
A The Perturbed Variation - Supplementary Material

A.1 Hypothesis Testing Procedures

The statistical tests in this section are based on the convergence bounds in Section 4.

Notations Throughout this section the probabilities P0 and P1 represent the probability condi-
tioned on the null hypothesisH0, and the alternative hypothesisH1.

The following procedure tests the hypothesis H(1)
0 : PV(P,Q, �) ≤ θ against the alternative H(1)

1 :
PV(P,Q, �) > θ.

Procedure 1. Similarity Testing Based on �PV.
Input: �, θ and significance level α.

1. Sample S1 = {x1, ..., xn} ∼ P and S2 = {y1, ..., ym} ∼ Q (define N = min(n,m)).
2. Normalize the data to be in [0, 1]d.

3. Compute �PV (S1, S2, �, � · �∞) by Algorithm 1.

4. Compute t =
�

(2 log(2(2(1/�)d−2))+2 log(1/α)
N .

Output: RejectH(1)
0 if

�PV (S1, S2, �, � · �∞) > t+ θ

.

The probability to reject H(1)
0 by applying Procedure 1 when in fact it holds – also known as the

Type 1 error – is bounded in the following corollary.

Corollary 6. Assume that for a given � and θ values H(1)
0 : PV (P,Q, �,d) ≤ θ holds. Then for

the threshold t of Procedure 1 and any α ∈ (0, 1) we have that

P0

�
�PV (S1, S2, �, � · �∞) ≥ t+ θ

�
≤ α. (5)

Moreover, the procedure is consistent: when n,m → ∞ we have that t → 0 and
P1(�PV (S1, S2, �, � · �∞) > θ) = 1.

The corollary is a direct result of Theorem 3.

Next, we consider the probability that Procedure 1 fails to rejectH(1)
0 when the alternative hypothesis

H(1)
1 holds, also known as the Type 2 error. Unfortunately, it is not possible to bound this probability

for a finite sample of any two distributions. To see this, consider the following example: let P,Q be
two distributions with PV (P,Q, �) > 0, but differ only in an area of very low probability. Then,
for any finite sample size, there is a high probability that the samples are identical, resulting in
�PV (S1, S2, �) = 0. As a result, the null hypothesis will not be rejected even thoughH(1)

1 holds.

However, if the PV is larger than some constant the Type 2 error is bounded.
Corollary 7. For PV (P,Q, �,d) > θ + t + b, with t of Procedure 1, and b =�

2(log(2(2(1/�)d−2))+2 log(1/β)
N we have that

P
�
�PV (S1, S2, �, � · �∞) > t+ θ

�
≥ 1− β.

Note that as N grows, the values of b and t get smaller, and the lower bound PV (P,Q, �,d) >
θ + t+ b decreases.

Proof. We have that

P1

�
�PV (S1, S2, �, � · �∞) > t+ θ

�
= P1

�
�PV (S1, S2, �, � · �∞) > b+ t+ θ − b

�
≥

P
�
�PV (S1, S2, �, � · �∞) > PV (P,Q, �, � · �∞)− b

�
≥ 1− β.
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The first inequality holds by inserting the assumption on PV , and the second holds by applying the
convergence bound of Theorem 3.

To give an estimate of the sample size needed for the procedure, first define the effect size θ0: the
minimal value of PV that is significant. Given θ0, set the sample size so that

N ≥ 4 log(2(2(1/�)
d − 2)) + 2 log(1/α) + 2 log(1/β)

θ20
.

Using this size ensures a false positive rate bounded by α (Corollary 6), and a false negative rate
bounded by β (Corollary 7).

The second test we consider is an equivalence type test [11]. Equivalence is achieved when
PV(P,Q, �) < θ, for some chosen θ, and may be obtained by switching the roles of the null and the
alternative of Procedure 1. Namely, to claim similarity we need to rejectH(2)

0 : PV(P,Q, �) ≥ θ. To
test this hypothesis, a similar procedure to Procedure 1 may be applied, with a principal difference
in the rejection area, which is changed to �PV (S1, S2, �, � · �∞) < θ − t.

A.2 1D Projections

We present a method to gain insight on the value of the PV by multiple random projections to
one dimension. While the PV between two distributions is not retained after projection to a single
dimension, as the projection is a non-expansive mapping of the samples, we show that multiple
projections can still aid to distinguish between two situations: PV(P,Q, �) = 0 and PV(P,Q, �) �= 0
4.

