and functional regression
setting correspond to Y = G where is a Euclidean and a Hilbert space respectively. More generally
the case where we have general Y and G a Hilbert space can be related to structured learning where
G can be seen as the RKHS induced by reproducing kernel KY : Y × Y → R. Binary classification
case corresponds to Y = {±1} and G = R. More generally multi-category classification in the
simplex coding framework corresponds to Y = {1, . . . , T}, T ≥ 2, G = RT−1 and in particular we
have

v ∈ (∂E)(f)⇐⇒ v(x) =
∑
y∈Y

ρy(x)u(x, y), (4)

for almost all x ∈ X , where u(x, y) ∈ (∂V )(y, f(x)) for almost all (z, y) ∈ Z .

B Relaxation Error Analysis

In this section we study the properties of the loss function we introduced in the paper and quan-
tify their relaxation error in terms of Fisher consistency and comparison inequalities. We let
Lp(X , ρX ) = {f : X → RT−1 | ‖f‖ρ,p = (

∫
‖f(x)‖p dρX (x))

1
p < ∞}, with p ∈ N and

‖f‖ρ = ‖f‖ρ,2 for f ∈ L2(X , ρX ). Given a function f ∈ Lp(X , dρX ), with some abuse of nota-
tion, we will denote byD(f) the function with valuesD(f(x)), for almost all x ∈ X . In this section
we use the tools introduced in (A).

B.1 Simplex Square Loss

Theorem 2. The expected risk of the the simplex square loss is a convex, continuous functional
E : L2(X , ρX )→ R+.

1. The minimizer of the expected risk on L2(X , ρX ) is the regression function fρ(x) =
E[cY |X = x] and the square loss is Fisher consistent.

2. Moreover for any f ∈ L2(X , ρX ) we have the following comparison inequality,

R(D(f))−R(D(fρ)) ≤
√

2(T − 1)

T
(E(f)− E(fρ)). (5)

Proof of theorem 2. Let fρ(x) = E[cY |X = x] for almost all x ∈ X , then by definition of the
simplex coding

‖fρ(x)‖2 ≤ E[‖cY ‖2 |X = x] =
∑
y∈Y
‖cy‖2 ρy(x) = 1,

so that fρ is almost surely bounded and belongs to L2(X , ρX ). Moreover,

E(fρ) = E(‖Y − fρ(X)‖2) ≤ E[‖cY ‖2]− ‖fρ‖2ρ ≤ 1,

and, for f ∈ L2(X , ρX ),

E(f) = E[‖Y − f(X)‖2] = E[‖(Y − fρ) + (fρ(X)− f(X))‖2] = ‖f − fρ‖2ρ + E(fρ), (6)
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since

−2E[〈Y − fρ, fρ − f〉ρ] =

∫
dρX (x)

〈∑
y∈Y

cyρy(x)− fρ(x), fρ(x)− f(x))

〉
= 0.

Then the expected risk induced by the square loss is a Nemitski functional on L2(X , ρX ), since it is
convex and ||cy − f(x)||2 ≤ 2(1 + ||f(x)||2), for all f ∈ L2(X , ρX ).

Then, using (4) we have that, since the square loss is differentiable, in this case there is a unique
u(x, y) ∈ (∂V )(y, f(x)) given by u(x, y) = ∇‖y − f(x)‖ = 2(cy − f(x)) and setting the (sub)
gradient to be almost surely zero we have

0 =
∑
y∈Y

ρy(x)2(cy − f(x)) =⇒ f(x) =
∑
y∈Y

ρy(x)cy.

almost surely, where u(x, y) ∈ (∂V )(y, f(x)).

Moreover, since fρ(x) =
∑
y∈Y cyρy(x) then

〈fρ(x), cy〉 = fρ(x) =
∑
y′∈Y

ρy(x) 〈cy′ , cy〉 = ρy(x)− 1

T − 1
(1− ρy(x)) =

Tρy(x)− 1

T − 1

so that
ρy(x) =

T − 1

T
〈fρ(x), cy〉+

1

T
,∀y ∈ Y. (7)

Fisher consistency easily follows from the definition of the decoding map D.

We next derive the comparison inequality (5). We begin noting that by definition,

R(D(f)) =

∫
X
dρX (x)

∑
y∈Y

1Iy 6=D(f(x)))(x, y) =

∫
X
dρX (x)

∑
y 6=D(f(x))

ρy(x) =

∫
X
dρX (x)(1−ρD(f(x))(x)))

so that

R(D(f))−R(D(fρ)) =

∫ (
ρD(fρ(x))(x)− ρD(f(x))(x)

)
dρX (x) =

∫
Xf

(
ρD(fρ(x))(x)− ρD(f(x))(x)

)
dρX (x)

(8)
where Xf = {x ∈ X | D(f(x)) 6= D(fρ(x))}. Moreover using equation (7) we can write,

R(D(f))−R(D(fρ)) =
T − 1

T

∫
Xf

〈
cD(fρ(x)) − cD(f(x)), fρ(x)

〉
dρX (x)

=
T − 1

T

∫
Xf

(
〈
cD(fρ(x)) − cD(f(x)), fρ(x)− f(x)

〉
dρX (x)

+
T − 1

T

∫
Xf

〈
cD(fρ(x)) − cD(f(x)), f(x)

〉
)dρX (x).

