A The Perturbed Variation - Supplementary Material

A.1 Hypothesis Testing Procedures

The statistical tests in this section are based on the convergence bounds in Section 4.

Notations Throughout this section the probabilities Py and P; represent the probability condi-
tioned on the null hypothesis H,, and the alternative hypothesis ;.

The following procedure tests the hypothesis 7—[(()1) : PV(P,Q, ¢) < 0 against the alternative ’Hgl) :
PV(P,Q,¢) > 0.

Procedure 1. Similarity Testing Based on PV.
Input: €, 0 and significance level a.

Sample S1 = {x1,...,xn} ~ Pand So = {y1, ..., ym} ~ Q (define N = min(n, m)).
Normalize the data to be in [0, 1]<.

1.

2.

3. Compute Ig‘\/(Sl, Sa, 6 || - ||oo) by Algorithm 1.
(21log(2(201/9% —2))+210g(1/a)

) N reeE

Compute t =

Output: Reject ’Hél) if
PV (51,52, 6| - |oc) >t +6

The probability to reject ’H((Jl) by applying Procedure 1 when in fact it holds — also known as the
Type 1 error — is bounded in the following corollary.

Corollary 6. Assume that for a given € and 0 values 7-[(()1) : PV(P,Q,¢e,d) < 60 holds. Then for
the threshold t of Procedure 1 and any o € (0, 1) we have that

Po (PV(S1, 8,6, <) 2 t+6) < o )

Moreover, the procedure is consistent: when n,m — o0 we have that t — 0 and

Py (PV(S1, 90,6, - o) > 6) = L.
The corollary is a direct result of Theorem 3.

Next, we consider the probability that Procedure 1 fails to reject 7—[(()1) when the alternative hypothesis

'Hgl) holds, also known as the Type 2 error. Unfortunately, it is not possible to bound this probability
for a finite sample of any two distributions. To see this, consider the following example: let P, () be
two distributions with PV (P, @, ¢) > 0, but differ only in an area of very low probability. Then,
for any finite sample size, there is a high probability that the samples are identical, resulting in

2% (51, 52,€) = 0. As a result, the null hypothesis will not be rejected even though Hgl) holds.

However, if the PV is larger than some constant the Type 2 error is bounded.

Corollary 7. For PV(P,Q,e,d) > 6 + t + b, with t of Procedure 1, and b =

\/ 2(log(2(2/9)? ~2)) +2log(1/8)
N

we have that

P (PV(S1, 526 lloo) > t+0) =1 5.

Note that as N grows, the values of b and ¢ get smaller, and the lower bound PV (P, Q,¢,d) >
0 4+ t + b decreases.

Proof. We have that
P, (ﬁx\/(sl,sz,e, - lloo) > t+0> P, (1317(51,52,6, - lloc) >b4t+6— b) >

P (PV(S1, 52,6 o) > PV(P, Qi |- [loc) =) = 1= 5.
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The first inequality holds by inserting the assumption on PV, and the second holds by applying the
convergence bound of Theorem 3. O

To give an estimate of the sample size needed for the procedure, first define the effect size 6y: the
minimal value of PV that is significant. Given 6, set the sample size so that

. 410g(2(21/9" — 2)) 4 2log(1/a) + 2log(1/B)

N
03

Using this size ensures a false positive rate bounded by « (Corollary 6), and a false negative rate
bounded by S (Corollary 7).

The second test we consider is an equivalence type test [11]. Equivalence is achieved when
PV(P,Q,¢€) < 0, for some chosen 6, and may be obtained by switching the roles of the null and the
alternative of Procedure 1. Namely, to claim similarity we need to reject 7—[62) :PV(P,Q,¢) > 6. To
test this hypothesis, a similar procedure to Procedure 1 may be applied, with a principal difference
in the rejection area, which is changed to PV (S, Sa, €, || - ||oo) < 6 — t.

A.2 1D Projections

We present a method to gain insight on the value of the PV by multiple random projections to
one dimension. While the PV between two distributions is not retained after projection to a single
dimension, as the projection is a non-expansive mapping of the samples, we show that multiple
Erojections can still aid to distinguish between two situations: PV(P, Q,€) = 0 and PV(P, Q,€) # 0

We define a score that is based on the value of the PV after projections.

