
A Proofs

A.1 Notation and Definitions

Throughout the proofs, we fix d, k ≥ 2. We denote byW = Wd = {hw : w ∈ Rd+1} the class of
linear separators (with bias) over Rd. We assume the following ”tie breaking” conventions:

• For f : [k] → R, argmaxi∈[k]f(i) is the minimal number i0 ∈ [k] for which f(i0) =

maxi∈[k] f(i);

• sign(0) = 1.

Given a hypotheses class H ⊆ YX , denote its restriction to A ⊆ X by H|A = {f |A : f ∈ H}.
Let H ⊆ YX be a hypothesis class and let φ : Y → Y ′, ι : X → X ′ be functions. Denote
φ ◦ H = {φ ◦ h : h ∈ H} andH ◦ ι = {h ◦ ι : h ∈ H}.
Given H ⊆ YX and a distribution D over X × Y , denote the approximation error by Err∗D(H) =
infh∈H ErrD(h). Recall that by definition 1.1, H essentially contains H′ ⊆ YX if and only if
Err∗D(H) ≤ Err∗D(H′) for every distribution D. For a binary hypothesis class H, denote its VC
dimension by VC(H).

Let H ⊆ YX be a hypothesis class and let S ⊆ X . We say that H G-shatters S if there exists an
f : S → Y such that for every T ⊆ S there is a g ∈ H such that

∀x ∈ T, g(x) = f(x), and ∀x ∈ S \ T, g(x) 6= f(x).

We say that H N-shatters S if there exist f1, f2 : S → Y such that ∀y ∈ S, f1(y) 6= f2(y), and for
every T ⊆ S there is a g ∈ H such that

∀x ∈ T, g(x) = f1(x), and ∀x ∈ S \ T, g(x) = f2(x).

The graph dimension of H, denoted dG(H), is the maximal cardinality of a set that is G-shattered
by H. The Natarajan dimension of H, denoted dN (H), is the maximal cardinality of a set that is
N-shattered by H. Both of these dimensions coincide with the VC-dimension for |Y| = 2. Note
also that we always have dN (H) ≤ dG(H). As shown in Ben-David et al. [1995], it also holds that
dG(H) ≤ 4.67 log2(|Y |)dN (H).

Proof of Lemma 4.1. Let A ⊆ X be a G-shattered set with |A| = dG(L(H)). By Sauer’s Lemma,
2|A| ≤ |H|A|l ≤ |A|dl, thus dG(L(H)) = |A| = O(ld log(ld)).

A.2 Multiclass SVM

Proof of Theorem 3.1. The lower bound follows from Theorems 3.5 and 3.2. To upper bound dG :=
dG(L), let S = {x1, . . . , xdG} ⊆ Rd be a set which is G-shattered by L, and let f : S → [k] be a
function that witnesses the shattering. For x ∈ Rd and j ∈ [k], denote

φ(x, j) = (0, . . . 0, x[1], . . . , x[d], 1, 0, . . . , 0) ∈ R(d+1)k,

where x[1] is in the (d + 1)(j − 1) coordinate. For every (i, j) ∈ [dG] × [k], define zi,j =

φ(xi, f(xi))−φ(xi, j). DenoteZ = {zi,j | (i, j) ∈ [dG]×[k]}. Since VC(W(d+1)k) = (d+1)k+1,
by Sauer’s lemma,

|W(d+1)k|Z | ≤ |Z|(d+1)k+1 = (dGk)(d+1)k+1.

We now show that there is a one-to-one mapping from subsets of S toW(d+1)k|Z , thus concluding
an upper bound on the size of S. For any T ⊆ S, choose W (T ) ∈ Rk×(d+1)(R) such that

{x ∈ S | hW (T )(x) = f(x)} = T.