We define a score that is based on the value of the PV after projections.

Definition 8. Let fi : Rd → R for i = 1, ...,K define a set of random projection mappings, and let
X and Y be random variables with distributions P and Q. The projected perturbed variation of two
distributions P and Q is

PPV(P,Q, �,K) = max
i=1,...,K

PV(fi(X), fi(Y ), �).

ForK i.i.d. samples Si1 = {xi1, ..., xin} ∼ P and Si2 = {yi1, ..., yim} ∼ Q the score is

�PPV(S1, S2, �,K) = max
i=1,...,K

�PV(fi(Si1), fi(Si2), �),

where S1, S2 denote theK samples.

We denote �PPVi(�) = �PV(fi(Si1), fi(Si2), �) and PPVi(�) = PV (fi(X), fi(Y ), �) as the value of
the sampled and distributional perturbed variation after the ith projection. The next theorem presents
the convergence rate of �PPV(S1, S2, �,K) under the assumption that PV(P,Q, �) = 0. Under this
assumption, the projected PV is also zero, and �PPV(S1, S2, �,K) converges to PV(P,Q, �).

Theorem 9. Let P andQ be two distributions on the space ([0, 1]d,d), and S1 = {x1, ..., xn} ∼ P
and S2 = {y1, ..., ym} ∼ Q two i.i.d. samples (N = min(n,m)). Perform K i.i.d. random
projections of samples S1 and S2 to one dimension. If PV (P,Q, �) = 0, then for any δ ∈ (0, 1),
with probability at least 1− δ

�PPV(S1, S2, �,K) ≤
�

2 log(2K(21/� − 2)/δ)

N
.

In the following derivations we drop the sample specification of S1, S2 for brevity, and let P0(a)
denote the probability of event a under the assumption PV(P,Q, �) = 0.

Proof. Given PV(P,Q, �) = 0, we have that for allK projections PPVi(�) = 0, as the projection to
1D is a non-expansion. To bound the probability of the event �PPV(S1, S2, �,K) ≥ η we apply the

4Recall that PV=0 not only when the distributions are equal, but also when they are � similar.
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union bound, and then apply Theorem 3 on each of theK projections �PPVi(�) for i = 1, ...,K.

P0

�
�PPV(S1, S2, �,K) ≥ η

�
= P0

�
max

1≤i≤K

�PPVi(�) ≥ η
�

= P0

�
∃1 ≤ i ≤ K : �PPVi(�) ≥ η

�

≤
K�

i=1

P0

�
�PPVi(�) ≥ η

�
≤ K max

1≤i≤K
P0

�
�PPVi(�)− PPVi(�) ≥ η

�

≤ 2K(21/� − 2)e−Nη2/2.

Setting δ = 2K(21/� − 2)e−Nη2/2 concludes the proof.

For PV(P,Q) > 0 , we provide a similar lower bound on the projected perturbed variation. We will
need a further assumption for this bound.
Definition 10. Given distributions P and Q with PV(P,Q, �) > 0, they are 1D distinguishable if
limK→∞ PPVK(P,Q, �) > 0 almost surely.

This assumption of 1D distinguishability ensures that the difference in the PV value exists in at least
one projection.
Theorem 11. Let P andQ be two distributions on the space ([0, 1]d,d) that are 1D distinguishable.
Given i = 1, ...,K i.i.d. samples Si1 = {xi1, ..., xin} ∼ P and Si2 = {yi1, ..., yim} ∼ Q, and
K mappings fi, there exists some q ∈ (0, 1), for which for any δ ∈ (0, 1) with probability at least
1− (q − qδ + δ)K

�PPV(S1, S2, �) ≥
�

2 log(2K(21/� − 2)/δ)

N
.

Notice that q− qδ+ δ < 1, and therefore there is an exponential decay in the number of projections
K.

Proof. Let f : Rd → R define a random projection mappings, and let X and Y be random vari-
ables generated by P and Q. Note that there are two sources of randomization, the sample’s and
the projection’s, and therefore PPVi is also a random variable. The samples are independent and
therefore

P(�PPV(S1, S2, �,K) ≤ η) = P(∀ 1 ≤ i ≤ K , �PPVi(�) ≤ η) =
K�

i=1

P(�PPVi(�) ≤ η). (6)

For each of the projections i = 1, ...,K, we define two complementary events
a : PPVi(�) ≥ 2η and ac : PPVi(�) < 2η.