Definition 8. Let f; : RY — R fori = 1, ..., K define a set of random projection mappings, and let
X and'Y be random variables with distributions P and Q). The projected perturbed variation of two
distributions P and Q) is

PPV(P,Q,e,K) = I{laXKPV(fi(X),fi(Y),e).

For K i.i.d. samples S;1 = {x;1,...,xin} ~ P and S;o = {yi1, ..., Yim } ~ Q the score is
PPV(S), S, 6, K) = 4_I{IaXKﬁ/(fi(Sil)afi(SiQ)vg)a
where S1, Sy denote the K samples.

We denote PPV (¢) = PV(fi(Si1), fi(Si2), €) and PPV;(e) = PV (f;(X), f:(Y), €) as the value of
the sampled and distributi/ogal perturbed variation after the ¢th projection. The next theorem presents
the convergence rate of PPV (.S, S, €, K) under the assumption that PV(P, Q, ) = 0. Under this
assumption, the projected PV is also zero, and P/I’V(Sl, Sa, €, K) converges to PV(P, Q, ¢).
Theorem 9. Let P and Q be two distributions on the space ([0,1]%,d), and S; = {x1,....,x,} ~ P
and Sa = {y1,...;Ym} ~ Q two iid. samples (N = min(n,m)). Perform K i.id. random
projections of samples S1 and Ss to one dimension. If PV (P,Q,¢) = 0, then for any 6 € (0,1),
with probability at least 1 — §

e 1/e _
BBV(S1, S, ¢, K) < \/ e

In the following derivations we drop the sample specification of S, .S for brevity, and let Py(a)
denote the probability of event a under the assumption PV (P, @, ¢) = 0.

Proof. Given PV (P, Q,€) = 0, we have that for all K projections PPV, (e) = 0, as the projection to
1D is a non-expansion. To bound the probability of the event PPV(S7, Sa, €, K) > n we apply the

*Recall that PV=0 not only when the distributions are equal, but also when they are ¢ similar.
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union bound, and then apply Theorem 3 on each of the K projections P/PVz(e) fori=1,.. K.

Py (P/IR/(Sl,S%e,K) > 17) =Py (fgég&(ﬁ@(e) > 77> =Py (31 <i<K: P/ﬁ/z(e) > 17)

K
< ; Po (PPVi(e) 2 1) < K max Po (PPVi(c) ~ PPVi(c) 2 1)
< 2K(2Y€ — 2)eN'/2,

Setting § = 2K (21/¢ — 2)e~Nn"/2 concludes the proof. O

For PV(P, Q) > 0, we provide a similar lower bound on the projected perturbed variation. We will
need a further assumption for this bound.

Definition 10. Given distributions P and @Q with PV(P,Q,¢) > 0, they are 1D distinguishable if
limg oo PPV (P, Q,€) > 0 almost surely.

This assumption of 1D distinguishability ensures that the difference in the PV value exists in at least
one projection.

Theorem 11. Let P and Q be two distributions on the space ([0, 1]%, d) that are 1D distinguishable.
Giveni = 1,...,K iid. samples Siy = {1, ..., Tin} ~ P and Siz = {yi1, ., Yim} ~ Q, and
K mappings f;, there exists some q € (0,1), for which for any § € (0,1) with probability at least

1-(q—qd+6)~

— 1/e _
FPV(S1. 50.6) > \/2log(2K(?v 2)/5).

Notice that ¢ — gd + 9 < 1, and therefore there is an exponential decay in the number of projections
K.

Proof. Let f : R — R define a random projection mappings, and let X and Y be random vari-
ables generated by P and (). Note that there are two sources of randomization, the sample’s and
the projection’s, and therefore PPV is also a random variable. The samples are independent and
therefore
K
P(PPV(S1, 52,6, K) <n) =P(V1<i< K,PPV;(e) <n) = HIP(PPVi(e) <n). (6)
i=1
For each of the projections ¢ = 1, ..., K, we define two complementary events
a: PPV;(e) > 2nand a® : PPV;(e) < 2.
P(PPV;(e) < 1) = P(a)P(PPV;(e) < na) + P(a*)P(PPV;(e) < 1] a°) )

< P(a)P (PPVi(e) < PPV — ] a) + P(a")P (PPV;(e) < o)

(%)
< P(a)2(2Y¢ — 2)e N7 /2 L P(a®) < P(a)2K (2Y/€ — 2)e N /2 4 1 — P(a).