(9)

The last term in the above expression can be shown to be negative since〈
cD(fρ(x)), f(x)

〉
≤
〈
cD(f(x)), f(x)

〉
= max

y∈Y
〈cy, f(x)〉 , ∀x ∈ Xf , (10)

by definition of D. Then using Jensen and Cauchy-Schwarz and inequalities we have,

(R(D(f))−R(D(fρ)))
2 ≤ (T − 1)2

T 2

∫
Xf

(〈
cD(fρ(x)) − cD(f(x)), fρ(x)− f(x)

〉)2
dρX (x)

≤ (T − 1)2

T 2

∫
Xf

∥∥cD(fρ(x)) − cD(f(x))

∥∥2 ‖f(x)− fρ(x)‖2 dρX (x)

≤ (T − 1)2

T 2

2T

T − 1

∫
Xf
‖f(x)− fρ(x)‖2 dρX (x)

≤ 2(T − 1)

T

∫
‖f(x)− fρ(x)‖2 dρX (x), (11)
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where we used the fact that ||cy − c′y||2 = 2T
T−1 , for y 6= y′. The result follows plugging (6) in the

above expression in (11) and taking square roots.

B.1.1 Improved rates under noise condition

The above theorem can be improved for certain classes of distribution. Toward this end we introduce
the following notion of misclassification noise that generalizes Tsybakov’s noise condition.

Definition 2. Fix q > 0, we say that the distribution ρ satisfies the classification noise condition
with parameter Bq , if

ρX

({
x ∈ X | 0 ≤ min

j 6=D(fρ(x))

T − 1

T
(
〈
cD(fρ(x)) − cj , fρ(x)

〉
) ≤ s

})
≤ Bqsq, (12)

where s ∈ [0, 1].

If a distribution ρ is characterized by a very large q, then, for each x ∈ X , fρ(x) is arbitrarily close
to one of the coding vectors.
For T = 2, the above condition reduces to the binary Tsybakov noise. Indeed, let c1 = 1, and
c2 = −1, if fρ(x) > 0, 1

2 (c1 − c2)fρ(x) = fρ(x), and if fρ(x) < 0, 1
2 (c2 − c1)fρ(x) = −fρ(x).

We have the following result:.

Theorem 3. For each f ∈ L2(X , ρX ), if (12) holds, then we have the following inequality,

R(D(f))−R(D(fρ)) ≤ K
(

2(T − 1)

T
(E(f)− E(fρ))

) q+1
q+2

, (13)

for a constant K =
(
2
√
Bq + 1

) 2q+2
q+2 .

We start proving the following lemma:

Lemma 1. The generalised Tsybakov condition is equivalent to that for all f ∈ L2
ρX :

ρ(Xf ) ≤ Cα (R(D(f))−R(D(fρ)))
α (14)

where
α =

q

q + 1
< 1 and Cα = Bq + 1 > 1

Proof of lemma 1. Let mρ(x) = T−1
T

〈
cD(fρ(x)) − cD(f(x)), fρ(x)

〉
R(D(f))−R(D(fρ)) =

∫
Xf
mρ(x)dρX (x) ≥

∫
Xf
mρ(x)1Imρ(x)≥tdρX (x)

≥ t

(∫
X

1Imρ(x)≥tdρX (x)−
∫
X/Xf

1Imρ(x)≥tdρX (x)

)
≥ t (1− P{x ∈ X ,mρ(x) ≤ t} − P{x ∈ X/Xf})
≥ t(1−Bqtq − ρX (X/Xf ))

= t(ρX (Xf )−Bqtq)

Now taking the minimum of the above bound with respect to t, we get t∗ =
(

1
Bq+1ρX (Xf )

) 1
q

.
Finally plugging t∗ in the bound we get,

ρX (Xf ) ≤ Cα (R(D(f))−R(D(fρ)))
α (15)

where α = q
q+1 < 1 and cα = Bq + 1 > 1.
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Proof of theorem 3. Let 0 < t < 1 if t ≤ mρ(x) we have tmρ(x) ≤ m2
ρ(x) and therefore mρ(x) ≤

m2
ρ(x)

t .

R(D(f))−R(D(fρ)) =

∫
Xf
mρ(x)dρX (x)

=

∫
Xf
mρ(x)1Imρ(x)≤tdρX (x) +

∫
Xf
mρ(x)1Imρ(x)>tdρX (x)

≤ tρX (Xf ) +
1

t

∫
Xf
mρ(x)2dρX (x)

≤ tCα ((R(D(f))−R(D(fρ)))
α

+
1

t

2(T − 1)

T
(E(f)− E(fρ))

In the last inequality we used lemma 1 and the fact:.

mρ(x) =
T − 1

T

〈
cD(fρ(x)) − cD(f(x)), fρ(x)

〉
≤ T − 1

T
(
〈
cD(fρ(x)) − cD(f(x)), fρ(x)

〉
− f(x)).

Squaring both sides of the inequality and using Cauchy Schwartz:

m2
ρ(x) ≤ (

T − 1

T
)22

T

T − 1
||f(x)− fρ(x)||2 = 2

T − 1

T
(E(f)− E(fρ))

Minimizing the right hand side of the above inequality over t,we get the result (13).