Such a W (T ) exists because of the G-shattering of S by L using the witness f . Define the
vector w(T ) ∈ Rk(d+1) which is the concatenation of the rows of W (T ), that is w(T ) =
(W (T )(1,1), . . . ,W (T )(1,d+1), . . . ,W (T )(k,1), . . . ,W (T )(k,d+1)).

Now, suppose that T1 6= T2 for T1, T2 ⊆ S. We now show that w(T1)|Z 6= w(T2)|Z . Suppose
w.l.o.g. that there is some xi ∈ T1 \ T2. Thus, f(xi) = hW (T1)(xi) 6= hW (T2)(xi) =: j. It
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follows that the inner product of xi with row f(xi) of W (T1) is greater than the inner product of xi
with row j of W (T1), while for W (T2), the situation is reversed. Therefore, sign(〈w(T1), zi,j〉) 6=
sign(〈w(T2), zi,j〉), so w(T1) and w(T2) induce different labelings of Z. It follows that the number
of subsets of S is bounded by the size ofW(d+1)k|Z , thus 2dG ≤ (kdG)(d+1)k+1. We conclude that
dG ≤ O(dk log(dk)).

A.3 Simple classes that can be represented by the class of linear separators

In this section we define two fairly simple hypothesis classes, and show that the class of linear
separators is richer than them. We will later use this observation to prove lower bounds on the
Natarajan dimension of various multiclass hypothesis classes.

Let l ≥ 2. For f ∈ {−1, 1}[d], i ∈ [l], j ∈ {−1, 1} define f i,j : [d]× [l]→ {−1, 1} by

f i,j(u, v) =

{
f(u) v = i

j v 6= i,

And define the hypothesis class F l as

F l = {f i,j : f ∈ {±1}[d], i ∈ [l], j ∈ {−1, 1}}.

For g ∈ {−1, 1}[d], i ∈ [l], j ∈ {±1} define gi,j : [d]× [l]→ {−1, 1} by

gi,j(u, v) =


h(u) v = i

j v > i

−j v < i,

And define the hypothesis class Gl as

Gl = {gi,j : g ∈ {−1, 1}[d], i ∈ [l], j ∈ {±1}}.

Let H ⊂ YX ,H′ ⊂ YX ′ be two hypotheses classes. We say that H is richer than H′ if there
is a mapping ι : X ′ → X such that H′ = H ◦ ι. It is clear that if H is richer than H′ then
dN (H′) ≤ dN (H) and dG(H′) ≤ dG(H). Thus, the notion of richness can be used to establish
lower and upper bounds on the Natarajan and Graph dimension, respectively. The following lemma
shows thatW is richer thanF l and Gl for every l. This will allow us to use the classesF l, Gl instead
ofW when bounding from below the dimension of an ECOC or TC hypothesis class in which the
binary classifiers are fromW .

Lemma A.1. For any integer l ≥ 2,W is richer than F l and Gl.

Proof. We shall first prove that W is richer than F l. Choose l unit vectors e1, . . . , el ∈ Rd. For
every i ∈ [l], choose d affinely independent vectors such that

x1,i, . . . , xd,i ∈ {x ∈ Rd : 〈x, ei〉 = 1, ∀i′ 6= i, 〈x, ei′〉 < 1}.

This can be done by choosing d affinely independent vectors in {x ∈ Rd : 〈x, ei〉 = 1} that are very
close to ei. Define ι(m, i) = xm,i. Now fix i ∈ [l] and j ∈ {−1,+1}, and let f i,j ∈ F l. We must
show that f i,j = h ◦ ι for some h ∈ W . We will show that there exists an affine map Λ : Rd → R
for which f i,j = sign ◦ Λ ◦ ι. This suffices, sinceW is exactly the set of all functions of the form
sign ◦ Λ where Λ is an affine map. Define M = {x ∈ Rd : 〈x, ei〉 = 1}, and let A : M → R be the
affine map defined by

∀m ∈ [d], A(xm,i) = f(m, i).