P(�PPVi(�) ≤ η) = P(a)P(�PPVi(�) ≤ η | a) + P(ac)P(�PPVi(�) ≤ η | ac) (7)

≤ P(a)P
�
�PPVi(�) ≤ PPVi − η | a

�
+ P(ac)P

�
�PPVi(�) ≤ η | ac

�

(∗)
≤ P(a)2(21/� − 2)e−Nη2/2 + P(ac) ≤ P(a)2K(21/� − 2)e−Nη2/2 + 1− P(a).

Inequality (∗) is obtained by applying Theorem 3 for any η ∈ (0, 1).

Setting δ .= 2K(21/� − 2)e−Nη̃2/2 yields η̃ .=
�

2 log(2K(21/�−2)δ)
N . Substituting η̃ into (7) yields

P(�PPVi(�) ≤ η̃) ≤ 1− (1− δ)P(PPVi(�) ≥ 2η̃). (8)

The probability P(PPVi(P,Q, �) ≤ 2η̃) depends on the generating distributionsP andQ. Its support
is [0, supi(PPVi(P,Q, �))]. We assume that supi(PPVi(P,Q, �)) > 0, and therefore there must be
some q ∈ (0, 1) for which for all i = 1, ...,K

P(PPVi(P,Q, �) < 2η̃) ≤ q. (9)

Combining the results of Equations (6)-(9), we have that for any 0 < δ < 1

P(�PPV(S1, S2, �) ≤ η̃) ≤
K�

i=1

(1− (1− δ)P(PPVi(�) ≥ 2η̃)) ≤ (q − qδ + δ)K ,
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which concludes the proof. Note that q−qα+α < 1 always holds, and therefore we get exponential
decay as the number of projections K grows. For example, if q = 1/2, in which case 2η̃ is smaller
then the median, we have (q − qδ + δ)K =

�
1+δ
2

�K
.

Theorems 9 and 11 are complementary, and may be used together to infer whether or not
PV(P,Q) = 0. Next, we describe the suitable hypothesis testing procedure for this goal. Procedure
2 provides statistical tests based on the score �PPV (Definition 8). The procedure tests an hypothesis
of the first type with θ = 0: H(1)

0 : PV (P,Q, �) = 0 against the alternativeH(1)
1 : PV (P,Q, �) > 0.

Procedure 2. Similarity testing based on �PPV.
Input: � level, number of projectionsK, and significance level α.
For i = 1, ...,K do

1. Sample Si1 = {x1, ..., xn} ∼ P and Si2 = {y1, ..., ym} ∼ Q i.i.d. examples on
[0, 1]d.

2. Sample a unit random vector ri ∈ Sd−1.
3. Project to 1D: si1 = {rTi x1, ..., rTi xn} and si2 = {rTi y1, ..., rTi ym}.
4. Compute �PV(si1, si2, �).

end for
Compute �PPV(�,K) = maxi=1,...,K

�PV(si1, si2, �).
Compute t =

�
log(K)+2 log(2(21/�−2))+2 log(1/α)

N , where N = min(n,m).

Output: RejectH0 if �PPV(�,K) > t.

This procedure is more limited than Procedure 1 as it holds only for θ = 0. However, it may provide
better results for high dimensional distributions. Theorems 9 and 11 bound the Type 1 error and Type
2 error of Procedure 2 respectively. The Type 2 error is dependent on the number of projections K,
and the fraction q that is distribution dependent. The bound exponentially decays as K grows, and
therefore, to gain statistical power, a larger number of projections can be used.
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A.3 Proof of Theorem 3

We restate the theorem for clarity:
Theorem 3. Suppose we are given two i.i.d. samples S1 = {x1, ..., xn} ∈ Rd and S2 =
{y1, ..., ym} ∈ Rd generated by distributions P and Q, respectively. Let the ground distance be
d = � · �∞ and let N (�) be the cardinality of a disjoint cover of the distributions’ support. Then,

for any δ ∈ (0, 1), N = min(n,m), and η =
�

2(log(2(2N(�)−2))+log(1/δ))
N we have that

P
�����PV (S1, S2, �)− PV (P,Q, �)

��� ≤ η
�
≥ 1− δ.

The proof of the theorem is carried out in two steps. First, the relations between the continuous
and discrete versions of the PV is formulated. Then, turning to the discrete versions, we bound the
difference between the PV (Problem (2)) of the discretized samples (i.e. the histograms defined on
the discretization) and the discretized distributions. This part of the proof exploits the special form
of the optimization in Problem 2.