B.2 SVM Loss functions

Next we consider extensions of the SVM’s hinge loss to a multiclass setting. We let

co(C) = {u ∈ RT−1 | u =
∑
y∈Y

λycy,
∑
y∈Y

λy = 1, 0 ≤ λy ≤ 1, cy ∈ C,∀y ∈ Y}.

Moreover we define the inner risk

ε : RT−1 ×KT−1 → R+, ε(w, p) =
∑
y∈Y

pyV (y, w)

for w ∈ RT−1 and p = (py)y∈Y ∈ KT−1, so that E(f) =
∫
dρX (x)ε(f(x), px), where px =

(ρy(x))y∈Y .

B.2.1 Simplex Cone SVM

Theorem 4. The expected risk of the the simplex cone hinge loss is a convex, continuous functional
E : L1(X , ρX )→ R+.

1. The minimizer of the expected risk on L1(X , ρX ) is the function fρ(x) = ck(x) where
k(x) = arg maxy′∈Y ρy′(x) for almost all x ∈ X , and the simplex cone hinge loss is
Fisher consistent.

2. Moreover for any f ∈ L1(X , ρX ) we have the following comparison inequality,

R(D(f))−R(D(fρ)) ≤ (T − 1)(E(f)− E(fρ)). (16)

Proof. We first show that V is a Nemitski loss function with p = 1. V is convex since it is the sum
of convex loss functions φ(y, w) =

∣∣∣ 1
T−1 + 〈cy, w〉

∣∣∣
+

and satisfies,

V (y, w) =
∑
j 6=y

∣∣∣∣ 1

T − 1
+ 〈cj , w〉

∣∣∣∣
+

≤
∑
j 6=y

| 1

T − 1
+〈cj , w〉 | ≤

∑
j 6=y

1

T − 1
+| 〈cj , w〉 | ≤ 1+(T−1)||w||,

where we used Cauchy Schwartz inequality and the properties of the simplex coding. Then theorem
1 in the appendix ensures that E : L1(X , ρX ) → R+ is a well defined, convex and continuous
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functional.
Define fρ(x) = ck(x), where k(x) = arg maxy∈Y ρy(x) for almost all x ∈ X .
We claim that fρ is a minimizer of E(f). Since E(f) is continuous and convex it is sufficient to show
that 0 ∈ ∂E(fρ). Let Z = X × Y, j : L1(X , ρX )→ L1(Z, ρZ) , j∗ : L∞(Z, ρZ)→ L∞(X , ρX ),
and u(x, y) ∈ ∂V (y, f(x)), u ∈ L∞(Z, ρZ). By appendix C we have,

∂E(f) = {v ∈ L∞(X , ρX ) | v(x) = j∗u(x, y) =
∑
y∈Y

ρy(x)u(x, y)}.

With some abuse of notation let w = f(x), k = k(x), py = ρy(x), uy = u(x, y), therefore we want
to show that 0 ∈ ∂E(ck). We start first computing the sub-gradient ∂V (y, w):

∂V (y, w) =
∑
y′ 6=y

∂

∣∣∣∣ 1

T − 1
+ 〈cy′ , w〉

∣∣∣∣
+

. (17)

Where we used Proposition 1.5, since V (y, w) =
∑
y′ 6=y φ(y, w) is convex continuous and

φ(y, 0) = 1
T−1 . Then for all y′ ∈ Y ,

∂

∣∣∣∣ 1

T − 1
+ 〈cy′ , w〉

∣∣∣∣
+

=


cy′ if 〈cy′ , w〉 > −1

T−1

λy′cy′ , 0 < λy′ < 1, if 〈w, cy′〉 = − 1
T−1

0, if 〈w, cy′〉 < − 1
T−1 .

Let us compute ∂V (y, ck).

∂V (y, ck) =

{∑
y′ 6=k λy′cy′ , 0 < λy′ < 1 if y = k

ck +
∑
y′∈Y/{y,k} λy′cy′ , 0 < λy′ < 1 if y 6= k.

Let uy ∈ ∂V (y, ck), let v = j∗u =
∑
y∈Y pyuy . We will use the following fact:∑

y∈Y
py

∑
y′∈Y/{y,k}

α(y′) =
∑
y∈Y

α(y)
∑

y′∈Y/{y,k}

p′y =
∑
y∈Y

(1− py − pk)α(y). (18)

Then,

v =
∑
y∈Y

py∂V (y, ck) = pk∂V (k, ck) +
∑
y 6=k

py∂V (y, ck)

= pk
∑
y 6=k

λycy +
∑
y 6=k

py(ck +
∑

y′∈Y/{y,k}

λy′cy′)

= pk
∑
y 6=k

λycy + ck
∑
y 6=k

py +
∑
y 6=k

py
∑

y′∈Y/{y,k}

λy′cy′

= pk
∑
y 6=k

λycy + (1− pk)ck +
∑
y 6=k

λy(
∑

y′∈Y/{y,k}

py′)cy

= (1− pk)ck + pk
∑
y 6=k

λycy +
∑
y 6=k

λy(1− py − pk)cy

= (1− pk)ck +
∑
y 6=k

(1− py)λycy.