Inequality (*) is obtained by applying Theorem 3 for any 7 € (0, 1).

Setting § = 2K (21/¢ — 2)e=N"/2 yields fj = 1/ 28K =2)0) gupgtituting 7 into (7) yields

P(PPV;(e) < 7j) < 1 — (1 — §)P(PPV;(e) > 27). (8)

The probability P(PPV; (P, @, €) < 27}) depends on the generating distributions P and Q. Its support
is [0, sup,; (PPV;(P, @, €))]. We assume that sup, (PPV;(P, @, ¢)) > 0, and therefore there must be
some ¢ € (0, 1) for which forall i = 1,..., K
Combining the results of Equations (6)-(9), we have that for any 0 < § < 1

K

P(PPV(Sy, S2,¢) < 7)) < [ (1= (1 = 6)P(PPVy(e) > 207)) < (q — g0 + )",
i=1
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which concludes the proof. Note that g —ga+ o < 1 always holds, and therefore we get exponential
decay as the number of projections K grows. For example, if ¢ = 1/2, in which case 27 is smaller

then the median, we have (¢ — qé + 5)K = (%)K O

Theorems 9 and 11 are complementary, and may be used together to infer whether or not
PV(P, Q) = 0. Next, we describe the suitable hypothesis testing procedure for this goal. Procedure

2 provides statistical tests based on the score PPV (Definition 8). The procedure tests an hypothesis
of the first type with 6 = 0: 7—[(()1) : PV(P,Q, ¢) = 0 against the alternative Hgl) : PV(P,Q,¢) > 0.

Procedure 2. Similarity testing based on PPV.

Input: e level, number of projections K, and significance level .
Fori=1,..., K do

1. Sample Siy = {x1,....,x,} ~ Pand Sio = {y1, ..., ym } ~ Q i.i.d. examples on
[0, 1]<.

2. Sample a unit random vector r; € S,

3. Projectto 1D: s;1 = {rlaxy,...,rFa,} and sio = {rFy1, ..., T ym}.

4. Compute PV(s;1, si2, €).

end for -
Compute PPV(e, K) = max;=1, .k PV(si1, si2, €).

Compute t = \/10g(K)+210g(2(21}\/,€_2))+210g(1/a), where N = min(n, m).

Output: Reject H, ifP/P?V(e, K) >t

This procedure is more limited than Procedure 1 as it holds only for # = 0. However, it may provide
better results for high dimensional distributions. Theorems 9 and 11 bound the Type 1 error and Type
2 error of Procedure 2 respectively. The Type 2 error is dependent on the number of projections K,
and the fraction ¢ that is distribution dependent. The bound exponentially decays as K grows, and
therefore, to gain statistical power, a larger number of projections can be used.
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A.3 Proof of Theorem 3

We restate the theorem for clarity:

Theorem 3. Suppose we are given two iid. samples S, = {x1,...,z,} € R? and Sy =
{Y1, s ym} € RY generated by distributions P and Q, respectively. Let the ground distance be
d = || - ||eo and let N (€) be the cardinality of a disjoint cover of the distributions’ support. Then,

forany § € (0,1), N = min(n, m), and n = \/2(10‘%(2(2/\/(5)]_\,2))+1°g(1/5)) we have that

P(FV@LS%dfPVQZQx)

<n)z1-4

The proof of the theorem is carried out in two steps. First, the relations between the continuous
and discrete versions of the PV is formulated. Then, turning to the discrete versions, we bound the
difference between the PV (Problem (2)) of the discretized samples (i.e. the histograms defined on
the discretization) and the discretized distributions. This part of the proof exploits the special form
of the optimization in Problem 2.

Before providing the proof we present the required definitions and lemmas. To aid the reading flow
the proofs of some lammas are presented immediately after the proof of the main theorem. We
assume the domain is totally bounded, and, for simplicity of presentation, we assume the metric
space is ([0, 1]%, doo = || - ||0o)-

We define a discretization on the support of the distributions.

Definition 12 (Discretization). The e-discretization over the space 5[07 119 de = || - ||oo) is @
partition on the set C(€) = {ay, ..., an}, with cardinality N = (1/¢)%, which covers [0, 1]%. Each
element in a; € C(e) is the center of a box of volume €%, with density equal to the distribution’s
mass in its neighborhood: B(a;,dw,€) = {2z : doo(ai, 2) < €/2}.