Before providing the proof we present the required definitions and lemmas. To aid the reading flow
the proofs of some lammas are presented immediately after the proof of the main theorem. We
assume the domain is totally bounded, and, for simplicity of presentation, we assume the metric
space is ([0, 1]d,d∞ = � · �∞).

We define a discretization on the support of the distributions.
Definition 12 (Discretization). The �-discretization over the space ([0, 1]d,d∞ = � · �∞) is a
partition on the set C(�) = {a1, ..., aN}, with cardinality N = (1/�)d, which covers [0, 1]d. Each
element in ai ∈ C(�) is the center of a box of volume �d, with density equal to the distribution’s
mass in its neighborhood: B(ai,d∞, �) = {z : d∞(ai, z) ≤ �/2}.
We use the following structure of two discretizations:
Definition 13 (Refinement of a discretization). Define an initial �-discretization C1(�) =
{b1, ..., bN(�)} on ([0, 1]d, � · �∞). The refined discretization, for any � and T > 1, is defined
as a ν-discretization on C2(ν) = {a1, ..., aN(ν)}, where ν = �/T , such that each element of the
refinement is a result of equally splitting an element of the initial cover to (�/T )d.

We refer to the discretized versions of the distributions P and Q as µ1(�), µ2(�) respectively, where
� is the size of the partition. Also, we refer to the histograms of the samples S1 and S2 defined on
the same discretization as µ̂1(�), µ̂2(�).

The relation between the different versions of the PV, continuous, discrete and sampled, is provided
in the next lemma.
Lemma 14. Let S1 = {x1, ..., xn} ∼ P and S2 = {y1, ..., ym} ∼ Q be two samples. Let µ1(ν)
and µ2(ν) be the ν-discretizations of P and Q for any integer T > 1 and ν = �

T . Let µ̂1(ν) and
µ̂2(ν) be their empirical distributions. The following relations hold for any �, �� = �(T−1)

T , ��� =
�(T+1)

T and d = � · �∞ :

PV(µ̂1, µ̂2, ���) ≤ �PV(S1, S2, �) ≤ PV(µ̂1, µ̂2, ��) (10)

PV(µ1, µ2, ���) ≤ PV(P,Q, �) ≤ PV(µ1, µ2, ��). (11)

The following representation of Problem (2) will be useful for our derivations.
Lemma 15. The solution of Problem (2) may be obtained by solving the following problem

min
wi,vi,Zij

1

2

N�

i=1

|wi|+
1

2

N�

j=1

|vj | (12)

�

aj∈ng(ai,�)

Zij + wi = µ1(ai), i = 1, ..., N

�

ai∈ng(aj ,�)

Zij + vj = µ2(aj), j = 1, ..., N

Zij ≥ 0, ∀i, j,
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which we call PVeq(µ1(ν), µ2(ν), �).

The lemma states that the constraints wi ≥ 0, vj ≥ 0 may be removed, and instead the sum in the
objective is taken over the absolute values.

The next lemma bounds the difference between the PV of the distributions µ̂1(ν), µ̂2(ν) and the
distributions µ1(ν) and µ2(ν).
Lemma 16. Let C1(�) be an �-discretization on [0, 1]d, and C2(ν) its refined discretization (Defi-
nition 13). Let µ̂i(�) and µi(�) be distributions on C1(�), and µ̂i(ν) and µi(ν) distributions on the
refinement C2(ν). For any � ∈ (0, 1) and d = � · �∞ we have that

|PV(µ̂1(ν), µ̂2(ν), �)− PV(µ1(ν), µ2(ν), �)| ≤
1

2
(�µ1(�)− µ̂1(�)�1 + �µ2(�)− µ̂2(�)�1) .

Observe that the L1-norm is computed over the elements of C1(�), the original discretization rather
than the refinement.

Proof. We bound the difference between PV(µ1, µ2, �) and PVeq(µ̂1, µ̂2, �) instead of the difference
between PV(µ1, µ2, �) and PV(µ̂1, µ̂2, �), as by Lemma 15 the two are equivalent. To bound this
difference we start at the optimal solution for distributions µ1 and µ2 and make the needed changes
to obtain a feasible solution for distributions µ̂1 and µ̂2. This solution may be suboptimal and
therefore upper bounds the value of PVeq(µ̂1, µ̂2, �).