Let λ∗y = 1−pk
1−py . Since pk > py , for all y ∈ Y/{k} we indeed have 0 < λ∗y < 1.

So that, setting λy to λ∗y , we get:

v∗ = (1− pk)ck +
∑
y 6=k

(1− pj)λ∗ycy = (1− pk)ak + (1− pk)
∑
y 6=k

cj

= (1− pk)ck + (1− pk)(−ck)

= 0.
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Then 0 ∈ ∂E(fρ), and the hinge loss is consistent since D(fρ) = bρ a .s.
Next we prove the comparison inequality (16). Note that the point wise risk can be written as:

ε(w, p) =
∑
y∈Y

py
∑
y′ 6=y

∣∣∣∣ 1

T − 1
+ 〈cy′ , w〉

∣∣∣∣
+

=

T∑
y=1

(1− py)

∣∣∣∣ 1

T − 1
+ 〈cy′ , w〉

∣∣∣∣
+

.

Note that the sub gradient of ∂ε(ck, p) has the same form of v. It follows that ck is a minimizer of
the point-wise risk , and ε(ck, p) = T

T−1 (1− pk). Let w be a vector in RT−1, such that D(w) = `.
Let I = {i ∈ Y| 〈ci, w〉 ≥ − 1

T−1}. ` belongs to the set I , as it is the maximum of 〈cj , w〉 and the

equation
∑T
j=1 〈cj , w〉 = 0 is always satisfied so that 〈c`, w〉 is necessarily positive.

ε(w, p)− ε(ck, p) =

T∑
i=1

(1− pi)
∣∣∣∣〈ci, w〉+

1

T − 1

∣∣∣∣
+

− (1− pk)

T∑
i=1

(〈ci, w〉+
1

T − 1
)

=
∑
i∈I

(pk − pi)(〈ai, w〉+
1

T − 1
)− (1− pk)

∑
i/∈I

(〈ci, w〉+
1

T − 1
)

=
1

T − 1
(pk − p`) +

(pk − p`) 〈c`, w〉+
∑

i∈I,i6=l

(pk − pi)(〈ci, w〉+
1

T − 1
)


− (1− pk)

∑
i/∈I

(〈ci, w〉+
1

T − 1
)

≥ 1

T − 1
(pk − p`).

The last inequality is due to the positivity of the other terms. Then if we let w = f(x), let fρ(x) =
ck(x) and p = (ρy(x))y∈Y and integrate the above inequality over over x, we obtain

1

T − 1

∫
X

[ρD(fρ)(x)(x)− ρD(f)(x))(x)]dρX (x) =
1

T − 1
(R(f)−R(fρ))

≤
∫
X

(ε(f(x), (ρ(x))y∈Y)− ε(fρ(x), (ρy(x))y∈Y)) dρX (x) = E(f)− E(fρ)

where we used (8).

B.2.2 SH-SVM Loss

Theorem 5. The expected risk of the the simplex cone hinge loss is a convex, continuous functional
E : L1 → R+. Let F = {f ∈ L1(X , ρX ) | f(x) ∈ co(C), for almost all x ∈ X}.

1. The minimizer of the expected risk on F is the function fρ(x) = ck(x) where k(x) =
arg maxy′∈Y ρy′(x) for almost all x ∈ X and the constrained single margin hinge loss is
Fisher consistent.

2. Moreover for any f ∈ F we have the following comparison inequality,

R(D(f))−R(D(fρ)) ≤ (T − 1)(E(f)− E(fρ)). (19)

Proof. We use the same notations of the proof in theorem 4, that is : w = f(x), k = k(x), py =
ρy(x), for almost x ∈ X .
Note that for w ∈ co(C), using the definition of simplex coding, we have

〈w, cy〉 = λy −
1

T − 1

∑
y′ 6=y

λy′ =
Tλy − 1

T − 1
,=⇒ − 1

T − 1
≤ 〈cy, w〉 ≤ 1, (20)
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for all y ∈ Y . Then |1− 〈cy, w〉|+ = 1−〈cy, w〉 , ∀w ∈ co(C). Then the inner risk can be written
as

ε(w, p) =
∑
y∈Y

py(1− 〈cy, w〉)

= 1−

〈
w,
∑
y∈Y

pycy

〉
.

Minimizing the inner risk ε under the convex hull constraint is equivalent to the linear programming
(LP) problem,

max
w∈Co(C)

F (w) =

〈
w,
∑
y∈Y

pycy

〉
.

It is a standard result that in an LP maximization over a convex polytope, the solution is achieved on
a vertex.

The vertices in our case are cy , so it is sufficient to find the vertex that maximizes the loss f :

max
w∈{c1...cT }

F (w).

F (cj) =

〈
cj ,
∑
y∈Y

pycy

〉
= pj −

1

T − 1

∑
y 6=j

py =
T

T − 1
pj ,∀j ∈ Y.