Let P : Rd → M be the orthogonal projection of Rd on M . For α ∈ R, define an affine map
Λα : Rd → R by

Λα(x) = A(P (x)) + α · 〈x− ei, ei〉.
Note that, ∀m ∈ [d], Λα(xm,i) = f(m, i). Moreover, for every i′ 6= i and m ∈ [d] we have
〈xm,i′ − ei, ei〉 < 0. Thus, by choosing |α| sufficiently large and choosing sign(α) depending on j,
we can make sure that f i,j = sign ◦ Λα ◦ ι.
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The proof that W is richer than Gl is similar and simpler. Let e1, . . . , ed ∈ Rd−1 be affinely
independent. Define

ι(m, i) = (em, i) ∈ Rd−1 × R ∼= Rd,
Given gi,j ∈ Gd,l, let A : Rd−1 × {i} → R be the affine map defined by A(em, i) = gi,j(m, i) and
let P : Rd → Rd−1 × {i} be the orthogonal projection. Define Λ : Rd → R by

Λ(x, y) = A(P (x, y)) + j · 10 · (y − i).

It is easy to check that sign ◦ Λ ◦ ι = gi,j .

Note A.2. From Lemma A.1 it follows that VC(F l),VC(Gl) ≤ d+ 1. On the other hand, both F l
and Gl shatter ([d]× {1}) ∪ {(1, 2)}. Thus, VC(F l) = VC(Gl) = d+ 1

A.4 Trees

Proof of Theorem 3.2. We first prove the upper bound. Let A ⊆ X be a G-shattered set with
|A| = dG(Htrees). By Sauer’s Lemma, and since the number of trees is bounded by kk, we have
2|A| ≤ kk · |H|A|k ≤ kk · |A|dk, thus dG(Htrees) = |A| = O(dk log(dk)).

To prove the lower bound, by Lemma A.1, it is enough to show that dN (GlT ) ≥ d · (k− 1) for some
l. We will take l = |N(T )| = k − 1. Linearly order N(T ) such that for every node v, the nodes
in the left sub-tree emanating from v are smaller than the nodes in the corresponding right sub-tree.
We will identify [l] with N(T ) by an order-preserving map, thus Gl ⊂ {−1, 1}[d]×N(T ). We also
identify the labels with the leaves.

Define g1 : [d] × N(T ) → leaf(T ) by setting g1(i, v) to be the leaf obtained by starting from the
node v, going right once and then going left until reaching a leaf. Similarly, define g2 : [d]×N(T )→
leaf(T ) by setting g2(i, v) to be the leaf obtained by starting from the node v, going left once and
then going right until reaching a leaf.

We shall show that g1, g2 witness the N -shattering of [d] × N(T ) by GlT . Given S ⊂ [d] × N(T )
define C : N(T )→ Gl by

C(v)(i, u) =


−1 u < v

1 u > v

1 u = v, (i, u) ∈ S
−1 u = v, (i, u) /∈ S.

It is not hard to check that ∀(i, u) ∈ S, hC(i, u) = g1(i, u), and ∀(i, u) /∈ S, hC(i, u) = g2(i, u).

Note A.3. Define G̃l = {gi,1 : g ∈ {−1, 1}[d], i ∈ [l]}. The proof shows that
dN (G̃lT ) ≥ d · (k − 1). Since VC(G̃l) = d, we obtain a simpler proof of Theorem 23 from Daniely
et al. [2011], which states that for every tree T there exists a class H of VC dimension d for which
dN (HT ) ≥ d(k − 1).

A.5 ECOC, One vs. All and All Pairs

To prove the results for ECOC and its special cases, we first prove a more general theorem, based
on the notion of a sensitive vector for a given code. Fix a code M ∈ Rk×l(R). We say that a binary
vector u ∈ {±1}l is q-sensitive for M if there are q indices j ∈ [l] for which M̃(u) 6= M̃(u⊕ ej).
Here, u⊕ ej := (u[1], . . . ,−u[j], . . . , u[l]).