Let opt(µ1, µ2) = {Z∗
ij , w

∗
i , v

∗
j for i, j = 1, ..., N} be the optimal arguments of Problem (2) for

distributions µ1 and µ2; namely,

PV(µ1, µ2, �) =
1

2

N�

i=1

w∗
i +

1

2

N�

j=1

v∗j .

We substitute the variables opt(µ1, µ2) into Problem (12) for distributions µ̂1, µ̂2. To transform
this solution to a feasible solution we must fix the violations that are made to the constraints. The
constraints are fixed in two manners. Some are fixed by optimizing the transportation plan, described
by matrix Z, within the refinement of the discretization. Additional violations are fixed by changing
the variables wj and vj .

We consider the first type of constraint violations. Define sk = {ai : ai ∈ B(bk, � · �∞, �)}; i.e.,
the set of bins ai ∈ C2(ν) that are a refinement of element bk ∈ C1(�) (Definition 13). Let |sk| be
the cardinality of this set. By definition, all the bins in sk are �-neighbors: ∀ai ∈ sk, sk ∈ ng(ai, �).
For any ai, aj ∈ sk, consider the following feasibility problem:

Find Cij (13)

s.t.
�

aj∈sk

Cij = ci, ∀ai ∈ sk,

�

ai∈sk

Cij = bj , ∀aj ∈ sk,

Z∗
ij + Cij ≥ 0, ∀ai, aj ∈ sk,

where

ci
.
= (µ̂1(ai)− µ1(ai))−

1

|sk|
(µ̂1(bk)− µ1(bk)),

bj
.
= (µ̂2(aj)− µ2(aj))−

1

|sk|
(µ̂2(bk)− µ2(bk)).

Note that ci and bi may be positive or negative, and that
�

ai∈sk
ci = 0 and

�
aj∈sk

bj = 0.

In the following, we show that Problem (13) is indeed feasible. First, we rewrite the problem
in vector form. Define v = Vec({Cij}ai,aj∈sk) ∈ R|sk|2×1, the vector form of the sub-matrix
{Cij}ai,aj∈sk . Similarly, let z∗ = Vec({Z∗

ij}ai,aj∈sk) ∈ R|sk|2×1. Let A ∈ R2|sk|×|sk|2

be the zero-one matrix defined by the left-hand sides of the equality constraints in (13), and
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d = [c1, ..., c|sk|, b1, ..., b|sk|]
T ∈ R2|sk|×1, the vector defined by the right-hand sides of these

constraints. Using these notations, Problem (13) is equivalent to

Find v
Av = d , −v − z∗ ≤ 0,

Consider its dual representation: the existence of λ ∈ R|sk|2×1
+ , η ∈ R2|sk|×1 for which

g(λ, η) = inf
v
λT (−v − z∗) + ηT (Av − d) > 0. (14)

The value of g(λ, η) in (14) is not −∞ only when AT η − λ = 0, in which case

g(λ, η) = inf
v
vT (−λ+AT η)− λT z∗ − ηT d = −λT z∗ − ηT d.

Since z∗ ≥ 0 and λ ≥ 0, we have that−λT z∗ ≤ 0. Also, since 1T d =
�

ai∈sk
ci+

�
aj∈sk

bj = 0,
we have that −ηT d ≤ −min η� · 1T d = 0. We conclude that g(λ, η) ≤ 0, and therefore Problem
(14) is infeasible. By the theorem of alternatives Problem (13) is feasible [14].

We claim that the following values feas(µ̂1, µ̂2) = {w̄i, v̄j , Z̄ij for i, j = 1, ..., N(ν) } are a
feasible solution to Problem (12) for distributions µ̂1, µ̂2:

w̄i = w
∗
i +

1

|sk|
(µ̂1(bk)− µ1(bk)) (15)

v̄j = v
∗
j +

1

|sk|
(µ̂2(bk)− µ2(bk))

Z̄ij =

�
Z∗
ij if aj ∈ sck, ai ∈ sk,
Z∗
ij + Cij if aj ∈ sk, ai ∈ sk,

where Cij is the solution to the (13).