Let k = arg max pj , it follows that F (ck) > F (cj),∀j ∈ Y/{k}.
Thus, w∗ = ck is the minimizer of the inner risk. From inner risk to the expected risk minimization:

Then minimization of the inner risk yields a minimizer of the expected risk setting fρ such that
fρ(x) = cT and the simplex hinge loss is Fisher calibrated. We next derive the comparison inequal-
ity (19). Let w ∈ Co(C) such that D(w) = ` 6= k, w∗ = ck and p ∈ KT−1, then

ε(w, p) =
∑
y∈Y

(1− zy)py, ε(w∗, p) =
T

T − 1
(1− pk),

where zy = 〈cy, w〉, for y ∈ Y .

Note that
∑
y∈Y zy =

〈∑
y∈Y cy, w

〉
= 0 by definition of simplex coding, and

∑
y∈Y py = 1

from (21), so that

ε(w, p)− ε(w∗, p) =
∑
y∈Y

(1− zy −
T

T − 1
)py +

∑
y∈Y

(zy +
1

T − 1
)pk = −

T∑
y∈Y

(zy +
1

T − 1
)py +

∑
y∈Y

(zy +
1

T − 1
)pk

=
∑
y∈Y

(zy +
1

T − 1
)(pk − py).

We showed in (21) that − 1
T−1 ≤ zy ≤ 1, for all y and w ∈ co(C). Moreover, pk − py > 0, ∀ y,

since D(w∗) = k , and z` > 0 since D(w) = ` . Then we have,

ε(w, p)− ε(w∗, p) = (
1

T − 1
+ z`)(pk − p`) +

∑
y 6=`

(zy +
1

T − 1
)(pk − py)

≥ 1

T − 1
(pk − p`).

Then if we let w = f(x), let w∗ = fρ(x) and p = ρy(x))y∈Y and integrate over over x, we obtain

1

T − 1
R(D(f))−R(D(fρ)) =

1

T − 1

∫
X

[ρD(fρ)(x) − ρD(f)(x))](x)dρX (x) ≤ E(f)− E(fρ)

where we used (8).

9



An alternative proof is given here bypassing the inner risk minimization:

Proof. We use the same notations of the proof in theorem 4, that is : w = f(x), k = k(x), py =
ρy(x), gρ(x) =

∑
y ρy(x)cy . , for almost x ∈ X .

Note that for w ∈ co(C), using the definition of simplex coding, we have

〈w, cy〉 = λy −
1

T − 1

∑
y′ 6=y

λy′ =
Tλy − 1

T − 1
,=⇒ − 1

T − 1
≤ 〈cy, w〉 ≤ 1, (21)

for all y ∈ Y . Then |1− 〈cy, w〉|+ = 1−〈cy, w〉 , ∀w ∈ co(C). Then for all f ∈ F , the functional
we are minimizing can be written as:

E(f) =

∫
(1− 〈cy, f(x)〉)dρ(x, y)

= 1−
∫ 〈∑

y

ρy(x)cy, f(x)

〉
dρX (x)

= 1− 〈gρ, f〉L2(X ,ρX ) , f ∈ F . (22)

Let:
F (f) = 〈gρ, f〉L2(X ,ρX ) .

Minimizing the functional E for f ∈ F , is equivalent to the linear programming (LP) in L2(X , ρX ):

max
f∈F

F (f).

It is a standard result that in an LP maximization over a convex polytope, the solution is achieved
on an extremal point. It is easy to see that F is a convex set and that its extremal set V(F) has the
following form:

V(F) = {f |f(x) = cπ(x), π : X → Y}

Let fρ(x) = cbρ(x), where bρ(x) = arg maxj∈Y ρj(x) for almost x ∈ X . It is easy to see that
fρ ∈ V(F), and for all f ∈ V(f):

F (f) = 〈gρ, f〉L2(X ,ρX ) =

∫ 〈∑
j∈Y

ρj(x)cj , cπ(x)

〉
dρX (x)

=

∫ ρπ(x) −
1

T − 1

∑
j 6=π(x)

ρj(x)

 dρX (x)

=

∫
(

T

T − 1
ρπ(x) −

1

T − 1
)dρX (x).

Then:

F (fρ) =

∫
(

T

T − 1
ρbρ(x) −

1

T − 1
)dρX (x)

It follows that: F (f) ≤ F (fρ),∀f ∈ V(F). Therefore fρ is the minimizer of the functional E , and
D(fρ) = bρ. The Half spaces hinge loss is therefore Fisher consistent.

C Appendix to section 5

In this section we present the complementary material of section 5. We derive an algorithm for
computing the simplex code and show its correctness. As well as the dual formulation for SC-SVM
and 2 relaxation of the original SH-SVM.
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C.1 Computing Simplex Coding

In this section we give the proof of lemma 1.

Algorithm 1 Simplex Code
SET: C[2] = [1− 1],
FOR i = 2, · · · , T − 1
u = (− 1

i · · · −
1
i ) (column vector in Ri)

v = (0, . . . , 0)(column vector in Ri−1)

C[i+ 1] =

(
1 u>

v C[i]×
√

1− 1
i2 ,

)
ENDFOR
OUTPUT:C[T ]

Lemma 2. The T columns of C[T ] are a set of T − 1 dimensional vectors satisfying the properties
of Definition 1.