We use the following structure of two discretizations:

Definition 13 (Refinement of a discretization). Define an initial e-discretization Cy(e) =
{b1,...; b} on ([0,1]% || - |oc)- The refined discretization, for any € and T > 1, is defined
as a v-discretization on Co(v) = {a1,...,an()}, where v = ¢/T, such that each element of the
refinement is a result of equally splitting an element of the initial cover to (e/T)".

We refer to the discretized versions of the distributions P and @ as pi1(€), ua(€) respectively, where
€ is the size of the partition. Also, we refer to the histograms of the samples .S; and S5 defined on
the same discretization as i (€), fi2(€).

The relation between the different versions of the PV, continuous, discrete and sampled, is provided
in the next lemma.

Lemma 14. Let S; = {z1,....,xn} ~ Pand So = {y1,....,ym} ~ Q be two samples. Let 111 (v)
and p3(v) be the v-discretizations of P and Q) for any integer T' > 1 and v = %. Let ji1(v) and

fio(v) be their empirical distributions. The following relations hold for any ¢, € = @, e =
eT+1) ndd — .
=7 andd = || - ||« :
PV(jix, fiz, €") < PV(S1, Sa,€) < PV(jur, fiz, ) (10)
PV(M17M27€H) SPV(Pane) SPV(Ml,Mg,G/). (11)

The following representation of Problem (2) will be useful for our derivations.
Lemma 15. The solution of Problem (2) may be obtained by solving the following problem

1 1 Y
Wi 5D hwil 5 12
=1 j=1
Z Zij +w; = pa(a), i=1,..,N
aj€ng(aie)

Z Zij +’Uj = ,ug(aj), ] = 1,...,N
a;eng(ay,e)

Zij >0, Vi, 7,
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which we call PVeq(p1(v), pa(v), €).

The lemma states that the constraints w; > 0, v; > 0 may be removed, and instead the sum in the
objective is taken over the absolute values.

The next lemma bounds the difference between the PV of the distributions fi; (v), fi2(v) and the
distributions p1(v) and pa(v).

Lemma 16. Let Cy(€) be an e-discretization on [0, 1]¢, and C3(v) its refined discretization (Defi-
nition 13). Let [i;(€) and p;(€) be distributions on C1(€), and [1;(v) and p;(v) distributions on the
refinement Co(v). Forany € € (0,1) and d = || - ||oc we have that

IPV(jiir(v), fiz(v), €) = PV(p1 (v), pa(v), €)] < % (lpa(e) = Aa(e)llr + llua(e) — fz(e)lr) -

Observe that the L;-norm is computed over the elements of C (¢), the original discretization rather
than the refinement.

Proof. We bound the difference between PV (1, p12, €) and PV 4 (fi1, {12, €) instead of the difference
between PV (u1, po, €) and PV(fiq, fio, €), as by Lemma 15 the two are equivalent. To bound this
difference we start at the optimal solution for distributions 47 and po and make the needed changes
to obtain a feasible solution for distributions fi; and fio. This solution may be suboptimal and
therefore upper bounds the value of PV, (fi1, fi2, €).

*

Let opt(p1, p2) = {Z};, wi,vj fori,j = 1,..., N} be the optimal arguments of Problem (2) for
distributions ;1 and ps; namely,

N N

PV (1, po, €) = %wa + %Zv;‘

i=1 j=1

We substitute the variables opt(u1, 12) into Problem (12) for distributions fi1, fiz. To transform
this solution to a feasible solution we must fix the violations that are made to the constraints. The
constraints are fixed in two manners. Some are fixed by optimizing the transportation plan, described
by matrix Z, within the refinement of the discretization. Additional violations are fixed by changing
the variables w; and v;.

We consider the first type of constraint violations. Define s = {a; : a; € B(bg, || - ||, €)}; i-€.,
the set of bins a; € Cy(v) that are a refinement of element b, € C;(e) (Definition 13). Let |sy| be
the cardinality of this set. By definition, all the bins in sy, are e-neighbors: Va,; € s, si € ng(a,,€).
For any a;, a; € sy, consider the following feasibility problem:

s.t. Z Cij =c¢;, Va; € s,
aj;Esg
Z C” = bj, Vaj € Sk,
a; sy

Z:j + Cij > 0, Vai,aj € Sk,

where

by = (a(a) = a(0;)) = 1o Gn(be) = (b))