First note that the constraints Z̄ij ≥ 0 hold by the feasibility of (13). The equality constraints also
hold, since

�

aj∈ng(ai,�)

Z̄ij + w̄i =
�

aj∈ng(ai,�)

Z∗
ij +

�

aj∈sk

Cij + w̄i =
�

aj∈ng(ai,�)

Z∗
ij + ci + w̄i =

�

aj∈ng(ai,�)

Z∗
ij + µ̂1(ai)− µ1(ai)−

1

|sk|
(µ̂1(bk)− µ1(bk)) + w∗

i +
1

|sk|
(µ̂1(bk)− µ1(bk))

= µ1(ai) + (µ̂1(ai)− µ1(ai)) = µ̂1(ai),
and in a similar manner

�
ai∈ng(aj ,�)

Z̄ij + v̄j = µ̂2(aj).

To conclude the proof, we bound the difference of the objective of Problem (2), obtained with the
values opt(µ1, µ2), and the objective of Problem (12), obtained with the values feas(µ̂1, µ̂2). We
have that

PV (µ̂1(ν), µ̂2(ν), �)− PV (µ1(ν), µ2(ν), �) =

= PVeq(µ̂1(ν), µ̂2(ν), �)− PV (µ1(ν), µ2(ν), �)
(a)

≤ 1

2

N(ν)�

i=1

(|w̄i|+ |v̄i|)−
1

2

N(ν)�

i=1

(w∗
i + v

∗
i )

=
1

2

N(�)�

k=1

�

ai∈sk

(|w̄i|+ |v̄i|)−
1

2

N(ν)�

i=1

(w∗
i + v

∗
i )

(b)

≤ 1

2

N(�)�

k=1

�

ai∈sk

|w∗
i +

1

|sk|
(µ̂1(bk)− µ1(bk))|

+
1

2

N(�)�

k=1

�

ai∈sk

|v∗i +
1

|sk|
(µ̂2(bk)− µ2(bk))| −

1

2

N(ν)�

i=1

(w∗
i + v

∗
i )

(c)

≤ 1

2

N(ν)�

i=1

w∗
i +

1

2

N(ν)�

i=1

|µ̂1(ai)− µ1(ai)|+
1

2

N(ν)�

i=1

v∗i +
1

2

N(ν)�

i=1

|µ̂2(ai)− µ2(ai)| −
1

2

N(ν)�

i=1

(w∗
i + v

∗
i )

=
1

2
�µ̂1(�)− µ1(�)�1 +

1

2
�µ̂2(�)− µ2(�)�1.
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Inequality (a) holds since the solution feas(µ̂1, µ̂2) is a feasible solution of Problem (12), and may
be suboptimal. Equality (b) is obtained by substituting feas(µ̂1, µ̂2) and by noting that C1(ν) is a
refinement C2(�) (Definition 13). Inequality (c) is obtained by applying the triangle inequality on
each element in the sum and noting that by definition w∗

i , v
∗
j ≥ 0.

Using an analogous procedure starting at the optimal solution for µ̂1(ν), µ̂2(ν) and finding a feasible
solution for distributions µ1(ν), µ2(ν) we obtain

PV (µ1(ν), µ2(ν), �)− PV (µ̂1(ν), µ̂2(ν), �) ≤
1

2
�µ1(�)− µ̂1(�)�1 +

1

2
�µ2(�)− µ̂2(�)�1.

Combining the last two inequalities concludes the proof of Lemma 16.

For the convergence rates of the discrete distributions, we use the following result provided by [15]
(Theorem 2.1).
Lemma 17. Let µ be a probability distribution on the set A = 1, ..., a. Let X = x1, x2, ..., xN
be i.i.d. random variables distributed according to µ, and µ̂N the resulting empirical distribution.
Then, for η > 0

P(�µ− µ̂N�1 ≥ η) ≤ (2a − 2)e−Nη2/2.

We are now ready to provide the proof of the main theorem.

Proof. Theorem 3

Set �� = �(T−1)
T and ��� = �(T+1)

T , and define

m(T ) = PV (µ1(ν), µ2(ν), �
�)− PV (µ1(ν), µ2(ν), ���).

By Lemma 14, the value ofm(T ) is positive. Combining Lemma 14 with Lemma 16 yields

�PV(S1, S2, �) ≤ PV(µ̂1(ν), µ̂2(ν), ��) (16)

≤ PV(µ1(ν), µ2(ν), ��) +
1

2
�µ1(��)− µ̂1(��)�1 +

1

2
�µ2(��)− µ̂2(��)�1

= PV(µ1(ν), µ2(ν), ���) +m(T ) +
1

2
�µ1(���)− µ̂1(���)�1 +

1

2
�µ2(���)− µ̂2(���)�1

≤ PV(P,Q, �) +m(T ) +
1

2
�µ1(��)− µ̂1(��)�1 +

1

2
�µ2(��)− µ̂2(��)�1.