Proof. The statement is proved by induction. The base case is trivially true. Let c1 . . . ci be the
columns of C[i] and b1 . . . bi+1 be the columns of C[i+ 1]. By construction b1 = (1, 0, . . . , 0) and

bm = (− 1
i ,
√

1− 1
i2 cm) for all m = 2, . . . , i+ 1.

AssumeC[i] to satisfy definition 1, that is ‖cm‖2 = 1, for 1 ≤ m ≤ i and 〈cm, cn〉 = − 1
i−1∀m 6= n.

Indeed, a direct calculation shows that ‖b1‖ = 1 and 〈b1, bm〉 = − 1
i ,∀m 6= 1.Moreover, form 6= n

such that 2 ≤ m,n ≤ i+ 1 we have:

‖bm‖2 =
1

i2
+ (1− 1

i2
) ‖cm‖2 = 1,

and

〈bm, bn〉 =
1

i2
+ (1− 1

i2
) 〈cm, cn〉 =

1

i2
− (1− 1

i2
)

1

i− 1
=

1

i2
− i+ 1

i
= −1

i
.

C.2 Support Vector Machine

C.3 SC-SVM

We sketch the derivation of problem 4. Following the notation for binary SVM we write (??) as

min
f∈H

C0

n∑
i=1

∑
y 6=yi

∣∣∣∣〈ay, f(xi)〉+
1

T − 1

∣∣∣∣
+

+
1

2
‖f‖2H


where C0 = 1

2nλ . Using the representer theorem, and introducing the slack variables ξi =

(ξyi )y∈Y ∈ RT , for i = 1, . . . , n, we can write the above problem as,

min
c1,...,an;ξ1,...,ξn∈RT

C0

n∑
i=1

∑
y 6=yi

ξyi +
1

2

n∑
i=1

n∑
j=1

Kij 〈ai, aj〉


1

T − 1
+

n∑
j=1

Kij 〈aj , cy〉 ≤ ξyi , ∀ i = 1 . . . n, and y 6= yi,

ξyi ≥ 0, ∀ i = 1 . . . n, and y 6= yi.

Let Ξ = {ξi = (ξyi )y∈Y ∈ RT , i = 1, . . . , n}, α = {αi = (αyi )y∈Y ∈ RT , i = 1, . . . , n},
ν = {νi = (νyi )y∈Y ∈ RT i = 1, . . . , n} and consider the Lagrangian corresponding to the above

11



problem given by,

L(A,Ξ, α, ν) = C0

n∑
i=1

∑
y 6=yi

ξyi +
1

2

n∑
i=1

n∑
j=1

Kij 〈ai, aj〉+

n∑
i=1

∑
y 6=yi

αyi

 1

T − 1
+

n∑
j=1

Kij 〈aj , cy〉 − ξyi


−

n∑
i=1

∑
y 6=yi

νyi

=
1

T − 1

n∑
i=1

∑
y 6=yi

αyi +

n∑
i=1

∑
y 6=yi

(C0 − αyi − ν
y
i )ξyi +

1

2

n∑
i=1

n∑
j=1

Kij 〈ai, aj〉

+

n∑
i=1

n∑
j=1

Kij

〈∑
y 6=yi

αyi cy, aj

〉

Considering the first order condition of optimality, a direct computation gives:

ai = −
∑
y 6=yi

αyi cy, with 0 ≤ αyi ≤ C0, ∀ i = 1 . . . n, and y 6= yi. (23)

Let αi = (α1
i . . . α

yi
i . . . α

T
i ) a T dimensional vector, with αyii = 0, and α = (α1, . . . , αn) a n× T

dimensional vector. In the following we let αyii free in the objective and add a constraint such that
αyii = 0, ∀i.
Recalling the definition of the matrices G and K, the dual problem corresponding to (23) is given
by, the maximization of

LD(α) = −1

2

∑
i,j

Kij

∑
y 6=yi,y′ 6=yj

αyiGyy′α
y′

j +
1

T − 1

n∑
i=1

∑
y 6=yi

αyi

= −1

2

∑
y,y′,i,j

αyiKijGyy′α
y′

j +
1

T − 1

n∑
i=1

∑
y

αyi

subject to the constraints (23). Let Hijyy′ = KijGyy′ , H is a (n× T )× (n× T ) matrix. So that we
can write:

LD(α) = −1

2
α>Hα+

1

T − 1
1>n×Tα (24)

max
α
−1

2
α>Hα+

1

T − 1
1>n×Tα

0 ≤ αyi ≤ C0(1− δy,yi) ∀y ∈ Y,∀i = 1 . . . n

C.4 SH-SVM

The convex hull assumption needed for the consistency of SH-SVM, introduces 2Tn constraints, and
leads to a heavy optimization problem. Instead of considering − 1

T−1 ≤ 〈cy, f(xi)〉 ≤ 1,∀ y,∀i, it
is reasonable to consider 〈cy, f(xi)〉 ≥ − 1

T−1∀i = 1 . . . n,∀y 6= yi, since the SH-SVM loss ensures
a soft version of the left hand-side of the original inequality. Consider the SH-SVM loss with the
reduced constrained.