Theorem A.4. If there exists a q-sensitive vector for a code M ∈ Rk×l(R) then dN (WM ) ≥ d · q.

Proof. By Lemma A.1, it suffices to show that dN (F lM ) ≥ d · q. Let u ∈ {±1}l be a q-sensitive
vector. Assume w.l.o.g. that the sensitive coordinates are 1, . . . , q. We shall show that [d] × [q] is
N -shattered by F lM . Define g1, g2 : [d]× [q]→ [k] by

g1(x, y) = M̃(u), g2(x, y) = M̃(u⊕ ey)
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Let T ⊂ [d]× [q]. Define h1, . . . , hl ∈ F l as follows. For every j > q, define hj ≡ u[j]. For j ≤ q
define

hj(x, y) =


u[j] y 6= j

u[j] y = j, (x, y) ∈ T
−u[j] y = j, (x, y) ∈ [d]× [q] \ T.

For h = (h1, . . . , hl), it is not hard to check that

∀(x, y) ∈ T, M̃(h1(x, y), . . . , hl(x, y)) = g1(x, y), and

∀(x, y) ∈ [d]× [q] \ T, M̃(h1(x, y), . . . , hl(x, y)) = g2(x, y).

The following lemma shows that a code with a large distance is also highly sensitive. In fact,
we prove a stronger claim: the sensitivity is actually at least as large as the distance between
any row and the row closest to it in Hamming distance. Formally, we consider ∆(M) =
maxi minj 6=i ∆h(M [i],M [j]) ≥ δ(M).

Lemma A.5. For any binary code M ∈ Rk×l(±1), there is a q-sensitive vector for M , where
q ≥ 1

2∆(M) ≥ 1
2δ(M).

Proof. Let i1 the row in M such that its hamming distance to the row closest to it is ∆(M). Denote
by i2 the index of the closest row (if there is more than one such row, choose one of them arbitrarily).
We have ∆h(M [i1],M [i2]) = ∆(M). In addition, ∀i 6= i1, i2,∆h(M [i1],M [i]) ≥ ∆(M). Assume
w.l.o.g. that the indices in which rows i1 and i2 differ are 1, . . . ,∆(M). Consider first the case that
i1 < i2. Define u ∈ {±1}[l] by

u[j] =

{
M(i1,j) j ≤ d∆

2 e
M(i2,j) otherwise.

Is is not hard to check that for every 1 ≤ j ≤ d∆
2 e, i1 = M̃(u) and M̃(u ⊕ ej) = i2, thus u is

d∆
2 e-sensitive. If i1 > i2, the proof is similar except that u is defined as

u[j] =

{
M(i2,j) j ≤ d∆

2 e
M(i1,j) otherwise.

Proof of Theorem 3.3. The upper bound follows from Lemma 4.1. The lower bound follows form
Theorem A.4 and Lemma A.5.

Proof of Theorem 3.4. The upper bounds follow from Theorem 3.3. To show that dN (WOvA) ≥
(k − 1)d, we note that the all-negative vector u = (−1, . . . ,−1) of length k is (k − 1)-sensitive for
the code MOvA, and apply Theorem A.4.

To show that dN (WAP) ≥ d
(
k−1

2

)
, assume for simplicity that k is odd (a similar analysis can be

given when k is even). Define u ∈ {±1}(
k
2) by

∀i < j, u[i, j] =

{
1 j − i ≤ k−1

2

−1 otherwise.