Recall that the number of elements for an �-discretization on C1(�) is N (�) = (1/�)d. By applying
Lemma 17 to �µ1(��) − µ̂1(��)�1 ≤ η and �µ2(��) − µ̂2(��)�1 ≤ η and inserting the result to (16)
using the union bound, we have that with probability at least 1− 2(2(1/�

�)d − 2)e−Nη2/2

�PV(S1, S2, �)− PV(P,Q, �) ≤ m(T ) + η. (17)

In a similar manner we have we have that with probability at least 1− 2(2(1/�
��)d − 2)e−Nη2/2

PV(P,Q, �)− �PV(S1, S2, �) ≤ m(T ) + η. (18)

For T � � we have that �� ≈ ��� = � , and therefore the value of m(T ) → 0 as T → ∞. Taking
T → ∞ in (17) and (18) concludes the proof.

Proofs of Lemmas 14,15

Proof. Lemma 14

Let sample xi ∈ S1 belong to the element ak in the ν-discretization, that is xi ∈ B(ak, � · �∞, ν =
�
T ). Recall that the �-neighborhood of a sample xi is the set ng(xi, �) = {z : d(xi, z) ≤ �}, and the
�(T+1)

T -neighborhood of bin ak is the set ng(ak,
�(T+1)

T ) = {z : d(ak, z) ≤ �(T+1)
T }. For the left

side of (10), observe that for any such xi there exists values of z such that �z − ak�∞ ≤ �(T+1)
T

17



but �z − xi�∞ > �, while for any z for which �z − xi�∞ ≤ � also �z − ak�∞ ≤ �(T+1)
T . As a

result, ng(xi, �) ⊆ ng(ak,
�(T+1)

T ). Enlarging the number of neighbors adds edges to the bipartite
graph describing the problem, and accordingly, a matching with a larger cardinality may be found.
In such a case, the number of unmatched samples is decreased, and therefore the PV is decreased,
as it is the normalized sum of the unmatched samples.

For the right hand side of (10), observe that when the discretization is �(T−1)
T , for any point xi ∈

B(ak, � · �∞, ν) we have that ng(xi, �) ⊇ ng(ak,
�(T−1)

T ), as the �-neighborhood of each point mass
encloses the �(T−1)

T -neighborhood of its ascribed bin. As a result, the PV between the histograms
µ̂1 and µ̂2 may correspond to a graph that has less edges, which may result in a maximum matching
with a smaller cardinality. As a result, the discrete version may have a larger PV.
Inequalities (11) hold, as the same claims apply for the discretization of the distributions.

Proof. Lemma 15

First note that any solution of Problem (2) is a feasible solution of Problem (12), and so we have
that the optimum PV(µ1(ν), µ2(ν), �) ≥ PVeq(µ1(ν), µ2(ν), �). We construct a solution of (2)
that realizes the equality, and therefore is optimal. Namely, to show the problems are equivalent
it is sufficient to show that any solution of (12) has a corresponding solution of (2) with the same
objective value.

Let wi, vj , Zij be the solution to (12). In the following, we construct a feasible solution w̃i, ṽi, Z̃ij

to (2):

If wi < 0 and vi > 0 set Δi = |wi| and
w̃i = wi +Δi = 0, ṽi = vi +Δi > 0,

�

aj∈ng(ai)

Z̃ij =
�

aj∈ng(ai)

Zij −Δi.

If vi < 0 and wi > 0 set Γj = |vj | and
ṽi = vi + Γi = 0, w̃i = wi + Γi > 0,

�

aj∈ng(ai)

Z̃ji =
�

aj∈ng(ai)

Zji − Γi.

If both wi < 0 and vi < 0 set

w̃i = wi +Δi + Γi > 0, ṽi = vi +Δi + Γi > 0,
�

aj∈ng(ai)

(Z̃ij + Z̃ji) =
�

aj∈ng(ai)

(Zij + Zji)−Δi − Γi.

Otherwise, set w̃i = wi, ṽj = vj , and Z̃ij = Zij .