min
f∈H

C0

n∑
i=1

max(1− 〈cyi , f(xi)〉 , 0) +
1

2
||f ||2H

〈cy, f(xi)〉 ≥ −
1

T − 1
∀i = 1 . . . n, ∀y 6= yi.
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By the representer theorem we have: f(x) =
∑n
j=1K(x, xj)aj , aj ∈ RT−1, and

||f ||2H =
∑n
i=1

∑n
j=1K(xi, xj) 〈ai, aj〉. We introduce slack variable as in the SVM littera-

ture:

min
Ci,Ξ

C0

n∑
i=1

ξi +
1

2

∑
i,j

Kij 〈ai, aj〉

1−
n∑
j=1

Kij 〈aj , cyi〉 ≤ ξi,∀i = 1 . . . n

− 1

T − 1
−

n∑
j=1

Kij 〈aj , cy〉 ≤ 0,∀y 6= yi

ξi ≥ 0,∀i = 1 . . . n.

Introducing the lagrangian, we have:

L(α, ξ, C) = C0

n∑
i=1

ξi +
1

2

∑
ij

Kij 〈ai, aj〉+

n∑
i=1

αyii (1−
n∑
j=1

Kij 〈aj , cyi〉 − ξi)

+

n∑
i=1

∑
y 6=yi

αyi (
−1

T − 1
−

n∑
j=1

Kij 〈aj , cy〉)−
n∑
i=1

νiξi

=

n∑
i=1

(C0 − αyii − νi)ξi +
1

2

∑
ij

Kij 〈ai, aj〉+

n∑
i=1

(αyii −
1

T − 1

∑
y 6=yi

αyi )

−
n∑
i=1

n∑
j=1

Kij

〈
aj , α

yi
i cyi +

∑
y 6=yi

αyi cy

〉
.

Setting the optimality conditions we get:

0 ≤ αyii ≤ C0,∀i, αyi ≥ 0, y 6= yi,∀i, ai =
∑
y

αyi cy

LD(α) =

n∑
i=1

(αyii −
1

T − 1

∑
y 6=yi

αyi )− 1

2

∑
ij

Kij

〈∑
y

αyi cy,
∑
y′

αyj cy′

〉
Setting Gyy′ = 〈ay, ay′〉, we can write the equivalent dual:

max
α
−1

2

∑
i,j,y,y′

αyiKijGyy′α
y′

j +

n∑
i=1

(αyii −
1

T − 1

∑
y 6=yi

αyi )

0 ≤ αyii ≤ C0,∀i = 1 . . . n

αyi ≥ 0,∀y 6= yi,∀i = 1 . . . n

Therefore:

f(x) =

n∑
i=1

K(x, xi)(

T∑
y=1

αyi cy).

If we relax the convex hull constraint, it is easy to see that the equivalent dual is therefore:

max
α

∑
i,j

αiKijGyiyjαj −
n∑
i=1

αi

0 ≤ αi ≤ C0

f(x) =

n∑
i=1

K(x, xi)αicyi .

The latter formulation could be trained at the same complexity of the binary SVM but lacks fisher
consistency.
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C.5 Algorithms

Algorithm 2 Multi-Class Pegasos
INPUT: S, λ, L
INITIALIZE: W0 = 0
FOR i = 1 · · ·L
ηi = 1

λi
Wtmp = (1− ηiλ)Wi − ηi∂(V (yi, fWi(xi)))
Wi = min(1, 1√

λ||Wtmp||F
)Wtmp

OUTPUT: WL

C.6 Datasets

ntrain p T ntest
Landsat 4435 36 6 2000
Optdigit 3823 64 10 1797
Pendigit 7494 16 121 3498
Letter 10000 16 26 10000
Isolet 6238 617 26 1559
Pubfig83 7470 25600 83 830
Ctech101 3060 8192 102 6084

D Mathematical tools

We collect in this appendix basic tools from convex analysis and Vector Reproducing Kernel Hilbert
Spaces.

D.1 Elements of Convex Analysis and Variational Calculus

In this appendix we report an appendix from [12] collecting some basic results from [5] – see also
[6].

LetH be a Banach space andH∗ its dual. A function F : H → < is convex if

F (tv + (1− t)w) ≤ tF (v) + (1− t)F (w),

for all v, w ∈ H and t ∈ [0, 1] (if the strict inequality holds for t ∈ (0, 1), F is called strictly
convex).

Let v0 ∈ H such that F (v0) < +∞. The subgradient of F at point v0 ∈ H is the subset of H∗
given by

∂F (v0) = {w ∈ H∗ |F (v) ≥ F (v0) + 〈w, v − v0〉 , ∀v ∈ H}. (25)
where 〈·, ·〉 is the pairing betweenH∗ andH. If F (v) = +∞, we let ∂F (v0) = ∅.
In the following proposition we summarize the main properties of the subgradient we need.
Proposition 1. The following facts hold:

1. If F is differentiable at v0, the subgradient reduces to the usual gradient F ′(v0).

2. If F is defined on R and F (v0) < +∞, then F admits left and right derivative and

∂F (v0) = [F ′−(v0), F ′+(v0)].