For every n ∈ [k], we have
∑

1≤i<j≤k u[i, j] ·MAP
n,(i,j) = 0, as the summation counts the number

of pairs (i, j) such that n ∈ {i, j} and MAP
n,(i,j) agrees with u[i, j]. Thus, M̃AP(u) = 1, by our tie-

breaking assumptions. Moreover, it follows that for every 1 < i < j ≤ k, we have M̃AP(u⊕e(i,j)) ∈
{i, j}, since flipping entry [i, j] of u increases (MAPu)j or (MAPu)i by 1 and does not increase
the rest of the coordinates of the vector MAPu. This shows that u is

(
k−1

2

)
-sensitive.
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A.6 Approximation

Proof of Theorem 3.5. We first show that for any tree for k classes T , L essentially containsWT . It
follows that L essentially containsWtrees as well. LetD a distribution over Rd, let C : N(T )→W
be a mapping associating nodes in T to binary classifiers in W , and let ε > 0. We will show that
there exists a matrix W ∈ Rk×(d+1) such that Prx∼D[hW (x) 6= hC(x)] < ε.

For every v ∈ N(T ), denote by w(v) ∈ Rd+1 the linear separator such that C(v) = hw(v). For
every w ∈ Rd+1 define w̃ = w + (0, . . . , 0, γ). Recall that for x ∈ Rd, x̄ ∈ Rd+1 is simply
the concatenation (x, 1). Choose r > 0 large enough so that Prx∼D[||x̄|| > r] < ε/2 and ∀v ∈
N(T ), ||w̃(v)|| < r. Choose γ > 0 small enough so that

Pr
x∼D

[∃v ∈ N(T ), 〈w̃(v), x̄〉 ∈ (−γ, γ)] = Pr
x∼D

[∃v ∈ N(T ), 〈w(v), x̄〉 ∈ (−2γ, 0)] < ε/2.

Let a = 2r2/γ + 1. For i ∈ [k], let vi,1, . . . , vi,mi be the path from the root to the leaf associated
with label i. For each 1 ≤ j < mi define bi,j = 1 if vi,j+1 is the right son of vi,j , and bi,j = −1

otherwise. Now, define W ∈ Rk×(d+1) to be the matrix whose i’th row is wi =
∑mi−1
j=1 a−j ·

bi,jw̃(vi,j).

To prove that Prx∼D[hW (x) 6= hC(x)] < ε, it suffices to show that hW (x) = hC(x) for every
x ∈ Rd satisfying ||x̄|| < r and ∀v ∈ N(T ), 〈w̃(v), x̄〉 /∈ (−γ, γ), since the probability mass of the
rest of the vectors is less than ε. Let x ∈ Rd be a vector that satisfies these assumptions. Denote
i1 = hC(x). It suffices to show that for all i2 ∈ [k] \ {i1}, 〈wi1 , x̄〉 > 〈wi2 , x̄〉, since this would
imply that hW (x) = i1 as well.

Indeed, fix i2 6= i1, and let j0 be the length of the joint prefix of the two root-to-leaf paths that match
the labels i1 and i2. In other words, ∀j ≤ j0, vi1,j = vi2,j and vi1,j0+1 6= vi2,j0+1. Note that

〈x̄, (bi1,j0 − bi2,j0)w̃(vi1,j0)〉 = 〈x̄, 2bi1,j0w̃(vi1,j0)〉 = 2|〈x̄, w̃(vi1,j0)〉| ≥ 2γ.

The last equality holds because bi1,j0 and 〈x̄, w(vi1,j0)〉 have the same sign by definition of bi,j . We
have

〈wi1 , x̄〉 − 〈wi2 , x̄〉 = 〈x̄,
mi1−1∑
j=1

a−jbi1,jw̃(vi1,j)−
mi2−1∑
j=1

a−jbi2,jw̃(vi2,j)〉

= 〈x̄, a−j0(bi1,j0 − bi2,j0)w̃(vi1,j0)〉+ 〈x̄,
mi1−1∑
j=j0+1

a−jbi1,jw̃(vi1,j)−
mi2−1∑
j=j0+1

a−jbi2,jw̃(vi2,j)〉

≥ 〈x̄, a−j0(bi1,j0 − bi2,j0)w̃(vi1,j0)〉 −
∞∑

j=j0+1

a−j2r2

≥ 2a−j0
(
γ − r2

a− 1

)
> 0.