The resulting w̃i, ṽj , Z̃ij obey the equality constraints in (2) while fixing w̃i ≥ 0, ṽj ≥ 0. It is easy
to show that there exists Z̃ij ≥ 0 that obeys the equalities above. The objective value of (12) with
wi, vj , Zij and of (2) with w̃i, ṽj , Z̃ij is equal:

N�

i=1

w̃i +

N�

j=1

ṽj =

N�

i=1

(wi + vi)1[wi≥0 , vi≥0] +

N�

i=1

((wi +Δi) + vi +Δi)1[wi<0 , vi≥0]+

N�

j=1

(wj + Γj + (vj + Γj))1[wj≥0 , vj<0] +

N�

i=1

((wi +Δi + Γi) + (vi + Γi +Δi))1[wi<0 , vi<0]

=

N�

i=1

|wi|+
N�

j=1

|vj |.

We conclude that w̃i, ṽj , Z̃ij attains the optimal solution to Problem (2).
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A.4 Proof of Theorem 4

We restate the theorem:
Theorem 4. Let P = Q be the uniform distribution on Sd−1, a unit (d − 1)–dimensional hyper-
sphere. Let S1 = {x1, ..., xN} ∼ P and S2 = {y1, ..., yN} ∼ Q be two i.i.d. samples. For

any �, ��, δ ∈ (0, 1), 0 ≤ η < 2/3 and sample size log(1/δ)
2(1−3η/2)2 ≤ N ≤ η/2ed(1−

�2

2 )/2, we have
PV (P,Q, ��) = 0 and

P(�PV (S1, S2, �) > η) ≥ 1− δ. (19)

Proof. We use the following definitions and lemmas.

Definition 18. The spherical cap of radius r about a point x is

C(r, x) =
�
z ∈ Sd−1 : d(z, x) ≤ r

�
.

Lemma 19. The spherical cap of radius r about a point x on a unit sphere is equal to

C(r, x) =

�
z ∈ Sd−1 :< z, x >≥

�
1− r

2

2

�
.

Lemma 20. Let η =
�
1− r2

2 . For 0 ≤ η < 1, the cap C(r, x) on Sd − 1 has a measure at most

e−dη2/2.

Let p = P(ngS2
(x) = ∅) be the probability of an empty neighbor set. The next lemma bounds this

probability.

Lemma 21. The probability of an empty neighbor set P(ngS2
(x) = ∅) ≥ 1−Ne−d(1− �2

2 )/2.

Proof.

p =P(ngS2
(x) = ∅) = 1− P(ngS2

(x) �= ∅) = 1− P(∃yj ∈ S2 ; yj ∈ C(�, xi))

≥ 1−NP(y ∈ C(�, x)) ≥ 1−Ne−d(1− �2

2 )/2,

where the first inequality is due to the union bound, and the second by Lemma 20.

We consider the probability that the �PV is grater than some 0 ≤ η < 1. Note, that since
PV (P,Q) = 0 this is also the difference between the empirical and distributional PV. Let
e = {xi ∈ S1 : ngS2

(xi) = ∅} be the set of samples in S1 without neighbors, and Ne its car-
dinality.

P(�PV (S1, S2, �) > η) ≥ P(
Ne

N
> η) = 1− P(Ne ≤ Nη) ≥ 1− P(Ne ≤ �Nη�) (20)

= 1−
�Nη��

i=0

�
N

i

�
(p)i(1− p)N−i.

The first inequality holds, as �PV (S1, S2, �) > η is obtained when Ne > ηN samples from S1 have
no neighbors from S2 in their �-neighborhood. Note that since n = m there are also exactly Ne

sample from S2 which are not matched.

By Chernoff’s inequality we have that

�Nη��

i=0

�
n

i

�
(1− p)ipN−i ≤ exp(−2N(p− η)2). (21)

Combining Equations (20) and (21) we get

P(�PV (S1, S2, �) > η) ≥ 1− exp(−2N(p− η)2). (22)
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By Lemma 21, we have that p ≥ 1−Ne−d(1− �2

2 )/2.

If 0 ≤ η < 2/3 and Ne−d(1− �2

2 )/2 < η/2, we have that

p− η ≥ 1−Ne−d(1− �2

2 )/2 − η > 1− 3η/2 > 0.

Substituting the last inequality to (22):

P(�PV (S1, S2, �) > η) ≥ 1− exp(−2N(1− 3η/2)2).

The theorem statement is obtained for any N, d and η for which 2N(1− 3η/2)2 ≥ log( 1δ ).
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