Note that ¢; and b; may be positive or negative, and that > ¢;=0and ) a;Esn b; = 0.

a; €Sk
In the following, we show that Problem (13) is indeed feasible. First, we rewrite the problem
in vector form. Define v = Vec({Cij}a,,a;es.) € R\Sk|2xl, the vector form of the sub-matrix

{Cij}araes,. Similarly, let 2* = Vec({Zf}ayajes.) € RIFFTXI Let A € R2selxlsl’
be the zero-one matrix defined by the left-hand sides of the equality constraints in (13), and
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d = [C1,.0esClsy|s b1, ooy by )T € R2IS:IXL the vector defined by the right-hand sides of these
constraints. Using these notations, Problem (13) is equivalent to

Find v
Av=d, —-v-—2z*<0,
2
Consider its dual representation: the existence of A € R‘j:’“l Xl, n € R2Isk1X1 for which

g\ n) =inf AT (—v — 2*) + nT (Av — d) > 0. (14)

The value of g(),7n) in (14) is not —oo only when AT — X\ = 0, in which case
g\ n) =inf ol (=X + ATn) = N2* —pTd = -N\2* —yTa.

Since z* > 0 and )\ > 0, we have that —\T2* < 0. Also, since 17d = Zaie% ¢ —|—Zaj€sk b; =0,
we have that —n7'd < —minn, - 17d = 0. We conclude that g(\,n) < 0, and therefore Problem
(14) is infeasible. By the theorem of alternatives Problem (13) is feasible [14].

We claim that the following values feas(fi1, fi2) = {w;, v, Z;; fori,j = 1,..,N(v) } are a
feasible solution to Problem (12) for distributions /i1, fio:

; ! (i) = () (15)

1
v =vj + s |(M2(bk) pi2(br))
Z, — Z5 ifa; € 5§, a; € sy,
J Z:j + CU ifaj € Sk, a; € Sk,

wl—w +

where C}; is the solution to the (13).

First note that the constraints Zij > 0 hold by the feasibility of (13). The equality constraints also
hold, since

Yo Zy+wi= Y. Zh+ Y Cytwi= Y Zitcitw=

a;eng(a;,e€) aj;eng(a;,e€) ajEsy a;eng(a;,e€)
% oA 1. 1
>z + nla) — pa(a;) — m(ﬂl(bk) — pa(bi)) +wi + B |(M1(bk) p (bk))
a;eng(a;,e€) k
= pa(ai) + (f1(a;) — pa(a;)) = fun(aq),
and in a similar manner ZaiEng(aM) Zii + 05 = fi2(ay).
To conclude the proof, we bound the difference of the objective of Problem (2), obtained with the

values opt(p1, f12), and the objective of Problem (12), obtained with the values feas(fi1, fiz). We
have that

PV(ﬂl(”)?[Q(”)’e) - PV(MI(V)MUQ(V)vE) =

A A (@) 1 o 1 . .
= PVeq(fn(v), fi2(v), €) = PV (11 (v), p2(v), €) < 5 > (lwi + |mil) — 3 > (w + 1))
=1 =1
1 N (e 1 N(v) ® 1 N (e)
=3 Z Z (@il +vil) = 5 D (wi+0f) < 3 | i‘+f(u1(bk) 111 (br))|
k=1 a;E€s i=1 k=1 a;Esp
1 N(e) 1 N(v)
+3 > Z Mz(bk) p2(bi)) = 5 > (wi+v))
k=1 a;€s =1
(@ 1 N L N LN LN L N
§§§_: Pt Zlmal — (@) + 5 Zv+ Z\um uzaz)l—fig(wﬁvi)
1. .
= 5 llA(e) = (el + §IIM2(€) — p2(e)]|1-
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Inequality (a) holds since the solution feas(fi1, fi2) is a feasible solution of Problem (12), and may
be suboptimal. Equality (b) is obtained by substituting feas(fi1, fi2) and by noting that C; (v) is a
refinement Cy(¢) (Definition 13). Inequality (c¢) is obtained by applying the triangle inequality on
each element in the sum and noting that by definition w;, v} > 0.

Using an analogous procedure starting at the optimal solution for fi; (v), fi2(v) and finding a feasible
solution for distributions p1(v), pu2(v) we obtain

PV (pr(v), p2(v), €) = PV (jir (v), fiz(v), €) < %Ilm(e) — (el + %Iluz(e) — f2(e)l1-

Combining the last two inequalities concludes the proof of Lemma 16. O

For the convergence rates of the discrete distributions, we use the following result provided by [15]
(Theorem 2.1).