Since this holds for all i2 6= i1, it follows that hW (x) = i1. Thus, we have proved that L essentially
contains Wtrees.

Next, we show that L strictly contains Wtrees, by showing a distribution over labeled examples
such that the approximation error using L is strictly smaller than the approximation error using
Wtrees. Assume w.l.o.g. that d = 2 and k = 3: even if they are larger we can always restrict the
support of the distribution to a subspace of dimension 2 and to only three of the labels. Consider
the distribution D over R2 × [3] such that its marginal over R2 is uniform in the unit circle, and
Pr(X,Y )∼D[Y = i | X = x] = I[x ∈ Di], where D1, D2, D3 be subsets sectors of equal angle of
the unit circle (see Figure 1):

Clearly, by taking the rows of W to point to the middle of each sector (dashed arrows in the illustra-
tion), we get Err∗D(L) = 0. In contrast, no linear separator can split the three labels into two gropus
without error, thus Err∗D(Wtrees) > 0.

Finally, to see that L essentially containsWOvA, we note thatWOvA = WT where T is a tree such
that each of its internal nodes has a leaf corresponding to one of the labels as its left son. ThusWOvA
is essentially contained inWtrees.
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Figure 1: Illustration for the proof of Theorem 3.5

Proof of Theorem 3.7. It is easily seen thatWAP contains L: Let W ∈ Rd+1×k, and denote its i’th
row by W [i]. For each column (i, j) of MAP, define the binary classifier hi,j ∈ W such that ∀x ∈
Rd, hi,j(x̄) = sign(〈W [j]−W [i], x̄〉). Then for all x, hW (x) = M̃AP(h1,1(x), . . . , hk−1,k(x)).

To show that the inclusion is strict, as in the proof of Theorem 3.5, we can and will assume that
d = 2. Choose k∗ to be the minimal number such that for every k ≥ k∗, dN (WAP ) > dN (L):
This number exists by Theorems 3.4 and 3.1 (note that though we chose k∗ w.r.t. d = 2, the
same k∗ is valid for every d). For any k ≥ k∗, it follows that there is a set S ⊆ R2 that is N -
shattered byWAP but not by L. Thus, there is a hypothesis h ∈ WAP such that for every g ∈ L,
g|S 6= h|S . Define the distribution D to be uniform over {(x, h(x)) : x ∈ S}. Then clearly
Err∗D(L) > Err∗D(WAP ) = 0.

Next, we prove Theorem 3.6, which we restate more formally as follows. Note that the result on
OvA is implied since there exists a tree that implements OvA.

Theorem A.6. (Restatement of Theorem 3.6) If there exists an embedding ι : Rd → Rd′ and a tree
T such thatWd′

T ◦ ι essentially contains L, then necessarily d′ ≥ Ω̃(dk).

Proof. Assume that i ∈ [k] is the class corresponding to the leaf with the least depth, l. Note that
l ≤ log2(k). Let φ : [k]→ {±1} be the function that is 1 on {i} and −1 otherwise. It is not hard to
see that φ ◦ L is the hypothesis class of convex polyhedra in Rd having k − 1 faces. Thus,

VC(φ ◦ L) ≥ (k − 1)d, (3)

[see e.g. Takacs, 2009]. On the other hand, φ ◦ Wd′

T , is the class of convex polyhedra in Rd′ having
l ≤ log2(k) faces. Thus, by Lemma 4.1

VC(φ ◦Wd′

T ◦ ι) ≤ VC(φ ◦Wd′

T ) ≤ O(ld′ log(ld′)) ≤ O(log(k)d′ log(log(k)d′)) (4)

By the assumption thatWd′

T ◦ι essentially containsL, VC(φ◦L) ≤ VC(φ◦Wd′

T ◦ι). Combining with
equations (3) and (4) it follows that d(k− 1) = O(log(k)d′ log(log(k)d′)). Thus, d′ = Ω̃ (dk).