3. Assume that F 6= +∞. A point v0 is a minimizer of F if and only if 0 ∈ ∂F (v0).

4. If F is continuous and
lim

‖v‖H→+∞
F (v) = +∞.

then F has a minimizer. If F is strictly convex, the minimizer is unique.
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5. Let G be another convex function on H. Assume that there is v0 ∈ H such that F and G
are continuous and finite at v0. Let a, b ≥ 0, then aF + bG is convex and, for all v ∈ H,

∂(aF + bG)(v) = a(∂F )(v) + b(∂G)(v).

6. Let H′ be another Banach space and J be a continuous linear operator from H′ into H.
Assume that there is v′0 ∈ H′ such that F is continuous and finite at J v′0. For all v′ ∈ H′

(∂F ◦ J )(v′) = J ∗(∂F )(J v′),

where J ∗ : H∗ → H′∗ is the adjoint of J defined by

〈v′,J ∗v〉H′ = 〈J v′, v〉H .

for all v ∈ H and v′ ∈ H′.

Proof. We simply give the references to the results in [5].

1. Prop. III.2.8

2. Prop. III.2.7

3. It is a simple consequence of Prop. III.3.1

4. It is a simple consequence of Prop. II.4.6.

5. Prop. III.2.13

6. Prop. III.2.12

Certain integral functionals naturally arise in the context of learning theory [12]. In particular, we
recall the definition of Nemitski functional, adapted to our framework [5, p.41 and p.143]. Let Z
be a locally compact second countable space, µ be a finite measure on Z , and (G, 〈·, ·〉) a separable
Hilbert space.

Let W : Z × G → R+ be a measurable function on Z × G.

The Nemitski functional associated to W is

I(g) =

∫
W (z, g(z))dµ(z)

for any measurable function g : X → G. The following proposition collects the main properties of
the Nemitski functional.

Proposition 2. The following properties hold,

• If W (z, ·) is lower semi-continuous (l.s.c.) for all z ∈ Z then I : Lp(Z, µ) → R+ is well
defined and l.s.c.

• If W (z, ·) is continuous for all z ∈ Z and moreover

W (z, w) ≤ a(z) + b ‖w‖p , for almost all (x, y) ∈ Z,

where b ∈ R+ and
∫
|a(z)|dµ(z) < ∞ and p ≥ 1, then I is upper semicontinuous and

hence continuous in Lp(Z, µ).

• If W (z, ·) is convex for all z ∈ Z , then I is convex.

Proof. The proof of Item 1 is given in Proposition II.2.3 in [5] for the case X = R and G =
Rn.Similarly, the proof of Item 2 is given in Proposition III.5.1. Finally item 3 is proved in Theorem
II.5.1.

15



Next proposition provides us with a straightforward method to study the subgradient (∂I). Let
q ∈] 1,+∞] such that 1

p + 1
q = 1.

Proposition 3. Assume that there is an element u0 ∈ Lp(Z, µ) such that supz∈Z |u0(z)| < +∞
and I[u0] < +∞. Given u ∈ Lp(Z, µ)

(∂I)(u) = {w ∈ Lq(Z, µ) | w(z) ∈ (∂W )(z, u(z)) for almost all (x, y) ∈ Z} . (26)

Proof. See the proof of Prop. III.5.3 of [5]. The proof is for Z interval of R, but can be easily
extended to arbitrary Z , compare with [6].

D.2 Reproducing Kernel Hilbert Spaces of Vector Valued Function

The framework of vector valued reproducing kernel Hilbert spaces (RKHSs) provides a natural
choice for hypotheses spaces and regularizers in the multi-class setting. The definition of RKHS
for vector valued functions parallels the one in the scalar case [1], with the main difference that the
reproducing kernel is now matrix valued – see [8, 4] and references therein.

Let X be a set, a matrix valued reproducing kernel is a symmetric function Γ : X ×
X → RD×D, such that for any x, x′ ∈ X , Γ(x, x′) is a positive semi-definite matrix, and∑N
i,j=1 〈aj ,Γ(xi, xj)aj〉 ≥ 0, for all x1, . . . , xn ∈ X and a1, . . . , aN ∈ RD.

A vector valued RKHS is a Hilbert space (H, 〈·, ·〉H) of functions f : X → RD, such that
for every a ∈ RD, and x ∈ X , Γ(x, ·)c belongs to H and moreover Γ has the reproduc-
ing property 〈f,Γ(x, ·)c〉H = 〈f(x), c〉 . The space His closure of the linear span {f(x) =∑N
i=1 Γ(xi, x)aj , aj ∈ RD, x1, . . . , xn ∈ X}. Then, the choice of the kernel can be interpreted as

inducing a representation for the functions of interest. Note that for D = 1 we recover the classic
theory of scalar valued RKHS. In the following we restrict our attention to kernels of the form

Γ(x, x′) = k(x, x′)B, B = I, (27)

where k : X × X → R is a scalar valued reproducing kernel. One can see that the choice of B
corresponds to imposing a prior assumption on how the different components can be related, so that
by choosing B = I we are treating each component to be independent. In the following we will
discuss in particular the case where the kernel is induced by a finite dimensional feature map,

k(x, x) = 〈Φ(x),Φ(x′)〉p , where Φ : X → Rp, (28)

and 〈·, ·〉 is the inner product in Rp. In this case we can write each function inH as f(x) = WΦ(x),
where W ∈ RT×p matrix.
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