Lemma 17. Let p be a probability distribution on the set A = 1,...,a. Let X = x1,%2,...,TN
be i.i.d. random variables distributed according to i, and [ the resulting empirical distribution.
Then, forn >0

P(|lp — vy > 1) < (2% — 2)e N7/,

We are now ready to provide the proof of the main theorem.

Proof. Theorem 3
Sete = G(TT_D and €’ = E(L;D, and define
m(T) = Pv(ﬂl(y)vlLZ(V)a 6/) - PV(H’l(V)a ,U'Q(V)v 6//)'

By Lemma 14, the value of m(T') is positive. Combining Lemma 14 with Lemma 16 yields
PV(S, S5, €) < PV(jun(v), fia(v), €) (16)
< PV(ua(v), 1), €) + () = n(€) s + 5 laa(e) — o)l
= BV () o). ") (T (€)= (€ + g la(e”) — fal)

SPV(P, Q)+ m(T) + gllim(e) — in(€) s + 5 lua(e) — o)l

Recall that the number of elements for an e-discretization on C1 (€) is V'(¢) = (1/¢)?. By applying
Lemma 17 to ||pu1(€') — i1 (€')]|1 < mand ||u2(€’) — fi2(€')|l1 < n and inserting the result to (16)

using the union bound, we have that with probability at least 1 — 2(2(1/¢)" — 2)e=Nn"/2
PV(S1,S2,¢) = PV(P,Q,¢) < m(T) +1. (17
In a similar manner we have we have that with probability at least 1 — 2(2(1/¢)* — 2)e=Nn*/2
PV(P,Q,€) — PV(Sy, Sa,¢) < m(T) +1. (18)
For T' > € we have that ¢ &~ ¢”” = ¢, and therefore the value of m(T) — 0 as T — oo. Taking
T — oo in (17) and (18) concludes the proof. O
Proofs of Lemmas 14,15

Proof. Lemma 14

Let sample x; € S belong to the element ay, in the v-discretization, that is x; € B(ag, || - ||cc, ¥ =

% ). Recall that the e-neighborhood of a sample x; is the set ng(x;, €) = {2 : d(w;, z) < €}, and the

6(Ti;l)-neighborhood of bin ay, is the set ng(a, @) ={z:d(ag,z) < @} For the left

side of (10), observe that for any such x; there exists values of z such that ||z — ag|lcc < @
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but ||z — x;|lec > €, while for any z for which ||z — z;|lcc < €also ||z — aklec < E(LTH) As a

result, ng(z;, €) C ng(ay, %) Enlarging the number of neighbors adds edges to the bipartite
graph describing the problem, and accordingly, a matching with a larger cardinality may be found.
In such a case, the number of unmatched samples is decreased, and therefore the PV is decreased,
as it is the normalized sum of the unmatched samples.

e(T—-1)

For the right hand side of (10), observe that when the discretization is ==, for any point z; €
Blag, || |lcos Iz) Wf; have that ng(x;, €) 2 ng(ag, e(qul) ), as the e-neighborhood of each point mass
T-1

encloses the €T-neighborhood of its ascribed bin. As a result, the PV between the histograms
[11 and fi2 may correspond to a graph that has less edges, which may result in a maximum matching
with a smaller cardinality. As a result, the discrete version may have a larger PV.

Inequalities (11) hold, as the same claims apply for the discretization of the distributions. [

Proof. Lemma 15

First note that any solution of Problem (2) is a feasible solution of Problem (12), and so we have
that the optimum PV (u1(v), po(v),€) > PVeq(p1(v), po(v),€). We construct a solution of (2)
that realizes the equality, and therefore is optimal. Namely, to show the problems are equivalent
it is sufficient to show that any solution of (12) has a corresponding solution of (2) with the same
objective value.