To prove Lemma 3.8, we first state the classic VC-dimension theorem, which will be useful to us.

Theorem A.7 (Vapnik [1998]). There exists a constant C > 0 such that for every hypothesis class
H ⊆ {±1}X of VC dimension d, a distribution D over X , ε, δ > 0 and m ≥ C d+ln( 1

δ )

ε2 we have

Pr
S∼Dm

[
Err∗D(H) ≥ inf

h∈H
ErrS(h)− ε

]
≥ 1− δ.

We also use the following lemma, which proves a variant of Hoeffding’s inequality.

Lemma A.8. Let β1, . . . , βk ≥ 0 and let γ1, . . . , γk ∈ R, such that ∀i, |γi| ≤ βi. Fix an integer
j ∈ {1, . . . , bk2 c} and let µ = j/k. Let (X1, . . . , Xk) ∈ {±1}k be a random vector sampled
uniformly from the set {(x1, . . . , xk) :

∑k
i=1

x1+1
2 = µk}. Define Yi = βi + Xiγi and denote

αi = βi + |γi|. Assume that
∑k
i=1 αi = 1. Then

Pr

[
k∑
i=1

Yi ≤ µ− ε

]
≤ 2 exp

(
− ε2

2
∑k
i=1 α

2
i

)
.
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Proof. First, since µ < 1
2 , it suffices to prove the claim for the case ∀i, γi ≥ 0 since this is the

“harder” case. Let Z1, . . . , Zk ∈ {±1} be independent random variables such that Pr[Zi = 1] =

µ− ε
2 . Denote Wi = βi + Ziγi. Further denote W̄ =

∑k
i=1Wi and Z̄ =

∑k
i=1

Zi+1
2 .

Note that for every j0 ≤ j = µk, given that Z̄ = j0, W̄ can be described as follows: We start with
the value

∑k
i=1 βi − γi and then choose j0 indices uniformly from [k]. For each chosen index i, the

value of W̄ is increased by 2γi.
∑k
i=1 Yi can be described in the same way, except that that j ≥ j0

indices are chosen. Thus, Pr
[∑k

i=1 Yi ≤ µ− ε
]
≤ Pr

[
W̄ ≤ µ− ε | Z̄ = j0

]
. Thus, we have

Pr

[
k∑
i=1

Yi ≤ µ− ε

]
≤ Pr

[
W̄ ≤ µ− ε | Z̄ ≤ µk

]
≤ Pr

[
W̄ ≤ µ− ε

]
/Pr

[
Z̄ ≤ µk

]
≤ 2 Pr

[
W̄ ≤ µ− ε

]
≤ 2 exp

(
− ε2

2
∑k
i=1 α

2
i

)
.

The last inequality follows from Hoeffding’s inequality and noting that

E[Wi] = βi + (2(µ− ε

2
)− 1)γi = (µ− ε

2
)(βi + γi) + (1− µ+

ε

2
)(βi − γi) ≥ (µ− ε

2
)αi.

So that
∑k
i=1E[Wi] ≥ (µ− ε

2 )
∑k
i=1 αi = µ− ε

2 .

Proof of Lemma 3.8. The idea of this proof is as follows: Using a uniform convergence argument
based on the VC dimension of the binary hypothesis class, we show that there exists a labeled sample
S such that |S| ≈ d+k

ν2 , and for all possible mappings φ, the approximation error of the hypothesis
class on the sample is close to the approximation error on the distribution Dφ. This allows us to
restrict our attention to a finite set of hypotheses, based on their restriction to the sample. For these
hypotheses, we show that with high probability over the choice of φ, the approximation error on the
sample is high. Using a union bound on the possible hypotheses, we conclude that the approximation
error on the distribution will be high, with high probability over the choice of φ.

For i ∈ [k], denote pi = Prx∼D[f(x) = i]. Let S = {(x1, y1), . . . , (xm, ym)} ⊆ X × [k] be an
i.i.d. sample drawn according to D where m = dC d+(k+2) ln(2)

(ν/2)2 e, for the constant from C from
Theorem A.7. Given S, denote Sφ{(x1, φ(y1)), . . . , (xm, φ(ym))} ⊆ X × {±1}. For i ∈ [k], let
p̂i =

|{j:yj=i}|
m .

For any fixed φ : [k] → {±1}, with probability > 1 − 2−(k+2) over the choice of S we have, by
Theorem A.7, that Err∗Dφ(H) > infh∈H ErrSφ(h)− ν. Since |{±1}[k]| = 2k, w.p. > 1− 1

4 ,

∀φ ∈ {±1}[k], Err∗Dφ(H) > inf
h∈H

ErrSφ(h)− ν

2
. (5)

Moreover, we have

E[

k∑
i=1

p̂2
i ] =

1

m2

k∑
i=1

((
m

2

)
p2
i +mpi

)
≤ k ·

(
m(m− 1)

2m2

100

k2
+

10

mk

)
≤ 60

k
.

Thus, by Markov’s inequality, w.p. ≥ 1
2 we have

k∑
i=1

p̂2
i <

120

k
. (6)

Thus, with probability at least 1 − 1
4 −

1
2 > 0, both (6) and (5) holds. In particular, there exists a

sample S for which both (6) and (5) hold. Let us fix such an S = {(x1, y1), . . . , (xm, ym)}.

Assume now that φ ∈ {±1}[k] is sampled according to the first condition. Denote

Yi = |{j : h(xj) 6= φ(yj) and yj = i}|/m.
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For a fixed h ∈ H we have

Pr
φ

[
ErrSφ(h) < µ− ν

2

]
= Pr

φ

[
k∑
i=1

Yi < µ− ν

2

]
We note that Yi are independent random variables with E[Yi] ≥ µp̂i and 0 ≤ Yi ≤ p̂i. Thus, by
Hoeffding’s inequality,

Pr
φ

[
ErrSφ(h) < µ− ν

2

]
≤ exp

(
− ν2

2
∑k
i=1 p̂

2
i

)
≤ exp

(
−ν

2k

240

)
.

By Sauer’s lemma, |H|{x1,...,xm}| ≤
(
em
d

)d
. Thus, with probability≥ 1−

(
em
d

)d
exp

(
−ν

2k
240

)
over

the choice of φ, infh∈H ErrSφ(h) ≥ µ− ν
2 and by (5) also

Err∗Dφ(H) ≥ 1

2
− ν. (7)

Finally, sincem = O
(
k+d
ν2

)
, if k = Ω

(
d ln(1/ν)+ln(1/δ)

ν2

)
then Eq. (7) holds w.p> 1−δ, concluding

the proof for the case when the first condition holds. If the second condition holds, the proof is very
similar, with the sole difference that Lemma A.8 is used instead of Hoeffding’s inequality.

Proof of Corollary 3.9. The Corollary follows from Lemma 3.8, by noting that Err∗D(HT ) ≥
Err∗Dφ(H), where φ : [k] → {±1} is defined as φ(i) = 1 if and only if λ−1(i) is in the right
subtree emanating from the root of T .

Proof of Corollary 3.10. Let φ : [k] → {±1} be the function that is −1 on
[
bk2 c
]

and 1 otherwise.
By Lemma 4.1, applied to L(H) = φ ◦ H(M,Id), VC(φ ◦ H(M,Id)) = O(dl log(dl)), so that,
by Lemma 3.8 (applied to a random choice of λ instead of φ), Err∗Dφ◦λ(φ ◦ H(M,Id)) ≥ 1

2 − ν
with probability > 1 − δ over the choice of λ. The proof follows as we note that for every λ,
Err∗D(H(M,λ−1)) = Err∗Dλ(H(M,Id)) ≥ Err∗Dφ◦λ(φ ◦ H(M,Id)).
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