Let w;, vj, Z;; be the solution to (12). In the following, we construct a feasible solution w;, v;, Z;;
to (2):

If w; < 0and v; > 0set A; = |w;| and

w; =w; +8; =0, 9, =v; +A; >0, Z Zij: Z Zij—Ai.
a;jeng(a;) a;j€ng(a;)

If v; < 0and w; > 0setI'; = |v;| and

61:1}2+F1:0, ’LZ)Z:'LUZ+FZ>O, Z Zji: Z Zjifl—‘i.

ajeng(a;) ajeng(a;)
If both w; < 0 and v; < O set
’LT]i:’LUi+Ai+Fi>O, ﬁi:vi+Ai+Fi>O, Z (Zij—FZji): (Zij+Zji)_Ai_Fi-
aj€ng(a;) a;j€ng(a;)

Otherwise, set U~)1 = w;, f}j = vy, and Zij = Zl]

The resulting w;, vy, Z;j obey the equality constraints in (2) while fixing w; > 0, v; > 0. It is easy
to show that there exists Z;; > 0 that obeys the equalities above. The objective value of (12) with
w;, vj, Z;; and of (2) with w;, v, Z;; is equal:

N N N N
Zlﬁi + Zﬁj = Z(wz + Vi)l [w; >0, v, 0] Z((wz + Ai) +vi + D) jw, <0, v; 200t
i=1 j=1 i=1 i=1
N N

(w; + T+ (vj + Tj) ;>0 v,<0) + Z((wi + A + 1) 4+ (v + i 4+ A0)) 1w, <0, v <0]
j=1 i=1

N N
= lwil + ) vl
i=1 j=1

We conclude that w;, v;, Z-j attains the optimal solution to Problem (2). ]
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A.4 Proof of Theorem 4

We restate the theorem:

Theorem 4. Let P = Q be the uniform distribution on S, a unit (d — 1)-dimensional hyper-
sphere. Let S1 = {x1,....,any} ~ P and So = {y1,..,yn} ~ Q be two iid. samples. For

any e,¢',6 € (0,1), 0 < n < 2/3 and sample size % <N < 17/26‘1(1_§)/27 we have
PV (P,Q,€') =0and

P(PV(Sy,S2,€) >n) >1—4. (19)

Proof. We use the following definitions and lemmas.
Definition 18. The spherical cap of radius r about a point x is
C(ryz) ={z€ 8% " 1d(z,z) <r}.

Lemma 19. The spherical cap of radius r about a point x on a unit sphere is equal to

2
C(r,z) = {zeSdl < z,x>> 1—2}.
Lemma 20. Letn = /1 — % For0 <n < 1, the cap C(r,z) on S — 1 has a measure at most
—dn®/2
e .

Let p = P(ngg, (z) = ()) be the probability of an empty neighbor set. The next lemma bounds this
probability.

2

Lemma 21. The probability of an empty neighbor set P(ngg, (x) = 0) > 1 — Ne—d(1=5)/2,

Proof.
p =P(ngg,(z) = 0) =1 - P(ngg, () # 0) = 1 = P(3y; € 52 ;y; € Cle,2:))
>1- NP(y € Cle,z)) > 1 — Ne~91-5)/2,
where the first inequality is due to the union bound, and the second by Lemma 20. O

We consider the probability that the PV is grater than some 0 < 1 < 1. Note, that since
PV(P,Q) = 0 this is also the difference between the empirical and distributional PV. Let
e = {x; € S1 : ngg,(z;) = 0} be the set of samples in S; without neighbors, and N its car-
dinality.
— N,
P(PV(S1,S2,€) > n) 2 P >n) =1 -P(Ne < Nnp) 2 1 = P(Ne < [Nn]) ~ (20)

[Nn]

=1-> (JZ[) ()" (1=p)N .

=0

The first inequality holds, as PV (S1, S2,€) > n is obtained when N, > nN samples from S; have
no neighbors from .S, in their e-neighborhood. Note that since n = m there are also exactly IV,
sample from S3 which are not matched.

By Chernoff’s inequality we have that

[Nn] n _ _
> (1) -ps < (-2 -0 21
i=0
Combining Equations (20) and (21) we get
P(PV(S1,82,€) > 1) > 1 — exp(=2N (p — n)?). (22)

19



By Lemma 21, we have thatp > 1 — Nefd(l’é)/z.
If0 < 5 < 2/3 and Ne~9(1=)/2 < 1)/2, we have that
p—n> 1 — Ne~d0-5)/2 -n>1-3n/2>0.
Substituting the last inequality to (22):
P(PV (S, S2,€) > 1) > 1 — exp(—2N (1 — 31/2)?).
The theorem statement is obtained for any N, d and n for which 2N (1 — 31/2)? > log(}). O
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